
Divergent Expansion, Borel Summability

and 3-D Navier-Stokes Equation

By Ovidiu Costin, Guo Luo and Saleh Tanveer

Department of Mathematics, Ohio State University, OH 43210, USA

We describe how Borel summability of divergent asymptotic expansion can be ex-
panded and applied to nonlinear partial differential equations (PDEs). While Borel
summation does not apply for nonanalytic initial data, the present approach gen-
erates an integral equation applicable to much more general data.

We apply these concepts to the 3-D Navier-Stokes system and show how the
integral equation approach can give rise to local existence proofs. In this approach,
the global existence problem in 3-D Navier-Stokes, for specific initial condition and
viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some
positive power of 1/t). Furthermore, the errors in numerical computations in the
associated integral equation can be controlled rigorously, which is very important
for nonlinear PDEs such as Navier-Stokes when solutions are not known to exist
globally.

Moreover, computation of the solution of the integral equation over an inter-
val [0, p0] provides sharper control of its p → ∞ behavior. Preliminary numerical
computations give encouraging results.
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1. Introduction

It is well known that asymptotic expansions arising in applications are usually di-
vergent. Their calculation is usually algorithmic, once proper scales are identified.
Nonetheless, an algorithmically constructed consistent expansion does not guaran-
tee existence of a solution to the problem in the first place.

Borel summation associates to a divergent asymptotic series an actual function,
whose asymptotics is given by the series. Under some conditions, this association is
an isomorphism (Écalle 1981a, b, 1985; Costin 1998) under all the usual algebraic
operations, including differentiation and integration, between factorially divergent
series and actual functions. This is similar to the isomorphism between locally
convergent power series and analytic functions. In particular, if a series is a formal
solution of a problem—an ordinary differential equation (ODE), partial differential
equation (PDE), difference equation, etc., so will the actual function obtained by
Borel summation be. Therefore, Borel summability of a formal series to the problem
at hand ensures that an actual solution exists.

Furthermore, while the asymptotic series, say in a variable x, is only valid as
x → ∞, the Borel sum f(x) has wider validity. In some concrete problems arising
in differential equations the validity may even extend to x = 0. Thus, unlike the
asymptotic series, its Borel sum is useful even when x is not so large.
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By Borel summability of a solution to a differential equation (ODE or PDE),
we mean Borel summability of its asymptotic expansion, usually in one large inde-
pendent variable or parameter, which plays the role of x in the above discussion.
For evolution PDEs, when the domain is (t, x) ∈ R

+ ×R
d and the initial condition

is analytic in a strip containing real x, a suitable choice of summation variable is an
inverse power of t. We will apply this new method to the 3-D Navier-Stokes (NS)
problem: find smooth function v : Ω×R

+ → R
3, where Ω ⊂ R

3 such that it satisfies

vt − ν∆v = −P [(v · ∇)v] + f, and v(x, 0) = v[0](x), (1.1)

with some smoothness condition on f and v[0]. In the equation above, P is the Hodge
projection to the space of divergence-free vector fields and ν the kinematic viscosity.
Additionally, when the domain Ω is bounded, a no-slip boundary condition v = 0 on
∂Ω is physically appropriate for rigid boundaries. The mathematical complications
of no-slip boundary conditions are avoided in the periodic case. The latter is less
physical, yet it is widely studied since it is useful in understanding homogeneous
isotropic fluid flows.

The global existence of smooth solutions of (1.1) for smooth initial conditions
v[0] and forcing f remains a formidable open mathematical problem, even for f = 0,
despite extensive research in this area (see for example monographs Temam 1986;
Constantin & Foias 1988; Doering & Gibbon 1995; Foias et al. 2001). The problem is
important not only in mathematics but it has wider impact, particularly if singular
solutions exist. It is known (Beale et al. 1984) that the singularities can only occur if
∇v blows up. This means that near a potential blow-up time, the relevance of NS to
model actual fluid flow becomes questionable, since the linear approximation in the
constitutive stress-strain relationship, the assumption of incompressibility and even
the continuum hypothesis implicit in derivation of NS become doubtful. As Trevor
Stuart pointed out in the talk by S. Tanveer, the incompressibility hypothesis itself
becomes suspect. In some physical problems (such as inviscid Burger’s equation)
the blow-up of an idealized approximation is mollified by inclusion of regularizing
effects. It may be expected that if 3-D NS solutions exhibited blow-up, then the
smallest time and space scales observed in fluid flow would involve parameters
other than those present in NS. This can profoundly affect our understanding of
small scale in turbulence. In fact, some 75 years back, Leray (1933, 1934a, b) was
motivated to study weak solutions of 3-D NS, conjecturing that turbulence was
related to blow-up of smooth solutions.

The typical method used in the mathematical analysis of NS, and of more gen-
eral PDEs, is the so-called energy method. For NS, the energy method involves
a priori estimates on the Sobolev H

m norms of v. It is known that if ‖v(·, t)‖H1

is bounded, then so are all the higher order energy norms ‖v(·, t)‖Hm if they are
bounded initially. The condition on v has been further weakened (Beale et al. 1984)

to
∫ t

0
‖∇×v(·, t)‖L∞dt < ∞. Prodi (1959) and Serrin (1963) have found a family of

other controlling norms for classical solutions (Ladyzhenskaya 1967). For instance
it is known that if

∫ T

0

‖v(·, t)‖2
L∞ dt < ∞,

then classical solution to 3-D NS exists in the interval (0, T ).
In this connection, it may be mentioned that the 3-D Euler equation, which

is the idealized limit of Navier-Stokes with no viscosity, also has been subject of
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Navier-Stokes Equation 3

many investigations. Indeed, J. T. Stuart has found some ingenious explicit solu-
tions that exhibit finite-time blow-up (Stuart 1987, 1998). The issue of blow-up for
flows with finite energy, however, still remains open though there have been many
investigations in this area and there is some numerical evidence for blow-up.

The Borel based method that we use for the NS problem is fundamentally
different from the usual classical approaches to PDE. By Borel summing a formal
small time expansion in powers of t:

v[0](x) +

∞
∑

m=1

tmv[m](x), (1.2)

we obtain an actual solution to 3-D NS problem in the form

v(x, t) = v[0](x) +

∫ ∞

0

e−p/tU(x, p) dp (1.3)

where U(x, p) solves some integral equation (IE), whose solution is known to exist
within the class of integrable functions in p that are exponentially bounded in p,
uniformly in x. If the IE solution U does not grow with p or grows at most subexpo-
nentially, then global existence of NS follows. This new approach to global existence
of 3-D Navier-Stokes and indeed to many other evolution PDEs is presented in this
paper.

2. Borel Transforms and Borel Summability

We first mention some of the relevant concepts of Borel summation of formal series,
leaving aside for now the context where such series arise.

Consider a formal series† f̃(x) =
∑∞

j=1 ajx
−j . Its Borel transform is the formal,

term by term, inverse Laplace transform

B[f̃ ](p) ≡ F (p) =
∞
∑

j=1

ajp
j−1

Γ(j)
. (2.1)

If (2.1) has all of the following three properties:

i. a nonzero radius of convergence at p = 0,
ii. its analytic continuation F (p) exists on (0,∞), and
iii. e−cpF (p) ∈ L1(0,∞) for some c ≥ 0, i.e.

∫ ∞

0
e−cp|F (p)|dp < ∞,

then the Borel sum of f̃ is defined as the Laplace transform of F , i.e.

f(x) = L[Bf̃ ](x) =

∫ ∞

0

e−pxF (p) dp. (2.2)

The function f(x) is clearly well defined and analytic in the complex half-plane
Re x > c. If the integral exists along a complex ray (0,∞eiθ) for θ = − arg x, then
the corresponding Laplace transform Lθ provides the analytic continuation of f(x)
to other complex sectors.

† Borel transform also exists for series involving fractional powers of 1/x.
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4 O. Costin, G. Luo & S. Tanveer

Borel summability of a formal series means that properties (i)-(iii) are satisfied.
It is clear from Watson’s lemma (Wasow 1968; Bender & Orszag 1978) that if the
Borel sum f(x) ≡ LθBf̃ exists, then f(x) ∼ f̃ for large x and that f̃ is a Gevrey-1
asymptotic series (Balser 1994); i.e. coefficients aj diverge like j!, up to an algebraic
factor.

3. Illustration of Borel Sum for Initial Value Problem

Consider first the heat equation

vt = vxx, v(x, 0) = v[0](x); (v[0] analytic) (3.1)

where we look for formal series solutions

v(x, t) = v[0](x) +

∞
∑

m=1

tmvm(x) (3.2)

as in the Cauchy-Kowalewski approach, except the expansion is in t alone. We get

(m + 1)vm+1(x) = v′′
m(x). (3.3)

By induction,

vm(x) =
v[0](2m)

(x)

m!
. (3.4)

Assuming v[0] is analytic in a strip of width a containing R but is not entire, (3.2)
diverges factorially since

vm(x) =
(2m)!

m!(2πi)

∮

|ζ−x|=a′

v[0](ζ)

(ζ − x)2m+1
dζ; a′ < a (3.5)

and (2m)!/m! is a factorial up to a geometric factor. It is then easily checked that
the Borel transform (formal inverse Laplace transform) of (3.2) is convergent in p in

a ball around the origin. Indeed Gevrey estimates on v[0](2m)
show that the radius

of convergence of the Borel transform of (3.2) for any x is at least the analyticity
width of v[0]. However, it is not obvious whether conditions (ii) and (iii) in §2 for
Borel summability are satisfied or not.

Instead, we substitute

v(x, t) =
1√
t
u(x, t) (3.6)

in (3.1), Borel transform the resulting PDE in 1/t and write L−1u = p−1/2W (x, 2
√

p).
We get

Wss − Wxx = 0 implying W = f1(x + s) + f2(x − s). (3.7)

Retracing the transformations and using the initial condition, one obtains, from
the Laplace transform of p−1/2W (x, 2

√
p) in p, the well-known solution to the heat

equation in terms of the heat kernel (see §3.0.1 in Costin & Tanveer 2004a). The
above calculation shows that while (3.2) is only valid as an asymptotic expansion
for t ≪ 1, its Borel sum is valid for all t.
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Though the heat equation is special in that explicit solutions are readily avail-
able, the analysis above shows that instead of Borel transforming formal series in
t, it is better to apply Borel transform directly on the PDE itself and carry out a
mathematical analysis on the resulting equation. This is indeed what can be accom-
plished for many PDE initial value problems (indeed other types of problems are
also amenable to similar analysis). In the following section, we derive an integral
equation that arises from Borel-transforming (1.1).

4. Navier-Stokes Equation and Integral Equation

We denote by ‘ˆ’ the Fourier transform, by ‘ ∗̂ ’ the Fourier convolution (‘ ∗ ’ is
the Laplace convolution), and assume that the forcing is time independent. We
also denote Fourier transform by F and its inverse by F−1†. For 2π periodic box
problem, in the Fourier space, NS reads (see for e.g. Temam 1986; Constantin &
Foias 1988; Doering & Gibbon 1995; Foias et al. 2001):

v̂t + |k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂ , v̂(k, 0) = v̂[0](k), v̂ = (v̂j)j=1,2,3 (4.1)

where

Pk ≡
(

1 − k(k·)
|k|2

)

(4.2)

is the Fourier transform of Hodge projection P . We also follow the usual convention
of summation over repeated indices. When x ∈ T

3[0, 2π]3, we take k = (k1, k2, k3)
an ordered triple of integers, i.e. k ∈ Z

3, while if x ∈ R
3 we would take k ∈ R

3.
Without loss of generality we can assume that average velocity and average force
over a period is zero, implying v̂(0, t) = 0 and f̂(0) = 0.

We write v̂ = v̂[0] + û and apply the Borel transform in 1/t to the resulting
equation; we get

pÛpp + 2Ûp + |k|2Û = −ikjPk

[

v̂
[0]
j ∗̂Û + Ûj ∗̂v̂[0] + Ûj

∗∗Û
]

+ v̂[1](k)δ(p)

=: −ikjĤj(k, p) + v̂[1](k)δ(p). (4.3)

The solution to the homogeneous equation on the left side of (4.3) can be expressed
in terms of the Bessel functions J1 and Y1. Using boundedness of Û(k, p) at p = 0
(which follows from v̂(k, 0) = v̂[0](k)), one obtains the integral equation (see Costin
& Tanveer 2006a for more details):

Û(k, p) = −ikj

∫ p

0

G(z, z′)Ĥj(k, p′) dp′ +
2J1(z)

z
v̂[1](k) ≡ N

[

Û
]

(k, p), where

G(z, z′) =
z′

z
(J1(z

′)Y1(z) − Y1(z
′)J1(z)) , z = 2|k|√p, z′ = 2|k|

√

p′, (4.4)

where ∗∗ denotes Fourier transform followed by Laplace transform and

v̂[1](k) = −|k|2v̂[0] − ikjPk

[

v̂
[0]
j ∗̂v̂[0]

]

. (4.5)

† For periodic problem, F−1 is simply evaluation of a function based on its Fourier coefficients.
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5. Results

(a) Overview of Results

We have proved that the integral equation (4.4) has a unique solution Û(k, p)
(precise statements and spaces of functions being considered are spelled out in
§5 b ) that is Laplace transformable in p and absolutely summable over k ∈ Z

3.
Therefore, it generates, through (1.3), a classical solution to (1.1) over some time
interval. Furthermore, U(x, p) is analytic in p for p ≥ 0 (i.e. p ∈ R

+∪{0}) when v[0]

and f are analytic in x. Applying Watson’s lemma to (1.3), the asymptotic nature
of the formal expansion

v(x, t) ∼ v[0](x) +

∞
∑

m=1

tmv[m](x) (5.1)

is confirmed for small t. Further, because U is analytic at p = 0, the above series
is divergent like m! (up to geometric corrections in m), implying that a least term
truncation of the above series will result in exponentially small errors for small t.

We now make an important point about the integral equation representation
of Navier-Stokes solution. Though (1.3) is the Borel sum of the formal small time
expansion (1.2) for analytic initial data v[0](x) and forcing f(x), the representation
(1.3) transcends these restrictions. As stated in theorem 5.1, there is a solution

Û(k, p) satisfying (4.4), even when v̂[0] ≡ F
[

v[0]
]

, f̂ ≡ F [f ] are only in l1, i.e. have
absolutely summable Fourier series. Through the Laplace transform representation

(1.3), U(x, p) ≡ F−1
[

Û(·, p)
]

(x) generates a classical solution to (1.1) for t in some

time interval. Thus, while Borel summability does not make sense for nonanalytic
initial data or forcing, the representation (4.4) and (1.3) continue to provide classical
solutions to Navier-Stokes! Furthermore, if the solution Û(k, p) to (4.4) does not
grow with p, or grows at most subexponentially, then global existence of 3-D NS
follows.

The existence interval
[

0, α−1
)

for 3-D NS proved in theorem 5.1 is suboptimal.

It does not take into account the fact that initial data v[0] and forcing f are real
valued. (Blow-up of Navier-Stokes solution for particular complex initial data is
known (Li & Sinai 2006).) Also, the estimates ignore possible cancellations in the
integrals.

In the following we address the issue of sharpening the estimates, in principle
arbitrarily well, based on more detailed knowledge of the solution of the IE on a p-
interval [0, p0]. This knowledge may come from, among others, a computer assisted
set of estimates, or a priori information based on optimal truncation of asymptotic
series. If this information shows that the solution is small for p towards the right
end of the interval, then α can be shown to be small. This in turn results in longer
times of guaranteed existence, possibly global existence for f = 0 if this time exceeds
Tc, the time after which it is known that a weak solution becomes classical again
because of long term effect of viscosity.

To get a mathematical sense of how such estimates are possible from the integral
equation (4.4), define

Û (a)(k, p) = Û(k, p) for p ≤ p0 and 0 otherwise.
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Define Ŵ = Û − Û (a), where we see that Ŵ is nonzero only for p > p0. Then, from
(4.4) we have for p > p0,

Ŵ (k, p) = Ŵ (0)(k, p) − ikj

∫ p

p0

G(z, z′)Ĥ
(w)
j (k, p′) dp′ ≡ N (w)

[

Ŵ
]

(k, p), (5.2)

where

Ĥ
(w)
j (k, p) = Pk

[

v̂
[0]
j ∗̂Ŵ + Ŵj ∗̂v̂[0] + Ŵj

∗∗Û (a) + Û
(a)
j

∗∗Ŵ + Ŵj
∗∗Ŵ

]

, (5.3)

Ŵ (0)(k, p) = 2
J1(z)

z
v̂[1](k) − ikj

∫ min (p,2p0)

0

G(z, z′)Ĥ
(a)
j (k, p′) dp′, (5.4)

and

Ĥ
(a)
j = v̂

[0]
j ∗̂Û (a) + Û

(a)
j ∗̂v̂[0] + Û

(a)
j

∗∗Û (a). (5.5)

We note that if the calculated Û (a) is seen to rapidly decrease in some subinterval
[pd, p0], then the inhomogeneous term Ŵ (0) in the integral equation (5.2) becomes
small. For sufficiently large p0, the factor p−1/2 multiplying integral term in (5.2)
is also small for p ≥ p0. This ensures contractivity of operator N (w) at a smaller α.
Precise statements on estimates on α-based Û (a) are given in theorem 5.3.

The results in theorem 5.3 rely on knowledge of Û for p ∈ [0, p0]. When the initial
data and forcing are analytic, the formal series (1.2) can be useful in this respect
since its Borel transform has a nonzero radius of convergence in the p-domain.
However, this ball about the origin may not contain p0 when p0 is large.

A second approach towards knowing Û (a) is to rely on a discretization in p and
a Galerkin projection to a finite number (say 8N3) of Fourier modes in k. This
approach is attractive, even from the viewpoint of rigorous results, since the errors
are completely controlled as we now argue.

Let N (N)
δ denote the discretized version of operator N and Û

(N)
δ denote the

solution of the discretized equation, which can be calculated numerically. Then

Û
(N)
δ = N (N)

δ

[

Û
(N)
δ

]

. (5.6)

The continuous solution Û to (4.4), when plugged into the discretized system, sat-
isfies

Û = N (N)
δ

[

Û
]

+ T̂E (5.7)

where T̂E is the sum of truncation errors due to discretization in p and Galerkin
projection on [−N,N ]3. This error can be expressed in terms of derivatives of Û with
respect to p and estimates on kÛ . Each is available a priori from solutions of the
integral equation (4.4). By subtracting (5.6) from (5.7), we obtain an equation for

the error Û−Û
(N)
δ . From the contractivity properties of N (N)

δ , it follows, essentially

by using the same arguments as for N , that Û − Û
(N)
δ may be estimated in terms

of the truncation error, which itself is a priori small for sufficiently small δ and
sufficiently large N . So, in principle, Û can be computed to any desired precision
with rigorous error control. More details of this argument appear in Costin et al.
2008.
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(i) Acceleration

We have already established that at most subexponential growth of ‖Û(·, p)‖l1

implies global existence of a classical solution to (1.1).
We now look for a converse: suppose (1.1) has a global solution, is it true that

Û(·, p) always is subexponential in p? The answer is no in general. Any complex
singularity τs in the right-half complex τ -plane of v(x, τ−1) produces exponential
growth of Û with rate Re τs (and oscillation of Û with frequency Im τs), as it is
seen by looking at the asymptotics of the inverse Laplace transform.

However, when there is no forcing f = 0, it can be proved (see theorem 5.4 for
precise statements) that given a global classical solution of (1.1), there is a c > 0
so that for any τs we have | arg τs| > c. This means that for sufficiently large n, the
function v(x, τ−1/n) has no singularity in the right-half τ -plane. Then the inverse
Laplace transform

Uacc(x, q) =
1

2πi

∫ c+i∞

c−i∞

{

v(x, τ−1/n) − v[0](x)
}

eqτ dτ (5.8)

can be shown to decay as q → ∞, reflecting the exponential decay of v(x, t) for
large t.

This means that it is advantageous to find Uacc(x, q) so that the generalized
Laplace transform representation

v(x, t) = v[0](x) +

∫ ∞

0

Uacc(x, q)e−q/tn

dq (5.9)

gives a solution to (1.1). The transformation from U(x, p) to Uacc(x, q) is referred
to as acceleration and was first used in one variable by Écalle. Indeed, there is an
integral transformation that directly relate U to Uacc, though this is not used in
the analysis.

The resulting integral equation for Ûacc(k, q) has been analyzed (Costin et al.
2008) and results similar to theorems 5.1 and 5.3 hold. Indeed, preliminary numer-
ical calculations, described in §5 c give encouraging results.

(b) Some Theorems

For analysis of the IE, it is convenient to define a number of different spaces of
functions and corresponding norms.

Definition 5.1. We denote by l1(Z3) the set of functions f̂ of an ordered integer
triple k = (k1, k2, k3) (i.e. of k ∈ Z

3) such that†

‖f̂(k)‖l1(Z3) =
∑

k∈Z3

|f̂(k)|.

Also, for analytic functions f(x) whose series coefficients are exponentially decaying
functions in Z

3, it is convenient to define in the Fourier space the ‖.‖µ,β norm:

‖f̂‖µ,β = sup
k∈Z3

{

eβ|k|(1 + |k|)µ|f̂(k)|
}

.

† Since for NS the velocity and forcing have the property that f̂(0) = 0 = v̂(0, t), the k = 0
term is left out in the l1 sum.
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Definition 5.2. For α ≥ 0, we define the norm ‖.‖(α)
1 for functions of (k, p), k ∈ Z

3,
p real, with p ≥ 0 (i.e. p ∈ R

+ ∪ {0}):

‖Û‖(α)
1 =

∫ ∞

0

e−αp

{

∑

k∈Z3

|Û(k, p)|
}

dp =

∫ ∞

0

e−αp‖Û(·, p)‖l1(Z3) dp. (5.10)

Definition 5.3. We define A(α)
1 to be the Banach space of functions Û(k, p) that

are l1(Z3) in k ∈ Z
3 and absolutely integrable in p such that ‖Û‖(α)

1 < ∞.

Definition 5.4. For analytic initial condition v[0] and forcing f , it is also convenient
to define for β > 0, µ > 3, the following space A of functions of (k, p) that are
bounded in k and continuous in p ∈ R

+ so that

‖Û‖ = sup
p∈R+

e−αp(1 + p2)

[

sup
k∈Z3

eβ|k|(1 + |k|)µ|Û(k, p)|
]

= sup
p∈R+

e−αp(1 + p2)‖Û(·, p)‖µ,β < ∞.

We have the following theorems:

Theorem 5.1. If |k|2v̂[0], f̂ ∈ l1, then the integral equation (4.4) has a unique

solution in the space A(α)
1 for α large enough. Taking the Laplace transform relation:

v̂(k, t) = v̂[0](k) +

∫ ∞

0

Û(k, p)e−p/t dp, (5.11)

v̂(k, t) satisfies the Navier-Stokes equation (4.1) in Fourier space. The generated
Fourier series v(x, t) = F−1 [v̂(·, t)] (x) is a classical solution to Navier-Stokes for
t ∈

(

0, α−1
)

.

Outline of the proof: The detailed proof of the theorem is given in theorem 1
in Costin et al. 2008, though a more general IE is considered; the theorem 5.1 here
corresponds to the special case n = 1 in Costin et al. 2008. The key feature of the
proof is the boundedness of |k|G for z, z′ ∈ R

+ for z′ ≤ z (i.e. for p′ ≤ p), which
follows from the properties of J1 and Y1. Therefore,

‖N
[

Û
]

(·, p)‖l1(Z3) ≤
C√
p

∫ p

0

[

‖v̂[0]‖l1‖Û(·, s)‖l1 + ‖Û(·, s)‖l1 ∗ ‖Û(·, s)‖l1

]

ds+‖v̂[1]‖l1

and from the properties of Laplace convolutions we obtain

‖N
[

Û
]

‖(α)
1 ≤ Cα−1/2‖Û‖(α)

1

(

‖v̂[0]‖l1 + ‖Û‖(α)
1

)

+
1

α
‖v̂[1]‖l1 ,

and in a similar manner

‖N
[

Û [1]
]

−N
[

Û [2]
]

‖(α)
1 ≤ Cα−1/2‖Û [1]−Û [2]‖(α)

1

(

‖v̂[0]‖l1 + ‖Û [1]‖(α)
1 + ‖Û [2]‖(α)

1

)

.

It follows that for large enough α, N is contractive with respect to ‖.‖(α)
1 in the ball

of radius 2α−1‖v̂[1]‖l1 . The transformations are easily undone to obtain a classical
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solution to the 3-D NS equation for t ∈
(

0, α−1
)

† that satisfies given initial condi-
tion. Conversely, since a smooth solution to (1.1) is known to be unique, its Fourier
transform must be expressible as (5.11), implying the solution is analytic in time for
Re t−1 > α for some α. The inverse Laplace transform L−1

[

v̂(k, τ−1) − v̂[0]
]

(p) =

Û(k, p) must exist and satisfy IE (4.4). Therefore, the solution to (4.4) is unique,
without any restriction on the ball size in the Banach space.

Remark 5.5. The main significance of theorem 5.1 is not that there exists smooth
solution to 3-D Navier-Stokes locally in time. This has been a standard result for
many years (see for instance Temam 1986; Constantin & Foias 1988; Doering &
Gibbon 1995; Foias et al. 2001). The connection with the integral equation (4.4) is
more significant. Its solution Û(k, p) exists for p ∈ R

+. If this solution does not grow
with p or grows at most subexponentially, then 3-D NS will have global solution
for the particular initial condition in question. So, in a sense the problem of global
existence has become one of asymptotics. We will see later that this connection can
be made stronger.

Theorem 5.2. For β > 0 (analytic initial data) and µ > 3, the solution v(x, t) is
Borel summable in 1/t, i.e. there exists U(x, p), analytic in a neighborhood of R

+,
exponentially bounded, and analytic in x for | Im x| < β so that

v(x, t) = v[0](x) +

∫ ∞

0

U(x, p)e−p/t dp.

Therefore, in particular, as t → 0,

v(x, t) ∼ v[0](x) +

∞
∑

m=1

tmv[m](x)

with
|v[m](x)| ≤ m!A0B

m
0 ,

where A0 and B0 depend on v[0] and f only.

Remark 5.6. Borel summability and classical Gevrey-asymptotic results (Balser
1994) imply for small t that

∣

∣

∣

∣

v(x, t) − v[0](x) −
m(t)
∑

m=1

tmv[m](x)

∣

∣

∣

∣

≤ A0 m(t)1/2e−m(t)

where m(t) = ⌊B−1
0 t−1⌋. Our bounds on B0 are likely suboptimal. Formal argu-

ments in the recurrence relation of v[m+1] in terms of v[m], v[m−1],. . . ,v[1], indicate
that B0 only depends on β, but not on ‖v̂[0]‖µ,β .

(i) Sharper Estimates

Let Û(k, p) be the solution of (4.4) provided by theorem 5.1. Define

Û (a)(k, p) =

{

Û(k, p) (0, p0] ⊂ R
+

0 otherwise
, (5.12)

† The solution immediately smooths out in x for t > 0.
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Û (s)(k, p) = −ikj

∫ p

0

G(p, p′; k)Ĥ
(a)
j (k, p′) dp′ + Û0(k, p),

Ĥ
(a)
j (k, p) = Pk

[

v̂
[0]
j ∗̂Û (a) + Û

(a)
j ∗̂v̂[0] + Û

(a)
j

∗∗Û (a)
]

(k, p).

Using (5.12) we introduce the following functions of Û (a)(k, p), v̂[0] and f̂ :

b := α

∫ ∞

p0

e−αp‖Û (s)(·, p)‖l1 dp, (5.13)

ǫ1 = C1 +

∫ p0

0

e−αp′

C2(p
′) dp′. (5.14)

Finally, we let

C0(k) = sup
p0≤p′≤p

{

|G(p, p′; k)|
}

, C1 = 4 sup
k∈Z3

{

|k|C0(k)
}

‖v̂[0]‖l1 ,

C2(q) = 4 sup
k∈Z3

{

|k|C0(k)
}

‖Û (a)(·, p)‖l1 , ǫ = 2 sup
k∈Z3

{

|k|C0(k)
}

.

Theorem 5.3. (i) The exponential growth rate α of Û is estimated in terms of the
restriction of Û to [0, p0] as follows.

If α > ǫ1 + 2
√

ǫb then

∫ ∞

0

‖Û(·, p)‖l1e
−αp dp < ∞. (5.15)

Remark 5.7. It was argued in Costin et al. 2008, in a slightly more general context,
that the estimated ǫ1+

√
2bǫ is small if the solution Û (a) is small in some subinterval

[pd, p0]. This implies a long interval (0, α−1) of guaranteed existence of a solution
to (1.1).

As mentioned in §5 a , while subexponential growth of Û guarantees global solution
to (1.1), the converse is not true if there exist purely complex right half t-plane
singularities. The following theorem shows however that a converse is true, for
f = 0, after suitable acceleration. Thus the problem of global existence of (1.1)
becomes a problem of asymptotics for solution Ûacc.

Theorem 5.4. Assume that v̂[0] ∈ l1(Z3), ν > 0 and f̂ = 0 (zero forcing). If NS
has a global classical solution, then there exists n large enough so that Uacc(x, q) =

O(e−Cq1/(n+1)

) as q → +∞, for some C > 0.

The proof of this theorem is given in Costin et al. 2008.

Remark 5.8. Together with theorem 5.1, theorem 5.4 shows that global existence
is equivalent to an asymptotic problem. The solution to NS exists for all time if
and only if Ûacc decays for some n ∈ Z

+.

(c) Preliminary Numerical Results

The computations described here are for n = 1 (unaccelerated case) and n = 2.
We present the details elsewhere (Costin et al. 2008). The code is far from being
optimized and the results are only presented over a modest interval in p or q.
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12 O. Costin, G. Luo & S. Tanveer

(i) Kida Flow

We consider the Kida initial condition (Kida 1985)

v1(x1, x2, x3, 0) = sin x1(cos 3x2 cos x3 − cos x2 cos 3x3).

The high degree of symmetry (preserved in time) lowers the number of compu-
tational operations. We computed the solution for ν = 0.1 and no forcing, for a
Reynolds number Re = 20π. This is not very large, but we were mainly interested
in testing the concepts developed. We used q0 = 10 and used 128 points in each
space dimension, i.e. N = 64, and step size ∆q = 0.05. To investigate the growth
of the solution Û with q, we computed the l1-norm

‖Û(·, q)‖l1,2N :=
∑

k∈[−N,N ]3

|Û(k, q)|

and plotted ‖Û1(·, q)‖l1,128 vs. q in figure 1(b). For comparison we also included in
figure 1(a) a plot of the solution to the original (unaccelerated) equation, i.e. q = p
case.

Singularities in the right half plane, if present, come in conjugate pairs because
of reality of the solution. This exponential growth (mixed with oscillation) of Û(k, p)
is seen in figure 1(a). The oscillation parameters depend on k while the growth rate
is virtually insensitive to k. By monitoring the oscillation against the growth rate
of each of the modes, we predicted that acceleration with n = 2 would eliminate
singularities in the right-half τ = 1/tn plane. This expectation is confirmed in
figure 1(b), in which it is seen that ‖Û(·, q)‖l1 decreases beyond some q. Actually,
it has been shown in Costin et al. 2008 that if (1.1) has a global solution and

an appropriate acceleration is used, then ‖Û(·, q)‖l1 is O(e−cq1/(n+1)

). Remarkably,
though the interval of calculation is only modestly long, [0, 10], this asymptotic
trend is clear in figure 2. For large enough q, the low k modes dominate, while
for smaller q more modes contribute to the norm, and this explains the damped
oscillation present in figure 2. It is remarkable that a computation over a moderate
q-interval can capture the large q-trend.

6. Discussion and Conclusion

We have shown here how Borel transform methods provide a different approach to
the study of evolution PDEs, such as for 3-D incompressible Navier-Stokes. In this
formulation, the PDE problem becomes equivalent to a nonlinear integral equation
with unique solutions in R

+. These solutions are smooth and analytic in the dual
variable providing control of the errors. Furthermore, global existence becomes an
asymptotic problem. We also illustrate how to obtain better asymptotic estimates
if the solution for a finite interval [0, p0] is known. Preliminary numerical results
are encouraging.

Regarding future work in this direction, we point out that (1) so far, our focus
has been existence for fixed initial data and Reynolds number. While the upper
bound estimates can be obtained for arbitrary initial data, we are yet to explore
more optimal estimates in these settings. (2) A related question, which is interesting
in its own right, is that whether Borel summation applies to incompressible Euler
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equations. As indicated by a preliminary calculation (not shown here), the small
time expansion for Euler is likely convergent, which means Borel summation would
result in infinite radius of convergence. Exploiting this aspect will be subject of
future research.

This work was supported in part by the National Science Foundation (DMS-0406193,
DMS-0601226, DMS-0600369 to OC and DMS-0405837 to ST). ST is also indebted to
EPSRC and the Math Institute at Imperial for support during his year long visit to
Imperial where this project got initiated.
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Û
1
(
·,

q
)
‖

l1
,1

2
8

Zero forcing, ν = 0.1

(b)

Figure 1. For zero forcing and ν = 0.1: (a). The original (unaccelerated) equation,
‖Û1(·, p)‖l1,128 vs. p. (b). Accelerated equation with n = 2, ‖Û1(·, q)‖l1,128 vs. q.
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Û
1
(
·,

s
3
)
‖

l1
,1

2
8

i

Zero forcing, ν = 0.1

(b)

Figure 2. Asymptotic behavior of ‖Û1(·, q)‖l1,128. (a). log ‖Û1(·, q)‖l1,128 vs. q1/3. (b)
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vs. s, where s = q1/3 and ∆− is the backward difference

operator in s.
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