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1. Introduction

In generic analytic nonlinear differential systems in the complex plane,
we study the position and the type of singularities formed by solutions
when an irregular singular point of the system is approached along an
antistokesdirection!. Placing thesingularity of the system at infinity welook
at equations of the form y’ = f(x~%, y) with f analytic in a neighborhood
of (0, 0), with genericity assumptions;, X = oo is then arank one singular
point. We analyze the singularities of those solutions y(x) which tend to
zero for X — oo in some sectorial region, on the edges of the maximal
region (a so described) with this property.

After standard normalization of the differential system, it is shown that
singularities occuring in antistokes directions are grouped in nearly peri-
odical arrays of similar singularities as x — oo, the location of the array
depending on the solution while the (near-) period and type of singularity
are determined by the form of the differential system.

This regularity in type and position of movable singularities has been
observed previoudly in various examples of nonlinear systems: Painlevé
equations ([30], [28], [16]) third order nonlinear equations ([47], [22]) non-
integrable Abel equations ([23], [34]) among others. We show these features
arerather universal and find aformalism to calculate them (asymptotically).

When f is meromorphic and satisfies some estimates the singularities in
the arrays are generically sguare root branch points.

1 In the sense stemming from Stokes original papers and the one favored in exponential
asymptotics literature, Stokes lines are those where a small exponential is purely real; on
an antistokes line the exponential becomes purely oscillatory. In some references these
definitions are interchanged.
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The mechanism of singularity formation is elucidated by exponential
asymptotic analysis, which also provides a general and effective calcula
tion tool for determining the type and position of singularities. The present
method generalizes that of [16]. The analysis yields two-scale asymptotic
expansions of solutions, validinaregion whichincludesthedirectionsaong
whichy — 0 and extending, on appropriate Riemann surfaces, into regions
where the solutions typically develop singularities. The expansions have
the formy ~ F(x; £&(x)) = Yo o X MFm(E(X)), where £(x) = Ce **x%;
A, a and thefunctionsFy, areuniquely determined, modulotrivial transform-
ations, by f; the constant C depends on the solution y. F, satisfy arecursive
system of equations, typically simpler than the original system. In particu-
lar, for all first order equations and for Painlevé's P1 and P2 equations, the
solution of the recursive system is expressible by quadratures.

The method can be interpreted as a transasymptotic matching technicque
in that the expansion F of y matches (and is fully determined by) its Ecalle
transseries® in a sector where y is asymptotic to a power series. The con-
stant C in the definition of & is one of the constants beyond all orders in
the transseries of y. In some instances, the technique provides a connection
method even in nonintegrable systems (in which case, the connection data
are path-dependent). The constant C becomes thus accessible by classica
asymptotics and determines the position of singularities of y.

The expansion y ~ F(x; &(x)) satisfies Gevrey-type inequalities, and
thus produces exponentially accurate estimates of y (see [42]).

Some examples are outlined. In the first one, anonintegrable Abel equa-
tion, the method provides a description of the exact type of all but finitely
many singularities of solutionsinasector, and of the associated the Riemann
surfaces. The connection between these complicated Riemann surfaces and
the numerically observed chaoticity of solutions [23] is briefly discussed.

As other examples we consider the Painlevé equations P, and P, for
which we use the technique to express the asymptotic distribution of poles
near the antistokes lines of the so called truncated solutions. The position of
the poles only depends on an exponential asymptotics quantity, the constant
beyond al orders.

2. Setting

We adopt, with few exceptions that we mention, the same conditions, no-
tations and terminology as [13]; the results on formal solutions and their
generaized Borel summability are also taken from [13].

The differential system considered has the form

y =f(x1y) yeC", xeC (1)
where

2 |nour context these are algebraically determinable formal combinations of seriesin x—1
and small exponentials, and generalize classical asymptotic expansions [18].
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(i) fisanalyticinaneighborhood V, x Vy of (0, 0), under the genericity
conditions that:

(ii) the eigenvalues A; of the matrix A = {3yj (O, 0)}i,j=l,2,m,n are

linearly independent over Z (in particular A # 0) and such that
(iii) argx; areall different.

(In fact somewhat less restrictive conditions are used, namely those
of [13] Sect. 1.1.2.)

By elementary changes of variables, the system (1) can be brought to
the normalized form [13], [48]

/ n 14 -
Y =—Ay+ Ay +9(x Ly) )

where A = diag{x;}, A= diag{«;} are constant matrices, g is anaytic at
(0,0)andg(x71,y) = O(x2)+O(Jy|?>) asx — oo andy — 0. Performing
afurther transformation of thetypey -y — Zlﬁ"zl ax X (which takes out
M terms of the formal asymptotic series solutions of the equation), makes

g(IxI™hy) = Ox ML ly|% Ix2y]) (X — 003 y — 0)

where
M > max R(aj)
]

and O(a; b; ¢) means (at most) of the order of the largest among a, b, c.

Our analysis applies to solutions y(x) such that y(x) — 0asx — oo
along some arbitrary direction d = {x € C : arg(x) = ¢}. A movable
singularity of y(x) is a point x € C with x™! € V, where y(x) is not
analytic. The point at infinity is an irregular singular point of rank 1; it is
afixed singular point of the system since, after the substitution x = z*
the r.h.s of the transformed system, % = —7z%f(z,y) has, under the given
assumptions, apoleat z = 0.

2.1. Classical versus exponential asymptotics

In order to understand the properties of solutions of (2) for large x, one way
is to find formal asymptotic solutions, then use asymptoticity relations to
deduce information about the true solutions from the formal ones. It is easy
to see that equation (2) admits a unique asymptotic formal power series
solution [51]

B

o= 2. (x| > o) (3)
r=2

The coefficients o, of o can be computed recursively by substitution in

(2) and identification of the coefficients of x™"; the series ¥ is a formal

x
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solution, and is usually divergent. Its Borel summability was shown, in
amore general setting, by Braaksma[9].

Given an open sector of the complex x-plane, of angle less than r, there
exists a true solution of (2) which is asymptotic to (3) in that sector (as
|X| = o0) [51]. Thissolution is not unique in general.

To illustrate the way different solutions with the same asymptotic se-
ries (in a sector) can be distinguished consider the simple linear equation
f/(x) = — f(x) +x~ 1 with the general solution f(x; C) = e *Ei(x)+ Ce™*
where Ei(x) = P [*_ t~!edt. Any solution f(x; C) has the same (diver-
gent) power series asymptotic expansion in the right-haf plane: f(x; C) ~
fo(x) = 3, or!x"" for x — oo, 9ix > 0. The parameter C which dis-
tinguishes different solutions multiplies the term e* which ismuch smaller
than all the terms of the asymptotic series f; : C is a constant beyond all
orders.

Thetheory of linear equations with anirregular singular point iswell de-
veloped and there are comprehensive results, we mention the works of Bab-
bit and Varadargjan [1], Balser, Braaksma, Jurkat, Lutz, [2], [9], [4], [32],
Balser, Braaksma, Ramis and Sibuya [3], Deligne [17], Jurkat [31],
Katz[33], Levelt[36], Leveltand Vanden Essen[37], Lutzand Schéfke[41],
Manin [39], Olver [40], Magrange [38], Ramis [42], Ramis and Mar-
tinet [43], Ramis and Sibuya [44], Sibuya [46], Turritin [49], and others —
see also [50] and the references therein.

For linear equationsthereexist fundamental systemsof solutionsinterms
of which one can speak of exponentialy small terms. A formal analogue
for nonlinear equations is represented by formal exponential series.

An n-parameter formal solution of (2) (under the assumptions men-
tioned) as a combination of powers and exponentias isfound in the form

goo =Y Ce M g0 4
ke(Nu{oph"
where 5 are (usually factorially divergent) formal power series: 5 = Yo
(see (3)) and in general

%=y 2 (5)
r=0

that can be determined by formal substitution of (4) in(2); C € C"isavector
of parameters® (we use the notations C* = ]_[?:1 C']-(j, A= (1., An),
Ot=(0[1,...,O(n),|k|=k1+...-i.-kp): ) .

Note the structure of (4): an infinite sum of (genericaly) divergent
series multiplying exponentials. They are called formal exponential power
series [51].

3 Inthe general case when some assumptions made here do not hold, the general formal
solution may also involve compositions of exponentials, logs and powers [19]. The present
paper only discusses equations in the setting explained at the beginning of Sect. 2.
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Formal solutions (4) of differential equations (2) were introduced by
Fabry [21] and studied extensively by Cope [11].

From the point of view of correspondence of these formal solutions
to actual solutions it was recognized that not all expansions (4) should
be considered meaningful; aso they are defined relative to a sector (or
adirection).

Given a direction d in the complex x-plane the transseries (on d), in-
troduced by Ecalle [19], are, in our context, those exponentia series (4)
which are formally asymptotic on d, i.e. the terms Cke 2 *x*kx—" (with
k e (NU{O)", r e NU{0}) form awell ordered set with respect to >>> ond
(see dso [13]).* (For example, thisis the case when the terms of the formal
expansion become (much) smaller when k becomes larger.)

For linear systems any exponential power series solution is also atrans-
series: it consists of n power series multiplying exponentials since & = 0
for |k| > 2.

Inthe nonlinear caseif aformal exponential power series (4) satisfiesthe
condition Cj = 0if e*i* 4 Oasx — oo, X € d then (4) isatransseries
ond. Infact, itisclear that (4) isatransseries on (any direction of) the open
sector Syans defined by

Srans = {x € C; if Cj #0thenR(Ajx) >0, j=1,....n} (6

This sector may be empty; it may be the whole C if al C; = 0; otherwise
it lies between two antistokes lines, and has opening at most .

If §o isdivergent (which is generic) then the terms containing exponen-
tials in (4) (i.e. terms with |k| > 1) are much smaller than al powers of
X in ¥o and cannot be defined by classical asymptotic inequalities in the
Poincaré sense. Hence their designation: terms beyond all orders.

Transseries and their correspondence with functions are the subject of
exponential asymptotics which developed substantialy in the eighties
with the work of M. Berry (hyperasymptotics), J. Ecalle (the theory of
analyzable functions), and M. Kruskal (theory of tower representations and
nice functions) (see references).

From a historical point of view we must stress the importance of the
fundamental work of Iwano. Generalizing earlier results of Mamquist he
proved in wide generality that locally meromorphic systems of differentia
eguations have expansions, which for the class (2) discussed in the present
paper have the form

YOO = do(¥) + Y Cre M) gy (%) (7)
keNn
convergent, and with ¢y analytic, in appropriate sectors [26], [27].
Later, Ecaleintroduced avery large space of expansions, relevant to dif-
ferential, difference, integral and other equations. The fundamental space

4 We note here aslight difference between our transseries and those of Ecalle, in that we
are allowing complex constants.
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where forma solutions are sought is purely algebraic — the transseries (for
example, seethe expansion (4), (5) for solutions of (2)). Then agenera pro-
cedure (based on Borel summation), independent of the equation where the
expansionsoriginate, isoutlined to associate functionsto formal expansions.
As a conseguence the summation procedure can be used in abroad class of
problems and yields a complete isomorphism between formal expansions
and a class of functions (analyzable functions). For differential equations
this procedure showsthat all theterms ¢y in (7) can bein fact obtained from
¢o by aform of analytic continuation (Ecalle’s resurgence relations). Also,
Stokes phenomena can be described in detail. The paper [13] proves this
procedure in the context of differential systems with arank 1 singularity.

Braaksma has recently extended the theory to nonlinear difference equa-
tions[10].

The present paper studies the solutions in a region where the expan-
sions (7) and those of [13] diverge. It is shown that in this region the
solutions of generic systems actually do have singularities (see Theorems 2
and 3) grouped inregular arrays. Thus, aposteriori we know that expansions
of theform (7) cannot converge there. Nevertheless, asymptotic representa-
tions, in terms of functions themselves singular derived in the present paper
hold in this region (see (26)) and they enable finding the singularities of y.
The region where the series (26) is asymptotic to solutions and the region
where (7), or (10), converge do intersect so the two expansions of the same
solution can be matched in this region (see Theorem 1).

2.2. Further notations and results referred to

Werecall that the antistokes lines of (2) are the 2n directions of the x-plane
iAjRy, —iAjRy, j = 1,...,n, i.e the directions dong which some
exponential e~*i* of the general formal solution (4) is purely oscillatory.

In the context of differential systems with an irregular singular point,
asymptoticity should be (generically) discussed relative to a direction to-
wards the singular point; in fact, under the present assumptions (of nonde-
generacy) asymptoticity can be defined on sectors.

A first question isto determine which are the solutions asymptotic to the
power series solution (3), and to find their regularity.

Let d be adirection in the x-plane which is not an antistokes line. The
solutions y(x) of (2) which satisfy

y(x) = 0 (x € d; [x] = 00) (8

are analytic for large x in a sector containing d, between two neighboring
antistokes lines and have the same asymptotic series

y(X) ~ Yo (x €d; |X| - 00) 9)

(see Appendix 6.1 for more precise statements and details).
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A sweeping correspondence between general transseries and the class
of analyzable functions has been introduced in the monumental work of
Ecalle [18]-{20].

In the context of (2), a generalized Borel summation LB of trans-
series (4) is defined in [13]. The rest of this section states some results
of [13] needed in the present paper; more details are included in Sect. 6.2
of the Appendix.

The formal solutions (4) are determined by the equation (2) that they
satisfy, except for the parameters C. Then a correspondence between actual
and formal solutions of the equation is an association between solutions and
constants C. Thisis done using ageneralized Borel summation £ 8.

The operator LB constructed in [13] can be applied to any transseries
solution (4) of (2) (valid onitsopen sector Syans, assumed non-empty) onany
direction d C Syans @nd yields an actual solution y = L BY of (2), analytic
inadoman Sy, (see (137)). Conversely, any solution y(x) satisfying (9) on
adirection d is represented as L BY(x), on d, for some unique ¥(X):

yo) =Y Cle MMy (x)
k>0
=Y Cle MK LBY () = LBY(X) (10)
k>0

for some constants C € C", where Mj = ||+ 1(|-] istheinteger part),
and

B = Ze @ =a-M) (12)
r=0

(for technical reasonsthe Borel summation procedureisapplied to the series

e (X) = X5 () (12)

rather than to §(x) cf. (4),(5)).

In any direction d, LB is a one-to-one map between the transseries
solutions on d and actual solutions satisfying (9), see [13], Theorem 3.

The map ¥ — LB(¥) depends on the direction d, and (typically) is
discontinuous at the finitely many Stokes lines, see [13], Theorem 4.

For linear equationsonlythedirectionsA_jR+, j=1,...,nareStokes
lines, but for r)onlinear eguations there are aso other Stokes lines, recog-
nized first by Ecalle (the complex conjugate directions to p;.xR. cf. (35);
see [13]). LB isonly discontinuous because of the jump discontinuity of
the vector of “constants’ C across Stokes directions (Stokes' phenomenon);
between Stokes lines £ B does not vary with d.

The function series in (10) is uniformly convergent and the functions
Yk are analytic on domains S, defined in (137) (for some § > 0, R =
R(y(X), §) > 0—see Theorem 19 of Sect. 6.2).
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2.3. Heuristic discussion of transasymptotic matching

There is a sharp distinction between linear and nonlinear systems with
respect to the behavior beyond Sy ans.

In the linear case there are only finitely many (at most n) nonzero yy in
(10), and (10) holds in a full (possibly ramified) neighborhood of infinity,
except for jJumps in the components of C, one at each Stokes line (see [46],
also[41], [13], [50] and the references therein). The map LB is continuous
at the antistokes lines, and thus the transseries ¥ of y is the same on both
sides of an antistokes line. What changes at such adirection isthe classical
asymptotic expansion of y, because classical asymptotics only retains the
dominant series in ¥, and exponentials in the transseries ¥ exchange domi-
nance at antistokes lines. From the point of view of exponential asymptotics,
where transseries are considered rather than just the dominant series, behav-
ior of solutions of linear equations at antistokes linesisrelatively simple.

Inthenonlinear case however, generically al componentsyy are nonzero
and, beyond Syans (for example, in the notations of Sect. 3 below, for
arg(x) > m/2), (10) will typically blow up because of agrowing exponential
(e7*in this example).

Thedivergence of (10) turnsout to mark an actual changein the behavior
of y(x), which usually develops singularities in thisregion. Theinformation
about the singularities is contained in (10).

The key to understanding the behavior of y(x) for x beyond S, isto
look carefully at the borderline region where (10) converges but barely
0. Because of nonresonance, for arg(x) = n/2 we have i(A;jX) > 0, j =
2,...,n..5By(37)dl termsin (4) withk notamultipleof e; = (1,0, ..., 0)
are subdominant (small). Thus, for x near iR™ we only need to look at

yH 0 = Cle ™ My, (%) (13)
k>0

Theregion of convergence of (13) (thusof (10)) isthen determined by the ef-
fective variable £ = C1&7XX% (SINCE Yke, ~ Vke-0/X @1 ~M1)). Convergence
is marginal along curves such that £ is small enough but, as |[X| — oo, is
nevertheless larger than all negative powers of x. In this case, any term of
the form Cke " xKM1y, . . ismuch larger than theterms Cle *xM1y;q . x "
if k,1 > 0andr > 0. Hence the leading behavior of y'!! is expected to be

yH 00 ~ ) (Cre”X) G0 = Fo(§) (14)
k>0
(cf. (11)); moreover, taking into account al termsin S, we get

o0

YHOO ~ D XD g =Y Li® (15)
k=0

r=0 j:O X]
Expansion (15) has a two-scale structure, with the scales & and x.

5 Inthe notations explained below in Sect. 3Cj = Ofor j > ny.
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It may come asasurprisethat each Fj isaconvergentseriesin (though
the whole expansion (15) is still divergent).

It turns out that the reshuffling (15) is meaningful and yields the correct
asymptotic representation of y'!!, and therefore of y, beyond the upper edge
of Sin. Infact, (15) extends (9) right into theregionsin C wherey issingular,
asnear as (under mild assumptions) O(e—"s-IX/) of these singul arities. Once
these two scales are known and once the validity of (15) is proved for our
class of systems (Theorems 1 and 3 below), it is easier to calculate the F;
by direct substitution of (15) in (2) and identification of the powersof x (see
Remark 7 and Sect. 6.9). The exact form of the second scale € is decisive
for the domain of validity of the expansion, see Sect. 5.2.

To leading order we have y ~ Fq (see dso (14)) where Fq satisfies the
autonomous (after a substitution & = €') equation

EF, (&) = AFo(£) — 9(0, Fo)

which can be solved in closed form for first order equations (n = 1) (the
equation for Fy isseparable, and for k > 1 the equations are linear), aswell
asin other interesting cases (see e.g. Sect. 5.2, Sect. 5.3).

Assumethat Fqo(&) has an isolated singularity at & = &. Then y(X) must
aso be singular near X, if £&(Xs) = &s. Indeed, it is not difficult to see
(see Sect. 4.6) that there must exist some g(&) anaytic at & so that that
$ g(t)Fo(t)dt = 1 onasmall circle around &s. Taking xs large we must have
by (15) #(1+ o(1))g(&(t)y(Hdt = 1+ o(1) onasmall circle around xs. In
many instances one can refine these arguments to see that the singularities
of y(x) and Fo(&(X)) must be exactly of the same type. It is clear, on the
other hand, that xs form a nearly periodic array of points as |Xs] — oo (see
Theorem 2).

In the following we will make rigorous these intuitive arguments and
then proceed to explore further properties and consequences.

3. Main results

Let d be adirection in the x-plane (not an antistokes line). Consider a so-
lution y(x) of (2) satisfying (8) hence (9). Let (10) be its representation as
summation of a transseries ¥(x) (see (4)) on d. Let Sans be the sector of
validity of §(x) see (6).

For simplicity we assume, what is genericaly the case, that no Py«
(see (35)) lies on the antistokes lines bounding S;ans.

We assume that not all parameters C; are zero, say C; # 0. Then Syans
is bounded by two antistokes lines and its opening is at most 7.

Notations. It can be assumed without loss of generaity (possibly after
alinear transformation in x and renumbering the coordinates of y) that

@ Ar=1,and
(b) Cj =0for j > ny (wheren; € {2,...,n})
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(©) ag(r1) < ag(rz) < ... < ag(in)

(d) Srans is bounded by iR, and the direction arg(in,X) = —m/2 (which
are antistokes lines associated to A1 and X, ), and Syans iS contained in
the right half-plane.

The solution y(x) isthen analytic in aregion S;, (see (137)).

The singularities of y(x) that we find are related to the two antistokes
directions bounding S;ans. We will formulate the results for the direction
iR, (and similar results hold for the other direction arg(i,,X) = —n/2).

Thelocations of singularities of y(x) depend on the constant C, (constant
which may change when d crosses Stokes lines). We need its value in the
sector between iR and the neighboring Stokeslinein Syans. Let d’” C Syans
be a direction in the first quadrant and consider the representation (10) of
y(x) on d’.6 From here on we will rename d’ as d.

Fix some small, positive § and c. Denote

£ =£(x) = Crex™ (16)
and
& = {x; ag(x) € [—%+8,%+8] and
R(njx/Ix]) > cloral jwith2 < | < nl} (17)

Also let
85, = {X €&, [EX)| < 1} (18)

The sector & contains Syans, €Xcept for a thin sector at the lower edge
of Srans (excluded by the conditions 9t(A;x/|X|) > cfor2 < j < ny, or, if
ny = 1, by the condition arg(x) > —% + §), and may extend beyond iR,
since there is no condition on MR (11X) —hence R(11x) = NR(X) may change
signin & and 4, .

Figure 1 isdrawn for n; = 1; & contains the gray regions and extends
beyond the curved boundary.

3.1. Asymptotic behavior of y(x) in §,

Theorem 1 (i) Thereexists §; > 0 so that for |&| < &, the power series

k=0

converge (for notations see (4), (5), (16) and for an estimate of §; see
Proposition 4).

6 C1 does not change at the possible secondary Stokes linesdj i, [k| > 1 lying between
Ry andiR;.
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&0

A
j'xl_x 0

—arg(x)=- T/2+d

Fig. 1 Region Dy where (26) holds, when ny = 1. The dark gray subregion is S, . Curves
like the spiraling gray curves surround pointsin X (close to singularities of y) generate the
region Dy. The picture isdrawn withny = 1, A = 5, = —3, 81 = 3- 10° x9 = 40. In

this case Syans is asector where |arg(x)| < 5 — 0

Furthermore
YOO ~ D X Fm(E()) (X € 85, X — 00) (20)
m=0

uniformly in 4;,, and the asymptotic representation (20) is differentiable.
The functions F,, are uniquely defined by (20), the requirement of ana-
Iyticity at & = O, and F(0) = €.
(ii) The following Gevrey-like estimates hold in 4;, for some constants
K1,2, B > 0:

|IFm(5(x)| < Kym!BT" (21)
m-1

yx) — > X MFnEX)| < KmBIX™ (meN', x € 45,)  (22)
=0

Comments. 1. Itisinteresting to remark that the constant beyond all orders
C1 isnow classically definable in terms of the expansion (20) because
this expansion is unique with itsthe range of validity, and with the given
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analyticity properties. This is in a sense a generalization of Watson's
lemmain the context of transexpansions.

2. Whiletheclassical expansion (9) isvaid only inany proper subsector of
85, N{X : arg(X) < m/2}, therepresentation (20) holds downto adistance
going to zero as x becomes large from the (finite-plane) singularities
of Fo, near which y(x) aso develops singularities (see Theorem 2 and
Sect. 5).

3. A similar picture holds near the lower edge of Syans. The constant C;
used in (16), which determines the position of singularities (see (28)) of
y(x) related to that direction, is Cp,. If n; = 1 then the value of C; is
the one in the fourth quadrant (which may differ from the onein thefirst
quadrant due to the Stokes phenomenon on R, ).

3.2. Sngularity analysis

We now focus on singularities of y(x) and their connection with singularities
of Fo.

3.2.1. Definitions (cf. Fig. 1) By (3) and (19) we have Fo(0) = 0. Both Fy
and y turn out to be analytic in §;, (Theorems 1(i) and 2(i)); the interesting
region isthen &\ S, (containing the light grey region in Fig. 1).

Denote by # apolydisk

P ={xLy XY < p,lyl < p2} (23)

where g is analytic and continuous up to the boundary.

Let & be afinite set (possibly empty) of pointsin the &-plane. This set
will consist of singular points of Fg thus we assume dist(Z, 0) > §;.

Denote by Rz the Riemann surface above C\ Z. More precisely, we
assume that Rz is realized as equivalence classes of simple curves I :
[0, 1] + C with I'(0) = 0 modulo homotopiesin C\ =Z.

Let D C Rz be open, relatively compact, and connected, with the
following properties.

(1) Fo(&) isanaytic in an e p—neighborhood of D withegy > 0,
(2) supy |Fo(§)] := p3 with p3 < p2
(3) D contains {£ : |£] < 841).7

It is assumed that there is an upper bound on the length of the curves
joining pointsin D: dp = SUP, pe g INf rep:.aber lENGA(IT) < 00,

We also need the x-plane counterpart of this domain.

Let R> O (large) andlet X = £ 1(E) N{x e & : |x| > R}.

7 Conditions (2), (3) can be typically satisfied since Fo(€) = & + O(£2) and 81 < p» (see
also the examples in Sect. 5); borderline cases may be treated after choosing asmaller §;.
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Let I" beacurvein D. Thereis a countable family of curves yy in the
x-plane with &(yn) = I'. The curves are smooth for |x| large enough and
satisfy

yn(t) = 2N7i + a1 In(27iN) — InI(t) +InCy +0(1) (N — oc0) (24)

(For aproof see Appendix Sect. 6.3.)

To preserve smoothness, wewill restrict to [x| > Rwith Rlarge enough,
so that along (a smooth representative of) each I € D, the branches of £~*
are analytic.

If the curve I is a smooth representative in O wethen have ¢~ 1(I") =
Unen ¥n Where yy are smooth curvesin {x : |x| > 2R}\ X.

We define Dy asthe equivalence classes modulo homotopiesin {x € & :
IX] > R}\ X (with oo fixed point) of those curves yn which are completely
contained in & N {x : |X] > 2R}.

Theorem 2 (i) The functions Fh(&§); m > 1, are analytic in O (note that
by construction Fq isanalytic in D) and for some positive B, K we have

|Fm(®)| < Km!IB™, & € D (25)

(i) For R large enough the solution y(x) is analytic in £y and has the
asymptotic representation

YOO ~ Y X Fr(E(X) (X € Dy, |X| = 00) (26)

m=0
In fact, the following Gevrey-like estimates hold

‘ m—1

yoo — Y X IFjEM0)

j=0

< KomBY'|x|™ (meNT, xe D) (27)

(iii) Assume Fq has an isolated singularity at & € = and that the
projection of O on C contains a punctured neighborhood of (or an annulus
of inner radiusr around) &s.

Then, if C; # 0, y(X) issingular at a distance at most o(1) (r + o(1),
respectively) of x, € £ 1({&}) N Dy, asx, — oo.

The collection {X,}nen fOrms a nearly periodic array

Xn = 2n7i + aq In(2n7i) + InCy — In&s 4+ 0(1) (28)

asn — oo.

Some of the conclusions of the theorem hold with £ noncompact, under
some natural restrictions, see Proposition 8.
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Comments. 1. The singularities x, satisfy C;e7*"x2t = &5(1 4 o(1)) (for
n — oo). Therefore, the singularity array lies dightly to the left of the
antistokes line iR, if M(aq) < O (this case is depicted in Fig. 1) and
dlightly to theright of iR if R(«y) > 0.

2. Inpractice it is useful to normalize the system (2) so that «; isas small
as possible (see the Comment 1. in Sect. 5.2 and Sect. 6.7).

3. By (27) atruncation of the two-scale series (26) at an m dependent on
x (m ~ |x|/B) is seen to produce exponential accuracy o(e"*/Bl), see
eg. [42].

4. Theorem 2 can also be used to determine precisely the nature of the
singularities of y(x). In effect, for any n, the representation (26) provides
o(e XPnl) estimates on y down to an o(e”KX !y distance of an actual
singularity X,. In most instances this is more than sufficient to match
to asuitable local integral equation, contractive in atiny neighborhood
of x,, providing rigorous control of the singularity. See also Sect. 3.3
and Sect. 5.

3.3. Sngularities for weakly nonlinear systems

In this section we take g meromorphic in a small enough neighborhood of
(0, 0), but nevertheless analytic at (0, 0), and only weakly nonlinear. Such
could be the case if in a sufficiently large neighborhood of zero only one
component of gissingular, and the singular manifold of g is approximately
ahyperplane.

Lety(x) beasin Theorem 1; denotef(y) = —A+g(0, y). By Theorem 1
(i) we have y1(X) ~ &(x) and y;(x) = 0% < y1(X), j =2, ... ,nwhen
1> |£(X)| > |X|~2. For definiteness we assume the component g, to be the
only one singular in some neighborhood of (0, 0). The precise assumptions
are

f1 = —diy1 + €1y)
—k2Y2 — V2¥2 + €a(y)
f —
2(Y) h)
fiy) =—Ajyj —viyi+ey) (j#12) (29)
n

h(y) =1-)"ajyj +ena(y)

k=1
wherea;, y; € Cwith [|al| < 3(p2)~* (see (23)), €; are analytic and satisfy
lej(y)| <€ for |yl <pp for j=1,... ,n+1 (30)

for some small positive €.
Choose xo > 0 large enough so that the function g(x 1, y) is analytic
in 2 if py = %, (see (23)) and

Igll, <€ (31)
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Theorem 3 For almost all valuesof theparametersy;, a;withj =1,... ,n
the following holds. If € is small, Fo(&) and y(x) are not entire. Fo has
isolated square root branch points on its circle of analyticity and corre-
spondingly y has arrays of branch points for large x.

More precisely, there exists &s sothat Fg isanalytic for [£] < |&]andyis
analytic if |£(X)| < |&s| — 8(X) where §(X) — 0 as X — oo. Furthermore,
Fo is analytic on the Riemann surface of the square root at & and there
isan array X, € 45, with £(X,) = & + 0o(1) as [X,| — oo 0 that y(x) is
analytic on the Riemann surface generated by curves that encircle at most
one of the X,,. Near & and X, we have

Fo(§) = Fa((€ — &)"?) y(x) =ya((x —x)"?) (32

respectively, wherey, and F are analytic at zero.

4. Proofs and further results
4.1. Further results needed

A possible proof of Theorem 1 using only classical asymptotics conceptsis
sketched in Sect. 6.10. The proof given in this section uses some resultsin
exponential asymptotics. We need the following facts proved in [13].

Denote by d the complex conjugate of d. We have
w0 = [ Yetpredp (33)

where the functions Y have the form

Ye(p) = p AP (34)

(Lemma20in [13]), with Ay analytic near zero, and along curves towards
infinity avoiding the points p;., defined as

Pik=Arj—k-2, j=1....m, keZzZ} (35)

Because in Syans Wehave i(1jx) > Ofor j < nyandsincek > Oit follows
that (1) the p;.x have no accumulation point and (2) only finitely many of
themarein Syans = {d : d C Syans} (Se€[13] for more details). In particular,
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if pj.x ¢ d then there exists a; > 0 and an a;-neighborhood d,, of d (i.e.
da, = {X; dist(x, d) < a;}) whereal A, k > 0 are analytic.

There exist positive constants Ky, vg such that for all k > 0 we have
([13], Prop. 22(ii) for W = Y in Dy, , and Fi.g—1)

sup |Yi(p)e P < KK (36)
peaal

Also, ¥ isthe classical asymptotic expansion of yy ([13], Theorem 3):
~ ¥ jo _TTy.
Y (X) ~ Yk (X) (xede‘ , (96( > 2), X—>oo) (37)

In the following we need a better estimate of Ax (see (34) and (33)),
than given in [13].

Proposition 4 For some ag, 6, > 0 and all k and | we have
0 N1y a1 avolpl+ar s=IK]
IAC (P < |I(—k-o)| " Ita;' e 8, (38)

uniformly in dj, .

The proof amountsto minor modificationsin aproof in[13]. We detail these
modifications in Sect. 6.6.

4.2. Proof of Theorem 1

(&) Analyticity at 0. From (33), (34), and Watson’'s lemma [5] we get as
X — oo aongd

(m)
Vi (X) ~ Z w pm—k.a/_le—pxdp

o m! bl
e AP0 [ ket~ AMOMM -k - o)
- Z k-o/ S € dp - Z Ko
oo MiXTTEE Jo = mixm-k«
1
=) Ykm e (39)
m>0

so that from Proposition 4 it follows that Frn(£) = > og ykel;msk con-
vergesif |€] < 81, where §1 < 82, in which ball we also have

IFm(®)| < K¢iB{'m! (40)

for some B;.
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(b) Asymptoticity. We first note that using again Watson's lemma, by (38)
we have

M. Y
yi — xke Y 2
k ;X

M
peet (Akuo) -2 1A p') e Pdp

1=0

Q|

< et |M—k-a)Y 5,"a MM + 1) / X
d

ka1 AM+1 _
|p e tpMHielPle P |d]p|

< (Sz_lk‘(M + l)!al‘M‘l )Xk-a’-i-M-i-l’ (41)

It isthen convenient to write, for X € 4;,,

y) = che Xy (0 + Y Cle kg (x) (42)

k~0;k#£kep
and (cf. (18), (17))

- ch 2 kalykel(X) + O~y .= y(x) + O(e~)

Now,
o0 M
> ctein 00 = 3ot (zy)
ch gtk (Yk x) — Zykel mX m) (43)

m=0

and Theorem 1 followsfrom (41). Differentiability simply followsfrom
the fact that (20) holds in a nontrivia sector.

4.3. Special Gevrey estimates

In the proofs of the main theorems we need optimal estimates of high order
derivatives of functions of the form ¢(z, > p", az¥) in terms of estimates
of a, when Y2, a Z¢ are Gevrey type series. Because of the truncations
involved, the estimates do not follow from Gevrey theory.
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Let ¢ be an analytic function in the polydisk & = {|z] < p1, ly| < p2}
C C x C" and continuous up to the boundary.
Assumefirst that the series

az) = Z a
k1

converges and denote by al™ the truncation
m
am(z) = Z a .z
k=0

Then %¢(z; a(2))|,—o isapolynomia inag, ... , an, of degree 1in a:
1dm 1dm
) _ . . glm—1]

ﬁ@‘ﬂ(& a(2))|z=0 = dye(0; ag)am + ﬁ@‘P(Z, d™Y(2)|,_, (44
Relation (44) is meaningful even when a(z) is only a formal sum (with
no convergence conditions)—in the sense that the LHS is the coefficient of
Z™ in the formal series expansion of ¢(z; a(2)) at z = 0. We are primarily
interested inthe Gevrey— 1 character of a(z) (meaningthat for somec,, ¢, >
0 we have |ay| < clc‘;k!; see also [42]). Proposition 5 below is formulated
in away that permits an inductive proof of Gevrey type inegqualities, when
ay are defined recursively.

Proposition 5 Assume p, — |ag| > 0. There exists a positive C so that: for
any B, K > 0and any {a}k_1_m such that |a,| < KBk, k=1,2,... ., m
we have
m

d
@(p(z; ad™ Uiy < KyB™Ym—1!(1+Cmtlog?m) (45)
z=0

for some K, (see (55) for an estimate of K5).
For the proof we need the following result.
Lemma 6 Leta, bsatisfy 1 < a < b. Thereexists C = C(a; b) such that if
Bmz:= Z € (a, b) then

> e, kim—kzk
mim-mzZm[1 - Z-1]-1 + m-1z
Proof of Lemma 6. In this proof (and in the proof of Proposition 5) we
write O( f(m)) for termsthat go to zero not slower thanthan f(m) uniformly
in B, Z (and K).

Let ky, = |[M/Z]. For k < kq, the terms kim—%Z* are decreasing in k,
and increasing for k > kp,. Thus

m!

— 1' <Cmi(Inm)? (meN) (46)

Km 2 3

zZ 2z 6Z
§ : BZk! < = + == 4+ m— = Bz(1+ O(m™%)) (m— o0) (47)
— m m? m3
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Denote pm = |2Inm/ In Z]. For m large enough we have
mka+ pmv 1_ pm/m>1/27 pm>km

and for p < pnm

p .
Z 1_[ (1 _ _) —Zp(p+1) > e pm(;r)nm+1) (48)

N2

k!(Bz)K

N

Denote o = § mi(B™
k=N1

: we have

-1 _2
1+ O(m™)
k
O ZZ H(l——) =1zt @
while using (4.3) it follows that

m Pm(pm+l) Z 1 + O(m 1(Inm)2)
m B — (mBz)~h

(50)

(of
k=

For k € (km, m — pm), because the termsin the sum are increasing we get

m—p epm(pm+1)/m 1 - 9
Combining (49) (50), (51), and (47), Lemma6 follows. O

Proof of Proposition5. Wekeep therequirement of uniformity with respect
to B, K in the notation O(-), asin the Proof of Lemma 6.

Let p = min{p1, p2 — |ag|} (cf. the beginning of Sect. 4.3). For small s
and y we have

lp(s,y) — 9(0, 0) — 3s¢(0, 0)s — dy(0, 0) - |
2(n + 12
< 20+ el pz) Ll (Is + IyllI®) = vi (Is1® + llylI?) (52)

We choose acircle of radiusr,, where
(m—1!(Brm)™* = Brp, (53)

For large m we have Bmr,, = e + O(m™1), and we also see that the
assumptions of Lemma 6 are satisfied. In particular we have for |s| = ry,
that

m—1

> ad

k=1

< KBrm(1+ (1 -1/ (1 + O(m t(Inm)?)) (54)
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Noting that §, s™*al™-1l(s)ds = 0 we have, using (53) and (52),

m

o d?fﬂ(z; am-1hy

z=0

1 o(s; dM(9))
E fm dS Sm+1

< v1(1+ K?BY)|rm> ™1+ O(m~*(Inm)?))
=11+ K?2B)BYB™m - 1)L+ OomL(Inm)?) (55)

O

Remark 7 A direct calculation shows that the expansion in (26) isaformal
solution of (2) for large x iff the functions F, are solutions of the system of
eguations

d

&= £71(AFo — 9(0, Fo)) (56)
de + NFpy = de +R form=>1 (57)
d%_ m m= Olld%_ m—1 m—1 =

where N is the matrix
£71(0,9(0, Fo) — 4) (59)
and the function Ry_1(&) depends only on the F with k < m:

) 1 dm m—-1 .
ERmo1 = — [ = D1 + A] P — — g [z )2,
! —

(see also (44)).

(59)

z=0

4.4. Proof of Theorem 2 (i)

By Theorem 1, F,, m > 0 are analytic for |£| < 8;. Furthermore, F, are
analytic in the e p—neighborhood of D since by assumption, Fq is anaytic
there and equations (57) are linear for m > 1.

We set as initia conditions for (57) in O the values of Fn,(&p) provided
by Theorem 1 at apoint & € D with [&| € (351, 81).

For & € » and m > 1, (57) can be integrated, yielding the recursive
system

Fm(8) = M(&; &0)Fm(&0) + o1 (Fm-1(8) — M(&; &0)Fm-1(&0))

& &
—w / N(&: 9N(SFm 1(Sds + / M(&: 9Rm_1(90s (60)
& &

0 0
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where M (&; ¢) is the fundamental solution of

(jj—'\;+l\All\7l=Owith M(E; Olemr = | (61)

Direct estimatesin (60) and (59) using (40) give

IFmllo < MKim!BY" + (lea] + M) [[Fm-1llp
+ 2las|dp M3, (gl + T ADIFm-1] 2

1 d"
+25;'M [<m+ A) [|Fn-all +dp | = ——=9z F@"™ )|z } (62)
m! dz P
where
M= sip [ME Ol [IFllo = supIF@I: llgl = sup  |g(z.y)l
§.¢eD §eD 1zl<p1.1yl<p2
A=maIN©I = (2/27" (gl + A1) (63)

Choosing K, B large enough, the proof of (25) isimmediate induction from
(62) and Proposition 5.

4.5. Proof of Theorem 2 (ii)

We will prove (26) at each point X = X4 € Dx (with uniform estimates
on Dy). X, isthe endpoint of acurve yy in Dy with &(yn) = I curvein D
and satisfying (24).

Denote a = £(Xy). If |a] < §;1 then (26) follows from Theorem 1 so we
assume |a| > §;. Then we can choose I" to go from 0 along a direction up
tothecircle |£| = 84, not re-entering the circle.

Let to such that & = I'(to) € (381, 61) and denote I'° = I'|,1),
Y% = ¥Nlito.15; then y° liesin abounded region.

We prove (26) in a small, connected, ssimply connected neighborhood
N0 of )/0.

Denote §(x) = y(x) — FIM(x).

To estimate 8(x) we use a contraction argument if m is not too large
(Case 1) and adirect argument for m large (Caselll).

Let ¢co be positive and small and let m, be the maximal integer such that
m!(2B/[a))™ < Co.

Casel: m<my

First the differential equation satisfied by FI™(x) will be written, then
the equation of §(x), and finally the independent variable will be changed
to &, yielding (65).
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With the notations introduced in Sect. 4.3 and denoting by F(x) the
formal series ) "2, X" KFm(£(x)) we get from Remark 7

(;j_XF[m](X) — <_/'i + }A) F[m](x) + g(X_l, F[m](x))[m]

+

1
Xm+lAFm($( X)) + m+15 dg T (£(X) — m+lFm(s(x)) (64)

Using (64) and (2), adirect calculation yields the equation for 8(x). The
map &(x) is a biholomorphism of #,0 onto a neighborhood Vo of re;
changing the independent variable from x to & we get

d 1 1 1
—8+N&=T S+T1 —, 8 T 65
&t 0( <s>> * 1<x(s) >+ 2<x<s>> (%)

where

To(2)=1_1 [—atd + A+ at,g(0,Fo)|
NX) T xeax—1L7” *oyg(S Fo

1 1 1 1 1
= i = Elml _ = glm) _

Tl(x,8> ga/x—l[g(x": +8> g(X,F ) Byg(O,F0)8i|
1\ 1 1 1 1 Mm@ d
To(=) == “FM) —g( = F™) — —F
2<x> sa/x—l["(x’ ) g(x’ ) X

]

where T 1, areclearly well defined for small enough & and §. Furthermore,
they are well defined for & € Npo If [8(8)] < (02 — p3)/2 and for R large
enough (see Appendix Sect. 6.5).

Asin (60) we obtain for § the integral equation

=4@®) where F=Fo+ 5

N 1
with go(8) = M(&; £0)8(50) —i—/é M (E; S)Tz< ())

§
F18) () = /

N 1
: M(; 9T, <m 8(3)) ds

1
+/€0 M(s s)To<X( )) 3(s)ds (66)

Let 8 be the Banach space of C"-vaued analytic functions 8 on N,
continuous up to the boundary, and satisfying 8(¢;) = 0, with the norm

18]l = SUpzc v 18(E)I.
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Theintegral operator ¢ of (66) isdefined ontheball of radius (p2— p3)/2
in 8. Wewill show that it invariates aball in 8 and that it is a contraction
there. As a consequence, the integral equation (66) has a solution 8 which
is analytic on N0, therefore y(x) is analytic on Nyg; we will also obtain
estimates for 8, which will prove (26) in Casel.

We will denote by const a constant independent of a, N, m, B, ¢g, R. It
will beassumed that B, R> 1, ¢y < 1.

Note first that the assumption of Case | implies

m/|a] < const (67)
To estimate g (8) note first that

const
IToll < — (68)
P

By (21) when a is large we have |3(50)| < Ko(m + 1)!Bf"'a ™. By
Theorem 2 (i), since & varies in a compact set independent of a, and then

IM| < M asin (63). Also estimating derivatives with the Cauchy formulas
oncircles [x — X'| < p1/2; |y — Y| < €p/2 and taking a large so that
la] < 2la—dg| weget

2 b 4 2|18 1
1Ty < el ”( ;4 ”><const<—+||8||) 181 (69)

€D p1lal €D |a
and
8 4118
s T 70
10sT 1]l < aloien 2 (70)
Also
& Mm!
'/ NI 9T, <i> as| < 2MKdg (2B)™m <2|011|d@ +E>
) X(9) la]™ |alep |al
(71)
and using (67)
Mm
< congt (2B)™m! 72)
la|™
30 that,
N & 1
M M(E:ST- [ —
190®)1 < | Mb(Eo) + /‘5 &9 2<x(s)>ds“

(2B)™m!
la|™

< const

< constcy (73)
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From (68), (69) we get

1
[#1(8)[I < const ]| (H + ||8||> (74)
Also, from (68), (69), (70)
1
1#(31) — (82)|| < const (ﬁ + ||8||> 1181 — 82| (75)

It is easy to see that for positive constants R, Kq large enough, and
Co small enough the following holds: if [|8]] < Koco then : [|8]] < 2522,

1§ @)l < KoCo, als0

1
1§21 < 118l (76)

and [|$(81) — $(82)|| < A181 — 8)|| with & < 1. This shows the existence
and analyticity of 8.

Finally, to obtain the needed estimate (26) note that using (73), (76), we
get

@B"

|a|m

1
181 = 1@ < lIFoll + 1F2(8)|] = const mt + 113l

so that using (67) and Lemma 20

2B)™ 2B)m+1
I8]] < const (Ialz‘ m! < const (Ial++l(m+ 1)!

(4B)m+1
< const IXITH(m =+ 1)'
which concludes the proof in Casell.

Casell: m > m;,
In this case

m!(2B/la))™ > co (77)
Since

1
181l < [ly(X) — Fo — ;Fl

A |
+ZW||Fk||
k=2

using the result of Casel to estimate the first term

(5B)22! { K2!B2 Km!B™ }
< const

X[2 |27 xm
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and since (2B/|a|)?2! < ¢y < (2B/|a))™m!

8B22! (2B)™ 2B\ ™1 /2B !
:const—2+me! — <const(m+ 1! [ — —
IX] ] |al ]

From (77) |al/(2B) < constmc, ™ < constcy™; using this, (77) and
(140) wefinally get

< K(Co) (M+ 1! (4B/c)™ |x|~m1

where K(cp) isaconstant dependent of cp. O

We should stress that while the estimates in this proof clearly show the
Gevrey character of the expansion, they are very far from optimal. In fact
the substantial increase in B in the arguments was artificially introduced to
make the calculations less cumbersome.

The following is an extension, in some respects, of Theorem 2 (ii).

Proposition 8 Assume D is not necessarily compact, I" is a curve of pos-
sibly infinite length in O with the following properties:

(a) For somee > 0, T 2(z, 8) and N(z) are analytic for zin an e neighbor-
hood of I" and for |§| < € and in addition T1,(z, 8) = O(z8, §%)

(b) M(&, £10) is bounded in an e neighborhood of I” and for some K and
al g e 1“wehavef;’;0 ’l\?l(s, 51,0)) dls| < K (where |M| is some Euclidian
norm of the matrix M (&, £1.0)).

Then the conclusions of Theorem 2 (ii) hold in the x domain Dy corres-
ponding to D.

Noting that ’ M (€, £1.0) ’ d|s| isafinitemeasureaong I", the proof isvirtually
identical to the proof of Theorem 2.

4.6. Proof of Theorem 2 (iii)

We need the following result which isin some sense aconverse of Morera's
theorem.

Lemma9 Let B, = {¢ : |€] < r} and assume that f(§) is analytic on the
universal covering of B\ {0}. Assume further that for any circle around zero
C C B,\{0} and any g(é) analytic in B, we have ¢, f(§)g(§)ds = 0. Then
f isinfact analytic in B;.

Proof. Leta e B, \{0}. It follows that ff f(s)dsissingle-valued in B, \{0}.
Thus f issingle-valued and, by Morerd stheorem, analyticin B, \{0}. Since
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by assumption ¢, f(£)§"ds = Ofor al n > 0, there are no negative powers
of & in the Laurent series of f(&) about zero: f extends as an anaytic
function at zero. o

To show Theorem 2 (iii), assume &g is an isolated singularity of Fq (thus
& #0)and X = {x: &(X) = &}. By Lemma9thereisacircle € around &
and afunction g(§) analytic in By (£ — &) such that ¢, Fo(§)g(§)ds = 1. In
aneighborhood of x, € X thefunction f(x) = e *x* isabiholomorphism
and for large X

a(f(x)
d
%f—l(e) y&) f(x) X

== yﬁ (1+ 0 H) (Fo®) + 005 H)gE)de =1+ O(x; 1) #0 (78)

It follows from Lemma9 that for large enough X, y(X) isnot analytic inside
C either. Sincethe radius of € can be taken o(1) Theorem 2 (iii) follows.

Note. Inmany casesthesingularity of y isof the sametype asthe singularity
of Fp. See Sect. 5 for further comments.

4.7. Proof of Theorem 3

Asin Sect. 4.5 we can reduce to the study of (2) in V-0, where the function
&(X) is biholomorphic and we can change variables to &. In this variable
both (2) and (56) assume the form (where x = x(§) and F isFg or y)

dF,

fg = hra i P

drF Aok — yoFf + 5 (XL F)

de h(, F)

dFj 2 11 ,,-1 H
SE:kij_YjFl—i_ej X F) (1#1’2) (79)

where

n
h& F)=1-) aF+ehl,(x % P,
j=1

with €/ analytic in 2 and [|e}"]|

il <€i=j,...,n+1(for Fg, we have
e (x, Fo) = € (Fo)).
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Generically a, is nonzero. Then the analytic change of variables to
Fi,h, Fs, ..., F, leadsto asystem of the form

dFs
fg =Rt (80)
f;‘h— = h|:)»2 Zal)‘JFI Ffzaﬂ/l}
j#£2 i=3
+[ — 2ty aF _aZVZFl] — e (81)
%2

dF, -

£ =M —viFf+¢ (1>2 (62)

The substitution Fy = & + f1, Fj = bj&% + f;(j > 2), withb; = (&; —
2)71y;, in (80)«(82) yields

b = fite
dg

h n
5“@ = doh+ a0 — )(E + f) + Y aj(ha — Ah) (bmé? + f))
j=3

n
+H(fL 4+ ahj =1 — €5
j=3

gE_x,- fi+28y fity fE—ed (=2 (83)

According to the hypothesis of Theorem 3 it is useful to anayze first the
equation (describing the leading order behavior of h)

hh' = (g™ 4 di + dog)h + (— A2 1+ ds+ d&); h(©O) =1 (84)

(this Abel type equation cannot be solved in closed form, in generd). In
integral form,

& &
+ / (dPs + di?hh(s)ds + 21, / (h(s) — 1)s*ds (85)
0 0

Lemma 10 (i) Equation (84) has a unique solution hg analytic at £ = 0,
with hg(0) = 1.

(ii) For ageneric setof dy, ... , d4 the solution hg is not entire and, on the
boundary of the disk of analyticity, hg has square root branch points.



28 0. Costin, R.D. Costin

Proof. (i) Itis straightforward to check that, since 1, ¢ N (see Sect. 2)
then (85) hasa(unique) formal solution of theformh = 1+ .2, higX

(where hy = (d¥?! 4 d{?)(2 — di)~1). To show h converges we take
h=1+Y " A+ EMhy (&) in (85):

26Mhw (&)
£ 2M
= QM (&7 + VR — d? [ (1M 3 b ek
0 k=0

(86)
with Q(&), R(¢) analytic, or

20w (©) = QEVhu (62 + R®) —
1 2M
P [ (170 Y b ey = 2 hw)
0 k=0

g is manifestly contractive in the sup norm for small &, if M > |dg?|.
(ii) The proof, elementary but delicate, is given in Sect. 6.8. O

Lemma 11 Let & beabranch point singularity on the boundary of the disk
of analyticity of ho (see Lemma 10 (ii)). Assume €/l in (83) is small enough
and analytic in a (large enough) neighborhood in &, F of (&g, Fo(&p)). Then

(i) For some 0 < 8; < 85, F(§) and h(&¢) are analytic in the cut annulus

{€ 1§ — &ol € (81, 82), ag(§ — &o) # O}.
(i) h ant?g]F have a square root branch point at some & with & — &y =
O(l[€ D).

Proof. We substitute h = hg + f, cf. Lemma 10; f satisfies a system of the
form

£ = N©F + e(&, 1)
or

3
f=f 4+ M©® / M~1(9)e(s, f2(s))ds
&

where the matrices N, M, M~ and € are analytic in Npo. Part (i) follows
now in the same way as Theorem 2 (ii), and ||y — Foll.y, = O([l€®]).
(i) Inasmall neighborhood of &g by part (i) and Proposition 10 (generically)
d%h # 0 and we may change variables in (83) so that h is the independent
variable (and & = &(h). We note that

o _ il
dh A, &)h + B(f, &) + €(f, h, &)
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and h, € are small while genericaly B(f(&p), &o) is not small. Then (83) in
the variable h, with initial condition £(hg + O(||e®®!|))) = & + O(||®¥)),
has a solution which is analytic near h = 0. Furthermore it is easy to
see that (under the same genericity assumptions) we have dn&h—o = 0 but
det onn(f1. &, ..., fo)noo # O and then Fj(§) = Fl((§ — &)%) with F}
locally analytic.

5. Examples
5.1. Example 1

Wefirstillustrate how singularities of solutionsarefound (using transasymp-
totic matching) on afirst order Abel equation®:

u=ul-z (87)

the first example on which nonintegrability was shown using Kruska’s
poly-Painlevé analysis [34].

The study of (87) is done in the following steps. Classical asymptotics
of differential equations [51] shows (and it also follows from the analysis
below) that for z — oo with argz € (37, 37) there is a one parameter
family of solutions u = u(z; C) such that u(z; C) = z/3(1 + o(1)). Then
u~ =23y, . The parameter C may be chosen to be the constant
beyond al orders, see Sect. 5.1.2.

After proper normalization of (87) (see Sect. 5.1.1) Theorems 1 and 2
are applicable and provide a globa asymptotic description of u(z; C) in
a region where the solution is anaytic and surrounds its singularities for
large z (Proposition 13). These are agebraic branch points of order —1/2
(see(102)) and their location, dependent on C, isdetermined asymptotically.
Conversely, the C of a particular solution can be determined from the
asymptotic location of one singularity.

5.1.1. Normalization Formal solutions provide agood guide in finding the
normalization transformations. A transformation bringing the equation to
its normal form aso brings its transseries solutions to the form (10). It is
simpler to look for substitutions with this latter property, and then the first
step is to find the transseries solutions of (87).

Power series solutions. Since at this stage we are merely looking for useful
transformation hints, rigor isnaturally not required. Substituting of u ~ AzP
in (87) and looking for maximal balance [5] give p = 1/3, A3 = 1.
Thenu ~ AZY3 + Bz% with g < 1/3 determines B = 1A%, q = —4/3.
Inductively, one obtains a power series formal solution Gy = AzY3(1 +
Ziozl DO,kZ_Sk/S)-

8 The authors are grateful to A. Fokas for pointing out to this example.
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General transseries solutions of (87). In order to determine the form of the
exponentiasinthetransseriesof u, themethodistolook for transcendentally
small corrections beyond Tg, by linear perturbation theory. Substituting
u="C0p+ 8 in(87) yieldsto leading order in §, the equation

2
§ = <3A222/3 + §> b (88)

whence 8 o z2/3exp (2A?2%/3). In (4) the exponentias have linear ex-
ponent, with negative real part. The independent variable should thus be
X = —(9/5)A%2°3 and %(x) > 0. Then Uy = X5 312, Uo.kX ¥, which
compared to (8) suggeststhe change of dependent variableu(z) = Kx¥°h(x).
Choosing for convenience K = A%°(—135)%/° yidlds

1 1
—h+3n-=-=0 89
5x + 9 (89)

h' +
The next step isto achieve leading behavior O(x~2). Thisis easily done by
subtracting out the leading behavior of h (which can be found by maximal
balance, as above). Withh = y + 1/3 — x~1/15 we get the normal form

y =-y+ 5—1X y + gxty) (90)
where
gt y) = =3y’ +y) + 35—3)/(2 ~ 52 25);2 + 32513X3 (91)
We see that
A =1 «o=1/5andthus& = CxY/°e™* (92)

5.1.2. Definition of C for a given solution u(z) After normalization (90)
the results in [14] apply, and the constant C is uniquely associated to au(z)
on adirection arg(z) = ¢ asthelimit

arg(2)=¢ k<|x(2)|

Thislimit exists for al ¢ € (37, =) and is piecewise constant, with
one jump discontinuity at the midpoint of this interval. The value of C
relevant to the singularities of u isthe one nearest to the edge of S;ans Where

these singularities are calculated, as follows from Theorem 1.
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5.1.3. Finding the two-scale expansion (26) Having the second scale given
by (92) and al the conditions of Theorem 1 satisfied, the simplest way to
calculate the functions F in ¥ = Y i o X *F«(€) isby substituting y = yin
(90) and solving the differential equations, asin the proof of Theorem 2 (i);
the equation for Fo(&) is, cf. (56),

£F, = Fo(1+ 3Fy + 3FY); Fo0) =1 (94)
and, cf. (57),

£F, = (3Fo + 1)?F¢ + Ru(Fo, - - . , Fie1)
(for k > 1 and where R, = gFg’) (95)
Thefirst term Fq of the expansion of u isthen given by
& = £oFo(&) (Fo(®) + wo) " (Fo(§) + o) (96)

with & = 3 V2exp(~i7v/3), wo = 1+ "2 and 6 = L + L. The
functions Fy, k > 1 can aso be obtained in closed form, order by order.
By Theorem 1, therelation y ~ ¥ holds in the sector

S, = |[xeC:agx > —% +5, [CxXY3e™| < 8,

for some §; > Oand any smal § > 0.

Theorem 3insuresthat y ~ ¥ holdsinfact onalarger region, surrounding
singularities of Fq (and thus of y). To apply this result we need the surface
of analyticity of Fy and an estimate for the location of its singularities.

Lemma 12 (i) Thefunction Fy isanalytic on the universal covering R =
of C\ & where

g ={&p = (D™ exp(prv/3) : pro € Z} (97)

and its singularities are algebraic of order —1/2, located at points
lying above Z.

(ii) (Thefirst Riemann sheet) The function Fq isanalytic in (C\((—oo, &ol
U [£1, 00)).

(iii) The Riemann surface associated to Fy isrepresented in Fig. 2.

Proof. Singularities of Fy. The RHS of (94) is analytic except at Fy = oo,
thus Fg is analytic except at points where Fg — oo. From (96) it follows
that limg,_.oc &€ € & and (i) follows straightforwardly; in particular, as
£ — &p € B wehave (§ — £p)Y?Fo(§) - /—&p/6.

(i) We now examine on which sheets in Rz these singularities are
located, and start with a study of the first Riemann sheet (where Fq(§) =
£+ O(&2) for small £). Finding which of the points &, are singularities of Fo
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Fig. 2 The dark lines represent the phase portrait of (98), as well as the lines of steepest
variation of |£(u)|. The light gray lines correspond to the orthogonal field, and to the lines
[E(u)| = const.

on thefirst sheet can be rephrased in the following way. On which constant
phase (equivalently, steepest ascent/descent) paths of &(Fp), which extend
to |Fp| = oo inthe plane Fy, is&(Fg) uniformly bounded?

Constant phase paths are governed by the equation I(dIn&) = 0. Thus,
denoting Fo = X +iY, since £'/& = (Fo + 3FZ + 3F3) " oneisled to the
real differential equation J(¢'/&)dX + N(E'/&)AY = 0, or

Y(1+ 6X + 9X2 — 3Y%)dX
— (X4 3X? —=3Y24+3X3 - 9XY?dY =0 (99)

We are interested in the field lines of (98) which extend to infinity. Noting
that the singularities of the field are (0, 0) (unstable node, in a natura
parameterization) and P = (—1/2, ++/3/6) (stable foci, corresponding to
—ag and —wyg), the phase portrait is easy to draw (see Fig. 2) and there are
only two curves starting at (0, 0) so that |Fg| — oo, & bounded, namely
+R*, along which § — & and & — &, respectively.

(iii) Thus Fig. 2 encodes the structure of singularities of Fo on Rz in
the following way. A given class y € Rz can be represented by a curve
composed of rays and arcs of circle. In Fig. 2, in the Fo-plane, this corres-
pondsto acurve y’ composed of constant phase (dark gray) lines or constant
modulus (light gray) lines. Curvesin Rz terminating at singularities of Fq
correspond in Fig. 2 to curves so that |Fg| — oo (the four dark gray separa
trices S, ..., &). Thusto calculate where, on a particular Riemann sheet
of Rz, is Fp singular, one needs to find the limit of & in (96), as Fg — oo
along along y’ followed by S. This is straightforward, since the branch
of the complex powers 6, 6, is calculated easily from the index of y’ with
respect to P.. O
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0 5

Fig. 3 Singularities on the boundary of Syans for (87). Thegray region liesin the projection
on C of the Riemann surface where (99) holds. The short dotted line is a generic cut
delimiting afirst Riemann sheet.

Theorem 2 can now be applied on relatively compact subdomains of
R 5 and used to determine a uniform asymptotic representation y ~ ¥in
domains surrounding singularities of y(x), and to obtain their asymptotic
location. Going back to the original variables, similar information on u(z)
follows. For example, using Theorem 2 for the first Riemann sheet (cf.
Lemma 12 (ii))

D ={l§]l < K|§ ¢ (—00,81) U (5o, +00), |§ —&ol > €, |6 — 81| > €, }

(for any small ¢ > 0 and large positive K) the corresponding domain in the
z-planeisshown in Fig. 3.

In genera, wefix ¢ > 0 small, and some K > 0 and define Ax = {z:
agz e (Zm—0, 27 +0), &2 < K} and let Rk z be the universa
covering of & N Ak and Rz« . the corresponding Riemann surface in the
z plane, with e— neighborhoods of the points projecting on z(x(Z)) deleted.

Proposition 13 (i) The solutions u = u(z; C) described in the beginning
of Sect. 5 have the asymptotic expansion

1 — Fi (CE(2)
a2 (11 ron 5 5550)
k=0
(8Sz— 00; Z€ Rzke) (99)
where
9
@) =x@"%e?, andx(2) = —2° (100)

(i) Inthe " stegp ascent” stripsarg(é) € (ag, &), |ax —a;| < 7 starting
in Ay and crossing the boundary of A, the function u has at most one
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singularity, when £(z) = & or &, and u(z) = z¥3%e*27/3(1 + o(1)) as
Z — oo (the signis determined by arg(é)).

(iii) The singularities of u(z; C), for C # 0, are located within O(¢) of
the punctures of R;.k o.

Applying Theorem2to (90) it followsthat forn — oo, agivensolution y
issingular at points X, n such that £(X,n)/&p = 14 0(1) (IXp,nl large).

Now, y can only be singular if |y| — oo (otherwise ther.h.s. of (90) is
analytic). If Xy, is apoint where y is unbounded, with § = x — Xp, and
v=1/y we have

ds
— = vF(v, 9) (101)
dv

where Fgisanalytic near (0, 0). Itiseasy to seethat thisdifferential equation
has a unique solution with §(0) = 0 and that §'(0) = 0 aswell.

The result is then that the singularities of u are also algebraic of order
-1/2.

Proposition 14 If z, is a singularity of u(z; C) then in a neighborhood of
Zo We have

U= £/-1/2z~ 29 V2 Ao((z — 20)"?) (102)
where Ag isanalytic at zero and Aq(0) = 1.

Notes. 1. The local behavior near a singularity could have been guessed
by local Painlevé analysis and the method of dominant balance, with the
standard ansatz near asingularity, u ~ Const.(z— zy) . Our results however
are global: Proposition 13 gives the behavior of a fixed solution at infinitely
many singularities, and gives the position of these singularities as soon
as C; (or the position of only one of these singularities) is known (and in
addition show that the power behavior ansatz is correct in this case).

2. EQ. (90) can be brought to aform similar to that in Theorem 3 by the
substitution y = v/ (1 + v) in (90). The result has the form

U3

1
VvV =—v—27 1 — 100 + =Y + gt v (103)

+v

where g'*! isanow an O(t~2, v=2) polynomial of total degree 5. The singu-
larities of v are at the points where v(t) = —1, and are square root branch
points, asin Theorem 3, whose technique of proof would have also applied,
if the more explicit formula (96) was unavailable.
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5.2. Example 2: The Painlevé equation P,

The Painlevé functions were studied asymptotically in terms of doubly pe-
riodic functions by Boutroux (see, for example, [24]). Solutions of the P
eguation turn out to have arrays of polesand they can be asymptotically rep-
resented by elliptic functions whose parameters change with the direction in
the complex plane. Joshi and Kruskal carried out thistype of expansions for
generic solutions, which have poles throughout a neighborhood of infinity,
to sufficiently many orders to determine how the parameters of the elliptic
functions vary [29], [30], and applied this method to solve the connection
problem. However, there exist special, one-parameter, families of solutions
of P, (the truncated solutions, important in applications) that are free of
poles in some sectors. These solutions have the same classical asymptotic
expansion in the polefree sector to al orders and cannot be distinguished by
classica asymptotics there. They differ by a constant C beyond all orders
which can be determined by exponential asymptotic methods. The results
of the present paper apply to this specia family of solutions and give an
asymptotic representation uniformly valid at the ultimate array of poles
(neighboring the pole free sector) and make the link between the position
of these poles position and the value of C.

We note that the behavior of the triply truncated® solutions, which in
a sector have C = 0 and, consequently are pole-free in larger sectors, does
not follow immediately from our analysis. But this case can be treated by
asimilar methodology since after continuation across a Stokeslinethe value
of C becomes equal to a Stokes multiplier, generically nonzero.

Thisexampl e extends the asymptotic expansions of [16] to larger regions
of the complex plane, and also to al orders.

We consider solutions of the Painlevé P, equation (in the form of [25],
which by rescaling gives the form in [24])

d?y

in aregion centered on a Stokesline, say d = {z: argz = 7}.

To bring (104) to a normal form the transformations are suggested by
the general methodology explained in Sect. 5.1.1. There is aone parameter
family of solutions for each of the behaviors y ~ &/ for large zalong d.

We will study the family with y ~ +, /=%, since the other can be treated

similarly. Itstransseries can be obtained asin the previous example, namely
determining first the asymptotic series ¥, then by linear perturbation theory
around it one finds the form of the small exponential, and notices the
exponentia is determined up to one multiplicative parameter. We get the

9 They are also known as “ doublement tronquées’ .
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transseries solution

V== D% (105
k=0

where
—24z7)5/4
£ =&(z) = Cx Y2, with x = x(2) = % (106)
and Vi are power series, in particular
~ 1 7?1 Yo:k
y0:1— ~ 58 BT T o2
8V6(—2)52 28.37 (=2

Wenotethat inthesector | arg(z) — x| < %ntheconstantc of aparticular
solution y (see (109)) changes only once, onthe Stokeslinearg(z) = = [13].

Asin Example 1, the form of the transseries solution (105), (106) sug-
gests the transformation

_ (=242)%" B \/Tz
X = — 30 y(2) = 3 Y(X)

which, in fact, coincides with Boutroux’s (cf. [24]); P, becomes

. 1, 1 1, 4 1
Y (X) 2Y x) + 5 = % Y'(X) + o X2 Y(X) (207)
For the present techniques to apply equation (107) needs to be fully
normalized and to this end we subtract the O(1) and O(x~1) terms of the
asymptotic behavior of Y(x) for large x. It is convenient to subtract also
the O(x~2) term (since the resulting equation becomes simpler). Then the
substitution

YX)=1-— i + h(x)

25x2
transforms P, to
1 1 392
h” +=h’'—h— Zh? — = 1
+ X 2 625x4 (108)

Written asasystem, withy = (h, h’) this equation satisfies the assumptions
inSect. 2, with Ay = 1, a1, = —1/2, and then £(x) = Ce*x~Y/2. The
results of the present paper apply to the normal form (108) of P, and we will
prove Proposition 15 below which shows in (i) how the constant C beyond
al orders is associated to a truncated solution y(z) of P, for arg(z) = n
(formula(109)) and givesthe position of one array of poles z, of the solution
associated to C (formula (110)), and in (ii) provides uniform asymptotic
expansion to all orders of this solution in a sector centered on arg(z) =
and one array of poles (except for small neighborhoods of these poles) in
formula (112).
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r100,
y

-10 0
X

Fig. 4 Poles of (108) for C = —12 (¢) and C = 12 (+), cdculated via (116). The light
circles are on the second line of polesfor to C = —12.

Proposition 15 (i) Let y be a solution of (104) such that y(z) ~ /—2z/6
for large zwith arg(z) = . For any ¢ € (w, w + %n) the following limit
determines the constant C (which does not depend on ¢ in thisrange) in the
transseries § of y:

. _ 6 Yo;k
Jim &2 (,/_Zy<z> > ZM) =C (109)

ag(z)=¢ k<Ix(2)|

(Note that the constants ¥o.x do not depend on C). With this definition, if
C # 0, the function y has poles near the antistokes line arg(z) = 7 + %71
at all points z,, where, for large n

N Gl ns +il,ns + Ly L I
" 24 : 8 47 60072
(Inn)3
+O(—ll (110)
ns

[$) [e2]

with L = & In (nicz ) or, more compactly,

N
327

&z =12+ W

+ O0(z,°?) (2 — o0) (111)
(ii) Let € € R and define

3
Z={z:ag(2) > Ut ()] < 1/e; 16(2) — 12| > €}
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(the region starts at the antistokes line arg(z) = gn and extends dlightly
beyond the next antistokes line, arg(z) = %n). Ify~./—z/6as|z] - oo,
arg(z) = m, then for z € Z we have

-z 1 >, 30KH (%)
Ve (1_ 8v/6(~2)%? ﬂ; (—242)%*
(|z| > 00, z€ Z) (112)

The functions Hy arerational, and Ho(&) = £(£/12 — 1)~2. The expansion
(112) holds uniformly in the sector 7~*arg(z) € (3/5, 7/5) and also on
one of its sides, where Hy becomes dominant, down to an o(1) distance of
the actual polesof y if zislarge.

Proof. We prove the corresponding statements for the normal form (108).
To go back to the variables of (104) mere substitutions are needed, which
we omit.

Most of Proposition 15 is a direct consequence of Theorems 1 and 2.
For the one-parameter family of solutions which are small in the right half
plane we then have

h~ D X HiEx) (113)
k=0
Asin thefirst example we find Hy by substituting (113) in (108).
The equation of Hg is

1
E2HY + EH) = Ho + EHg

The genera solution of this equation are the Welerstrass elliptic functions
of In&, as expected from the general knowledge of the asymptotic behavior
of the Painlevé solutions (see [24]). For our special initial condition, Hg
analytic at zero and Hg(§) = &(1 + o(1)), the solution is a degenerate
elliptic function, namely,

_ §
Ho(8) = /12— 1)2

Next, one of the two free constants in the general solution H, is determined
by the condition of analyticity at zero of H; (thisconstant multipliestermsin
In&). Itisinteresting to note that the remaining constant is only determined
in the next step, when solving the equation for H,! This pattern is typical
(see Sect. 6.9). Continuing this procedure we obtain successively:

Hy = <216§ +210£% 4+ 3£3 — é)g‘*) E—-1273 (114)

%- 6
21600

13

9 , 211
H, = (1458 + 523862 — — &3 — == —12)*
2 ( 85 " 288 -1

(115)

i
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We omit the straightforward but quite lengthy inductive proof that all
Hy are rational functions of &. The reason the calculation is tedious is that
this property holds for (108) but not for its generic perturbations, and the
last potential obstruction to rationality, successfully overcome by (108), is
a k = 6. On the positive side, these calculations are algorithmic and are
very easy to carry out with the aid of a symbolic language program.

In the same way as in Example 1 one can show that the correspond-
ing singularities of h are double poles. al the terms of the corresponding
asymptotic expansion of 1/h are analytic near the singularity of h! All this
isagain straightforward, and lengthy because of the potential obstruction at
k = 6. We prefer to rely on an existing direct proof, see [16].

Let & correspond to a zero of 1/h. To leading order, & = 12, by
Theorem 2 (iii). To find the next order in the expansion of &5 one substitutes
£s = 124+ A/x 4+ O(x72), to obtain

(A — 109/10)?
123x2
whence A = 109/10 (because 1/h isanalytic at &) and we have

1/h(&) = + O(1/%%)

109
=124+ — 4 O(x? 116
&s BT v (X™) (116)
Given a solution h, its constant C in & for which (113) holds can be
calculated from asymptotic information in any direction above thereal line
by near least term truncation, namely

C=lim expeox” 2(h(x) -y %) (117)

arg(x)=¢ k<|x|

(this is a particular case of much more general formulas [14]) where
D k0 hoxx ™ is the common asymptotic series of all solutions of (108)
which are small in theright half plane. O

General comments.1. The expansion scales, x and x~/?e™* are crucial.
Only for this choice one obtains an expansion which is valid both in Syans
and near poles of (108). For instance, the more general second scale x2e*
introduces logarithmic singularities in H;, except when a € —% + Z. With
these logarithmic terms, the two scale expansion would only be valid in an
O(1) region in X, what is sometimes called a “patch at infinity”, instead of
more than a sector. Also, a € —% — N introduces obligatory singularities at
& = Oprecluding thevalidity of theexpansion in S;ans. Thecasea € —%+N
produces instead an expansion valid in S;ans but not near poles. Indeed, the
substitution h(x) = g(x)/x", n € N hasthe effect of changinga toa+nin
the normal form. Thisin turn amounts to restricting the analysis to aregion
far away from the poles, and then all H; will be entire. In general it is useful
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thus to make (by substitutions in (2)) a = « minimal compatible with the
assumptions (al) and (a2), as this ensures the widest region of analysis.

2. The pole structure can be explored beyond the first array, in much of
the sameway: For large & induction showsthat H,, ~ Const,,.&", suggesting
areexpansion for large &€ in the form

= HM &) - ~3/2¢-
h~>" kxk 2. & = Cllgx~1 = Cc Cllx—3/2g7x (118)
k=0

By the same techniques it can be shown that (118) holds and, by matching
with (113) at & ~ x 23, we get H{"' = Ho with C'M' = —1/60. Hence, if
Xs belongs to thefirst line of poles, i.e. £(xs) = & cf. (116), the second line
of polesis given by the condition

X, ¥%e™ = —60. 12C
i.e, itissituated at alogarithmic distance of thefirst one:
X1 — X% = — InXs + (2n 4+ )7 — In(60) + o(1)

(see Fig. 4). Similarly, on finds xs 3 and in general Xs . The second scale for
the n—th array is x"~1/2e7*,

The expansion (113) can be however matched directly to an adiabatic
invariant-like expansion valid throughout the sector where h has poles,
similar to the onein [30]. In this language, the successive expansions of the

form (118) pertain to the separatrix crossing region. We will not pursue this
issue here.

5.3. Example 3: The Painlevé equation P2

This equation reads:
Y =2y + xy +« (119)

(Incidentally, this example also shows that for a given equation distinct
solution manifolds associated to distinct asymptotic behaviors may lead to
different normalizations.) After the change of variables

x=@/2%% yo =x"1(th® -
one obtains the normal form equation

h' 2402 + 1 8 . 8x ., 8a®—a
gy — —(1+ 2 T2 h—2p¥ 4 —h2+ == 7 0 (120
T3 ( T o ) 9" Tt o (120

and

et 8
——; E°F]+&Fy=Fo+ -F3

1 , a1 /2; & NG 9
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The initial condition is (aways): Fp analytic a 0 and Fy(0) = 1. This
implies
_5
1-£2/9
Distinct normalizations (and sets of solutions) are provided by

Fo(§) =

B 2/3. — 13 — =
x = (AY?3; y(x) = (A (w(t) B+2At>

if A2 =-9/8, B2 = —1/2. Inthis case,

/,+w/+ 1+3Boz 1 — 6a?
v T tA oz ) ¥

3 1 -
— <BB — 2t_A> w? +w® + o (B(1+ 60) —t ta(e® —4)) (121)

30 that

implying
£2F) + £F, — Fo = 3BFZ — F}

and, with the same initial condition as above, we now have

£ _ 2%+ B

The first normalization applies for the manifold of solutions such that
y ~ —% (for « = 0y is exponentidly small and behaves like an Airy
function) while the second one corresponds to y ~ —B — $x~3/2,

6. Appendix
6.1. Some resultsin classical asymptotics

The notations and assumptions are those of Sect. 2.

Theorem 16 Let y(x) be a solution of (2) satisfying (8) on a direction d
which is not an antistokes line. Let S be the open sector bounded by two
consecutive antistokes lines which contains d.
Then
(i) for any d’ ¢ Sthe solution y(x) is analytic on d’ for x large enough,
and tendsto 0 along d'. Also
(i) (9) holdsond'.
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These facts follow from the proof of Theorem 12.1 of [51] (for more
general contexts see also the proofs of [26], [27]) and from the proof (of
a similar theorem) presented in [50]. Unfortunately, (i) and (ii) of Theo-
rem 16 were not formulated in these references as results in their own right.
They also follow from the more general results of [13], but their essence is
of aclassical asymptotics nature and the ideas of exponential asymptotics
are not really needed. (To compare the results obtained using classical ver-
sus exponential asymptotics approaches see Theorem 19 and the Remark
following it, Sect. 6.2.) We therefore include here a self-contained proof
of Theorem 16. The iteration argument of [51] is set up as iterations of
contractive operators on appropriate Banach spaces of analytic functions.

Proof of (i). Setting. Fix n > Oand let S, C Sbe the open subsector whose
bounding directions form an angle n with the boundary of S. We assume
issmall enough, sothat d C S,

Let Xo € d and let D = X + S,. It will be shown that if [xo| is large
enough, then the solution y(x) satisfying (8) isanalytic in D, and tendsto 0
as|X| — oo, X € D.

Denote Y; (Xo) = yf

Note that for eachindex j, %(1;x) hasthesamesignfor al x € D (there
are no antistokes lines in S,). Divide the coordinates of y into the two sets

[
le={j=1....,n; RAjX) e Ry , Xe D} (122)
Integral equations. Equation (2) can be written in the integral form

yj(X) = x¥ieti¥a; + x"‘ie‘*i"/ X, eiMg; (x 7 y(Xe)) dxg
ITj (x)

= Y0+ FWNE . j=1....n (123)

where the paths of integration /7;(x) C D are: the segment [Xo, X] if j € I
and the half-line from oo to x, along the direction of x — xo for j € | _.

Sincethe solution y(x) goesto 0 along d we seethat in (123) its constants
of integration a; are

aj=0for jel_ , a =yjX)X, €™ for jel, (124)

By assumption g(x~1,y) is analytic at (0, 0), say for [x|™* < r and
ly| < po, and satisfies [g(x 1, y)| < const (|x|~2 + |y|?) (see Sect. 2).

Let By be the Banach space of functions y(x) analytic on D and con-
tinuous on D (with the sup norm). Let ¥ be the closed subset of functions
y € By with |ly|| < p (where p > 0 will be chosen small enough) and
satisfying yj (xo) = y; for j € I, and yj(xo) = Ofor j e I_.

Relations (123), (124) can be viewed as an equation y = ¥ + Z(y) on
F (if xo| > r~tand p < po). For p small we show that if y € F then
¥ + 4(y) € F and thefact that ¢ isacontraction on % . It will follow that
the integral equation has a unique solution thus proving (i).
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Lemma. Let

Xol = max[9a|(J3;| sin n~tmax {1+ /2, (vV2siny) '}

If: (i) j € 1, and xX(t) = Xo + t(X — Xp) , t € [0, 1], or
@ijel_andx(t) =X+t(X—Xg),t >0
then

X Raj e%m[x,-(x(t)—x)] <1 (125)
X(t)

The proof of this lemma is straightforward (the left side of (125) is
increasing in't in case (i) and decreasing in case (ii)). The following es-
timates can be used: |cosarg[Aj(X — Xp)l| = sinp > 0, cosfarg(x —
Xo) — argXo]l = —cos(2n) > —1, and for (i) R[A;(X(t) — X)] = —(1 —
t)[Aj(X—Xo)| cosarg[Aj(X—Xo)] < —(1—1)|1j(X—Xo)| Sinn, whilefor (ii)
R (X)) —X)] = t|rj (X —Xo)| cosarg[rj (X — Xo)] < —t|Aj(X—Xo)| Sinn.

’ X

Theset isinvariant under iterations
Letye F.Forjel,

[V (X) + & (Y)(X)| = const |y]|) ’ ERPRPSTE )

+ const |x—x0|/ ‘ g XOIT (1x(t)| 72 + [ly)|?) dt

X(t) ‘
and using (125) and that |x(t)| > |Xo|(1— cos?(2n)) thelast term is bounded
by

const [y°] + const [x — Xo| (1%l + llyII?) /1 ~2(A-D1kj (x—x0)| Sinn (i
< const |y?| + const (|xo| ™ j— lyl1?)
Similar estimates hold for j € |_, hence (for some K > 0)
I+ W1 < K (1y°] + %ol 72 + llyll?) -

Let p be smdll, such that p < (3K)*1. Then if |y°| < p(3K)~%, and
0|72 < p(3K)~* we have ¥ + fr’(Y) €EF

Contraction. Let y and y’ be in . Writing gj(x 1, y) = gjo(x™) +
et n 9ik(XL Y) Vi with gj i analytlc for [x~% < r and |y] < p, and
ik = O(x~?) + O(ly]) for k > 1, and gj o = O(x~?) then |g; (x*, y) —
g;(x~1,y")| < const(|x|=2+ p)|y — Y| so that, with estimates similar to the
above, weget || F(y) — F(¥)| < const(|xo| %+ p)ly —y'|. For small p and
large xo the operator g isacontraction on F, and part (i) of Theorem 16 is
proved.



44 0. Costin, R.D. Costin

Remark. In the estimates above the smaller 7 (i.e. the closer x to an antis-
tokes line) the larger xo must be. Thisis closely related to the fact (which
is the object of the present paper) that solutions (which are anaytic in
a “sector”’—more precisely, in a region described in Theorem 16) develop
(generically) singularities on the edges of this “ sector”.

Proof of (ii). Let ¢(x) be asolution of (2) satisfying (9)—-which isknown to
exist [51]. Let y(x) be asolution satisfying (8). Let u(x) = y(X) — ¢(x). It
is enough to show that u(x) = O(|x|™") for dl r € NU {0}.

The function u(x) has limit 0 dong d and satisfies

o 1.
u=—Au+ ~Au+ h(x* u) (126)

where

h(x%u)=g(xtu+ex)—g(x ™t éx) (127)
Asin the proof of (i) we write (126) in integral form (similar to (123))

uj(x) = x“e M¥a; + x“ie—MX/ Xy € (xg 7 u(xy)) dxy
(%)

=y;0+Fwx , j=1...,n (128)

where the paths of integration are those of (123) and the constants a; satisfy
the analogue of (124)

aj=0for jel_ , a =uj(x)x, € for jel, (129)

where Up = Y(Xo) — $(Xo)-

Let D beasin (i), where ¢ is analytic. Consider the Banach space 8B,
of functions u(x) analytic on D, continuous on D, with the norm |ju| =
Sup,.p [X"U(X)| (see also [50]).

Let ¥ be the closed subset of functionsu € B, with ||u|| < p (where
o > 0 will be chosen small enough) and satisfying u(xg) = Uo.

Note that ¢p(x) = O(x~2?) (cf. (3)) hence |p(X)| < M|x|~? (for x € D
and xg large enough). Then since g(x 1, y) was assumed O(x~2) + O(|y|?)
it followsthat for x € D (cf. (127))

lh (x7*, u)| < const (IXI~%|u] + |ul?)

(for xo large enough, so that |p(X)| < p/2 and for |u] < p/2).

The same estimates as in the proof of (i) (the only difference being
that the «rj of (i) should be replaced here by r + «;) show that equation
u =¥+ 4(u) hasaunique solution in & if |X| islarge enough (depending
onr, as expected). Hence ||u|; < oo which concludes the proof of (ii). O
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6.2. Summary of someresultsin [ 13]

This subsection contains details on results of [13] cited, referred to, or
relevant for the present paper. A simple consequence of a Lemmain [13]
(needed for the present paper) is formulated and proved at the end of this
section (Theorem 19).

Since the Theorems, Lemmas and some formulas cited in this section
are from [13], to avoid repetition we will follow by a* sign any result cited
from [13].

The setting is the same as in the present paper: the equation studied is

~ 1.
Y =—dy— By +9x"y) (130)
(same as (2) with B = — A) having transseries solutions

yoo = Y Cre xRy (v

ke(Nu{oph"

= Y CreMoxMeyx (131

ke(NU{O})P

(sameas(4), (5), (11) for B; = —aj, Mj = —[RB;1+ 1, j=1,....n).

Since the association between actual and formal solutions depends on
directions (Stokes phenomena) a sector in the complex x-plane is chosen
as follows. Fix some non-empty open sector S ¢ C and consider those
transseries (131) valid in S (as explained in Sect. 2.1). Some constants
Ci,...,C, may berequired to be zero in S, say C; = Ofor j = n; +
1, ...,n(withny > 0). Let S;ans be the (non-empty, open) maximal sector
of vaidity of any transseries (131) withC; = Ofor j =n14+1,... ,n(see
(6)).

To simplify the notations it can be assumed (after trivial changes of
coordinates) that 11 = 1 (see also Sect. 2.2).

1. Theconstruction of actual solutions associated to transseries solutions
validin Syansisdonein[13] using ageneralized Borel summation asfollows.

Denote by Y(p) the formal inverse Laplace transform of y(x) (i.e.
Y(p) = 27i)~?t f:fl'(j ePy(x) dx, its convergence following from subse-
quent analysis). Using the usual properties of the inverse Laplace transform
(e.g. the transform of y'(x) is —pY(p), multiplication is transformed into
convolution, etc.) the differential equation (130) is transformed into a con-
volution eguation (eg. (1.13)*).

The Stokes linesin the Borel plane (p-plane) are defined as the complex
conjugates of the Stokeslinesin thedirect (x) space. For linear equationsthe
Stokes lines in the p-plane are dj o = AjR,, j = 1, ..., n. For nonlinear
eguations, there also are other Stokes lines (which play a role only in
the higher order terms of the transseries, with |k| > 2, hence they are
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“transparent” in the linear case) namely djx = (A; — k - A)Ry with j =
1,...,n ke (NU{O)" (notethat p;x € dj cf.(35)).

Once the sector Syans is fixed, there are only finitely many lines d; i in
this sector.

In any proper subsector of any of the n sectors formed by the Stokes
lines d; o the convolution equation has a unique solution Yo(p) which is
analytic at p = 0 (Lemma 16*). Yo(p) is in fact the Borel transform of
the asymptotic series §o(X) (see (3)) (i.e. Yo(p) = >, Yor P /r!). But Yq
has singularities on the Stokeslinesat p € A;Z,, j =1,...,n (hencethe
classical Laplace transform cannot be taken on R, and the classical Borel
sum of ¥ does not exist).

Denote by Y{ the analytic continuation of Y, on directions above
dio = R, (but below the neighboring Stokes line), respectively by Y,
for the continuation below R ; they exist see Lemma 16*. It is shown that
as p approaches R, from above (or below) Y (p) (respectively, Y, (p))
tendsto adistribution on R, in an adequate space of distributions-the stair-
case distributions, introduced in [13] (Lemma 16*). In genera, the two
distributions are different. (Of course, a similar picture holds at any other
Stokesline.)

Higher order functions Yy, |k| > 1 are then constructed (Lemma 20*)
by solving the convolution equation on the Stokes lines.

Consider for example the line R, = dj . Fix a solution Y of the
convolution equation in the space of staircase distributions on R, . The
construction of the higher order Y ’swithk; = 0if j > n; + 1'%isdonein
the proof of Lemma20* asfollows. Inview of the sought-for expansion (10),
after introducing it in (130) and identifying the coefficients one obtains
(arecursive system of) differential equations for yy; formal inverse Laplace
transform yields (arecursive system of ) convolution equations for Y. Once
astaircase distribution solution Yo on R, is chosen the genera solution of
this system with regularity (34) depends on n; free constants Cy, ... , Cy,,
in the form CKY . Outside the Stokes line R, the solutions Yy are, in fact,
analytic up to the nearest direction (of positive argument v, respectively
negative argument v»_) which is either a Stokes line d; x which liesin the
right half-plane (i.e. the half-plane orthogonal to d; o = R, ) —where some
of the constants C; may change, or isan antistokeslineassociatedtoi1 = 1,
i.e.iR, oriR_ —wherethetransseriesisno longer defined!* — (Lemma20*
(D)—iv)).

It is interesting to note that the Y multiplied by Stokes constants are
generated as differences between different branches of Yo (Theorem 4%,
Proposition 23*).

10 Other Y’s are not needed since the corresponding ¥ cannot be present in atransseries
on the fixed Srans.

11y, may be analytic beyond the antistokes lines +iRR_. but the analysis in [13] stops
there.
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Then (ageneralized) Laplace transform isapplied to Y (in the space of
staircase distributions on the Stokes line R, under consideration) yielding
(analytic) functions yx = LY.

The last step in the summation of transseries is showing that the sum
(10) converges (Lemma 20* (v); more details are found in the proof of
Lemma 17 of this section).

The reconstruction of asolution from atransseries is concluded showing
that the function y(x) obtained as the sum of (10) is a solution of the
differential equation (130)—which follows easily because of appropriate
convergence and since al functions have been constructed from formal
objects satisfying the equation (Lemma 20* (v)).

The correspondence between transseries (i.e. the constants C) and ac-
tual solutions given by the summation of Lemma 20* is not unique. This
is due to the non-uniqueness of staircase distribution solutions Yo on R,
(on which the higher order Y| depend): there is a one parameter fam-
ily of solutions Y& (among which Y5 for @ = 0, 1) — they are specia
averages of analytic continuations of the germ of analytic function Y
ap=0.

2. Conversely, any solution of (130) satisfying (9) onadirection d inthe
right half-plane is the sum of atransseries, which is unique once « isfixed
(Theorem 3*(iii)).

The proof is done in the following steps (Propositions 24* and 25*).
There existsasolution yg* (X) asymptotic to the transseries ¥ (i.e. ¥ with all
C; = 0) asconstructed at part 1. above. It is also shown that any two solu-
tionsy’?(x) with the same asymptotic expansion y*-2 ~ ¥, ond differ by ex-
ponentially small terms: y* () —y?(x) = >_;_; , C;e*1*x i (gj +0(1))
on d. Thus the difference y(x) — y§(x) fixes the constants C; = Cj(«, d),
which are then used to construct a solution y;(x) from the transseries ¥
with these constants (using part 1. above). The last step is showing that
y(X) = yi(X).

3.1t hasbeenthusestablished that (givenadirectiond, and aparameter «)
there is a one-to-one correspondence between transseries solutions and
actual solutions of (130). The correspondence is built using a (family of)
generalized Borel summation(s) L8, on d. It is shown that the operator
LB, iscompatible with all algebraic operations (performed on transseries,
respectively functions on d).

The Stokes phenomenon is analyzed in Theorems 4* and 5*.

4. \We now state the maximal domain of analyticity'® of y(x) implied by
formula (2.41)* of Lemma 20*.

Lemma 17 Let y(x) be a solution of (130) satisfying (9) on a direction d
above (but close enough to) R, .

12 This domain isimproperly stated in [13].
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Let Cj*, j = 1,...,n be the constants such that y(x) is represented
ond as
y=LYg+ Y (COHfe ey~ (132)
k|>0

(see Theorem 3*(iii)).
Then for any ¢, § > 0 thereis x; > 0 such that y(x) is analytic on the
domain

D;n={x; IXI>X1,arg(X)e[—W—%+e,—w’+%—e]

’Cj‘x""ie**ix <8t j=1,... ,n} (133)

The constants ¢, § are the same for all solutions of (130) with transseries
valid in the same sector S;ans asy.

The Proof followsimmediately from Lemma 20* (v), but we provide the
details.

All functions Y~ (-€?) are Laplace transformable in the space of stair-
case distributions on R, with exponential weight e*P (for v > 0 large
enough) if ¢ € (Y_, Y1) (see Lemma20*(v)).

For ¢ € (v_, 0) the Y~ (p€?), (p > 0) are andytic (Lemma 20* (iii)),
sotheL aplacetransforminthe space of staircasedistributionscoincideswith
the classical Laplace transform (see Lemma 6* and the classical properties
of the Laplace transform and of the spaces L 1) where the L aplace transform
is defined as

LF(X) =/erF(p)dp , forxed (134)
d

(Note that in (134) p € d and x e d so that %(px) > 0.)
Remark 18 If F isanalytic on adirectiond = e "R, (n € R) and

IFll, = /de—“p|F<p>| dp < oo

then its Laplace transform (134) isanaytic for x € d = €"R ., |X| > v.
Furthermore, for any € > 0 L F hasanalytic continuation on the domain
agxen—%+en+3%—el=1and|xl > v(sine)tand LF satisfies

|LEG)] < [IF 1l (135)

The proof is immediate, noting that the path of integration of (134)
can be rotated to any other direction in the interval | —since | is so that
NR(xp) > 0.

To prove Lemma 17 let € be small, positive and let ¢ € [V + €, —€].
Forany § > Othereisv > Osothat thefunctions Y~ (pe€?), (p > 0) satisfy
1Yk~ (-€%)], < 8 for all multi-indices k considered (i.e. |k| > 0,kj =0
for j > ny) see Proposition 22*(ii). Using Remark 18 and (132) the result
isimmediate. O
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Remark. Similarly to Lemma 17 thereis X; > 0 such that y(x) is analytic
on DF, = D (e, 8, C™) where

Di = {x: X1 > 0, agoo € [ — v = S 4+e —yt + 5 — | and

]cerie**iX <stj=1,... ,n} (136)

so that the domain of analyticity of asolution y(x) includes domains of the
form D, U Df,.

Theorem 19 Let y(x) be a solution of (130) satisfying (9) ond = R, . Let
€ > 0 besmall.
There exists §, R > 0 such that y(x) is analytic (at least) on

Sin = Sin (Y(X); €) = S: U ge (137)

where

Sf={x; X > R, arg(X)E[—%:Fe,%:Fe]and

)Cj‘e‘kixx‘ﬂi) <& tforj=1,... ,n} (138)

The constant § is the same for all solutions of (130) with transseries
valid in the same sector Syans as¥. (However, R does depend on C.)

Proof. From Lemma 17 using the expansion of Y in terms of Yy, re-
spectively Yt it follows that y(x) is analytic for |x| > X;, argx €

[~y —Zte, —y+Z—c]=| and)cfe—MXx—Mi <5 j=1,....n

Since M; = — |98, | + 1 and the sector | islarger than the sector where all
exponentials in the transseries of y(x) are bounded, the result follows. 0O

Remark. Fix adirection d (not an antistokes line) and consider solutions
satisfying (8). It is interesting to compare the result on the domain of ana-
Iyticity of these solutions as given by Theorem 19 (obtained using results of
exponential asymptatics) to the result of Theorem 16(i) (obtained in aclas-
sical setting). There are specia families of solutions for which the sector of
analyticity given by Theorem 19 is, in fact, larger than the sector between
two consecutive antistokes lines (i.e. solutions having the corresponding
C; zero). For Painlevée P1 equation these specia solutions are called triply
truncated.

Convention. TheBorel summationusedinthepresent paperis LB = LB 1.
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6.3. Proof of (24)

Proof. Thisfollows from the definition & = C,x*te * and from the asymp-
totic behavior of the functional inverse W of se® (see e.g. [12]). For large
t > 0 the branch of W which isreal has the expansion (convergent, asit is
not difficult to show)

Inint ~ 2(InInt2 — InInt

W(t) = Int — InInt +

Int (Int)?
O
6.4. Points on ) have the same magnitude
Let R belarge, so that
3KB
p3 + R < p2 (139)

Lemma 20 Thereis a small enough neighborhood ‘Nyﬂ of ¥ so that any
X, X" e N0 satisfy

1 [X'|

< <
2 |XN|

(140)

Proof. Using (24) for t € [to, 1] we get the uniform estimate

YNt — Iyn(®] = 3 An((1) — In(Ito))) +0(1) (N — 00)

Therefore limy_ o yn(t)/yn(t”) = Luniformly for t, t’ € [tg, 1]. Sofor N
large |x/X'| < 3/2foral x, X' on yyN between xg and a, soin asmall enough
neighborhood |x/x'| < 1/2 which proves the Lemma. ]

6.5. Special estimates

We show that the second argument of g in (65) has absolute value less than

p2 (cf. (23)).
We need the following lemma.

Lemma 21 Let A, ¢o > 0. Thereexist Ao, ¥ > 0 such that
m
k! 1
=< - 141

if A> Ajand mA™™ < c.
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Before giving the proof of the lemma, we show how (141) is used.
Let R belarge, and ¢y small, so that

2B -
Kic <F + co> < % (142)

Inview of Theorem 2(i), for x € N0

3 1k'KB"

and in view of Lemma 20 the last term is bounded by

m 2B\
< ,;(H) k'K (143)

Using (143), Lemma 21 and the bound p3 on Fg and (142) we have

1
> w e E00)

k=1

2B +
FM ()] < |Fo (X)) | + Kk (H +Co> <P . 5 < o2

Finaly, if [3(x)| < 252 on 0 then

2—pP3 P2+ p3
2 + 2

Proof of Lemma 21. Estimates like (141) are common in proofs using least
term truncation of factorially divergent series (see e.g. [14]). The proof of
(241) isincluded here for completeness.

The series

P
8+ F™ < <p2=p2

k!
> (149

k>1

is divergent. Its terms decrease for k < A and increase for k > A; theterm
withk = | A] (or k= | A] 4+ 1) iscadled the least term (see e.g. [5]).
Casel: m< A

In this case the termsin the l.h.s. of (141) are decreasing, hence

"k 1 2

3
- < — —(m-=1 —
kZ;Ak—AJFA?( ) <A

Casell: A<m=<eA/2
The terms in the |.h.s. of (141) are increasing for A < k < m, not
exceeding the second term: m!/A™ < 2!/ A?,
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Indeed, this is a simple estimate using Stirling’s formula and the fact
that the function F(A) = A¥?q*®A isdecreasing for A > A (if A islarge

enough).
Thenasin Casel
m
2 1
Z_ f — 2(m 1) < i
—~ AK A A A

Caselll: eA/2 <m
Denote p= | Al andq = [H2p—3].
Write
Mk
Z i Si+Si+9S
k=1
where
9k Mmook

Pkl ! !
SIII_Z S":ZH’S‘:ZH

k b
k=1 A k= p+1 k:q+1

and estimate each sum separately.

Toestimate S
m m—-1
kK m! pm-k
S < —- = —= —
k—Xq-l:-l P pm |:qu;1 @+2" k}

andsince p/(q+ 2) < 2/(A+1) < lthisislessthan

mA+1 mle+2
_—<_—
prA—-1 pe-2

To estimate § note that
q! m
S||<(q—p)ﬁ _(q_p)<q+l)

A~ po < 1if A> Aq (for Ag large enough)

andsinceﬁ
m! _ m!
< m(q— Py < ﬁpl
Finaly
1 3
Sii <27 Az(p D<=

The result of Lemma 21 follows.
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6.6. Proof of Proposition 4

A consolidation of one of the normsin Example (3a)in [13] isfirst needed.
For convenience we repeat that part. The notations are those in [13].

(3a)For R(B) > 0and ¢y # ¢, let T(EUV) = (T : f(p) = pP’F(p)},
where F is analytic in the interior of & U 'V and continuous in its closure.
We use the family of (equivaent) norms

Ifllg = |T(B+D|K sup |ePf(p)| (145)

seguUyY

Itisclear that convergence of f in |||, g implies uniform convergence of F
on compact sets in & U 'V (for p near zero, this follows from Cauchy’s
formula). 73 are thus Banach spaces and focusing spacesin |||, g by (145).
The spaces {73} 4 are isomorphic to each-other. Convolution is defined as

1
P (o f2)(p) = /0 (P (1 — 2 Fa(p(1 — t)dt = F(p)

(146)
where F ismanifestly analytic, and the application
(%)t Tpy X Ty b Tppapyat (147)

is continuous;

Il 15 fallu g4 pot1

= |1+ B2+ D|K sup
p

p
&P / SFL(S)(p — 972 Fa(p— 9ds
0

_ F(,31+,32+2)Sup

== !
/p KF1(s)e 8¢t KF,(p — 5)e7"(P~9(p — 9)f2 dis
0 Ip1+1) I'B+1)

< I fullv gl f2llv g, (148)

Estimating the norm of Y exactly asin[13] but using thisinequality instead
of (2.8) of [13] we get that

IYk(p)| < |~k - &)Y 5, ewlP

and thus, using straightforward Cauchy estimates in d,, of derivatives, (38)
is proved. O
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6.7. Note on normalization of the ¢;

The reference [13] uses a transformation that makes g; < 0 («; > Ointhe
present notation). To determine the singularities of y it is now important
to make «j as small as possible, as explained in Comment 1, Sect. 5.2. In
some cases we must then alow for m < 0in [13], Eq. (2.43). This does
not affect the estimates (2.44) through (2.46) in the space Jig 1, the only
one that relevant to the present paper. Minor modifications of the proof
following Lemma 20 in [13] are needed. For completeness we redo redo
here the whole proof.

For |k| > 1 withWy := Yy and Ry := Ty, the functions W satisfy the
equations

(14 JOWk = Q. 'Ry (149)

with Qy := (—A 4 p+k - 1) (notice that for |k| > 1and p € 8, we have
det Qk(p) # 0).

R R P
(JW)(p) := Q|(1<(B-|—m-k)/O W(s)ds
n p
—Z/O Wj(s)Dj(p—s)ds> (150)
j=1

Proposition 22 (i) For large v and constants K, and K;(v) independent of
k, with Ko(v) = O(v~1) wehave || Q|| < % and

[kl < Ka(v) (151)

(i) For large v, the operators (1+ Ji) defined in i),/nzv, andalsoin Jxp—1
for |k| > 1andin 771 for |k| = 1 are simultaneoudly invertible. Given Y
and C, the Wy, |k| > 1 are uniquely determined. For any § > O thereis
alarge enough v, so that

Wil < 8%, k=0,1,... (152)

(in the Oy, , topology, (152) hold uniformly in ¢ € [¢_ +¢€,0] and ¢ €
[0, ¥, — €] for any small € > 0). O

Proof. (i) follows immediately from (148).

(i) From (149) and (i) we get, for some K and j > 1 |Wk] < K||R]l.
We first show inductively that the Wy are bounded. Choosing a suitably
large v(e) we can make maxx <1 [Wkll, < € for any positive e (uniformly
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in ¢). We show by induction that |W]|, < € for dl k. In the same way as
in[13] we get

Wkl < KIIRell, = D wlled 31

I<k (imp)
K]
< ekl ZKi2n1(|k\+s)23+nl < (Cle)lk‘ (153)

s=0

where C; does not depend on €, k. Choosing e sothat e < C 2 we have, for
k| > 2 (C1e)l < € completing theinduction step. But aswenow know that
W, < €, thesameinequalities (153) show that infact W ||, < (Ci€)¥.
Choosing € small enough, the first part of Proposition 22, (ii) follows. 0O

6.8. Proof of Lemma 10 (ii)

1. Generically hg is not entire. Assume hg is analytic in a neighborhood of
thedisk Br = {|§] < R} and let Mg = sup,,;_g ho(2). We have

sup {z(ho(® — D} = sup {z(ho(@ — D} = R (M +1)
|zZ|<R |zl=R

and thus, for some constants C; we have
M? < C1R? + C + (C3R2 + C)M (154)
whence
M < CsR? + Cg (155)

If hg is entire it then follows that hg is a quadratic polynomia in &. But it
is straightforward to check that (84) does not, generically, admit quadratic
solutions. Thus the radius of analyticity of hg isfinite, say Ry, and'3

sup {z '(ho(2) — D} < Ry* (Mg, + 1) and Mg, < CsR5+ Cs  (156)
|zZ|<Ro

2. h3isuniformly continuous on Br,. Indeed, if &, & € Bg, we have by (85)
and (156) that hj isin fact Lipschitz:

Ih3(£) — h3(g")| < Const.|g — &/| (157)

3.1f & € 9BR, and ho(&p) # Othen & isaregular point of eg. (84) and thus
hg isanalytic at &.

13 An upper bound for Ry can be found by comparing h'(0) with its estimate from
Cauchy’s formulaand (154)
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4.1f & € 9B, isasingular point of hg and —A,£51 + ds + dy&s # O then
£ isa square root branch point of ho, i.e. ho(€) = hy((§ — &)Y/?) where h;
isanalytic at zero. From parts 2 and 3 above, hg(&s) = 0. It is convenient to
look at the equation for £(hg) derived from (84):

dé B 2hg . B
dng — (&1 4 di + do)ho + (—roE 1 + dz + dgd)’ §0) =& (158)

whose unique solution is analytic near zero. The claim now follows by
noting that £'(0) = 0 and £”(0) = 2(—AzE5 L + d + dyés).

5. We now restrict the analysis to a smaller but generic set of coefficients.
We denote by K the following subset of parameters (see (79) and (84))

Ks = {(d.») = (dj, ¥))j=1..n € C*" : hg not entire and
P(§) = —2, + Apth€ + da&? hasdistinct roots }  (159)

We show in parts 6 through 8 that if & € dBR, isasingular point of hg and
P(&s) = O, then ageneric small variation of (a, y) in Kg makes P(&s) # 0,
and by part 4, &5 becomes a square root branch point of hg.

Wethus assumethat P(£5) = 0. The substitution & — &5 = t in (84) gives

2h0h6 = Bihg +tB> (160)

where

t+6&—§

By = 2, (t 1 d+t dy; B, =
1 2(t + &) 1+ (t+&5)dy; By s

ds
and theroots of P(&§) are &; # &

We now study hg in the following smaller region. Let ty be small on
the segment [0, —&]. Choose A = {t : |t — to| < |to]} C Br, — & to be
adisk tangent at t = 0to Bg, — & Which does not contain the points &s — &
and —&. Then hg is analytic in A and continuous in A\{0} (while h3 is
continuous in A), and lim hg(t) = 0. We assume t = 0 is a singularity
of ho. Ast—0
6. There existsa sequence {tn },, in A witht, — Osuchthat lim hq(t,)/ty=L
with 2L2 — L B;(0) — B,(0) = 0. e

Wefirst show that hg — 0, then prove hg/t isbounded below and above,
and finally that hy/t has alimit.

(a) We estimate

My = max [ho(9)]
Is—t|<[t|

for t € (0, tp) from (160) written as

t
h2(t) = / Bs(9)ho(S)ds + t?Bs(t)
0
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where Bz 4 are analytic in A and continuous on A. Then

ME < |t| My max |Bs| + [t?] max | By|
A A

and thus M; < Kq]t|, for some K; > Oand al t € [0, tg].
(b) Cauchy’s formula on the circle |s — t| = |t| implies [hy(D)] < Kj.
(c) Equation (160) written in the form t/hy = (2hy — B1)B; L implies
now [t/ho| < K;* < oo. In conclusion,

h S [Kz, Kl] foralt e [O, to]
0

To conclude the proof of the statement at the beginning of this part, the
function y = ho/t, whichisanalytic in A and continuous on A\ {0} satisfies
the equation

2t)/ = —2y+ B]_+ Bz/y

which can be written as

1 y
—_——_ 161
2t Po(y) +tf(t,y) (161)

with Py(y) = —2y + B1(0) 4+ B»(0)/y. Assume, to get a contradiction, that
for somee > Owehad | Py(y(t))| > e fort € (0, t1] C (O, to]. Since

1 1
Po(y) +tf(t,y)  Po(y)

with fy(t, y) bounded on (0, t;] if t; issmall, we get by integrating (161) on
[t,ta] C (O, tq]

+tfat, y) (162)

1 t
> In(t/ty) = Fo(y(t)) — Fo(y(ty) + / sy (s) fa(s, y(s))ds

t1

where Fq isaprimitive of 1/ Py, and thus Fo(y(t)) isbounded for t € (0, ty).
Hence the r.h.s. of (162) is uniformly bounded for t € (O, t;), which is
acontradiction, given thel.h.s. of (162).

7. With §(t) defined by ho(t) = Lt(1 + §(t)) we have §(t) — Oast — O,
t € (0, tg]. We show this by a contraction argument. § satisfies the equation

B1(0)
2L

t8' = <—2+ )a + B(t, §) (163)

where

Bl(o)> 82 +t [Bl(t) — B1(0)  Ba(t) — 52(0)}

B(t,8) = (1—
©9) ( 2L )1+ 2Lt )
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or inintegral form,

by t

8(t) = (I8)(t) = (%) 8(ty) + ™ / sP1=1B(s, §(s))ds (164)
n th

where {t,},, is the sequence found in 6, such that §(t,) — 0. We have two

cases, according to whether 9i(b,) is positive or negative (fi(b;) = 0 is

nongeneric).

(@ In the case N(b;) > 0 we define J on the space A4 of anaytic
functions in B,, and continuous in B,,, where B, isthe ball having [0, t,] as
adiameter. Let Ay = {8 € A : ||8]loc <r}andr, = 2/8(th)].

(b) For M(by) < O we instead define J on the space A’ of analytic
functions in By, and continuous in ?;, where B/, isthe ball having [t, th_1]
asadiameter. Let A, = {§ € A" : ||6]lo < r}andr] = 2|5(ty)|+2(th_1—tn).

Lemma 23 (a) If %i(by) > O, for n large enough, J : A, +— A, IS
contractive. Therefore, asn islarge, we have [5(t)| < 2|5(t,)| on [0, ty] SO
that 8(t) — Oast — 0in (0, to].

(b) If M(by) < O, for n large enough, J : A;/n — A;a is contractive.
Therefore, as nislarge, we have [§(t)] < 2|5(th)| + th—1 — ty on [ty, th_1]
so that, again, §(t) — Oast — 0in (0, tg].

Proof. A straightforward calculation.

8. Now we bootstrap the information that §(t) — 0 to sharpen the charac-
terization of §(t) for small t.

Lemma 24 (a) If %(by) < Othen §(t) isanalyticint at zero, and §(0) = 0,

thus §(t) = O(t).
(b) If R(by) > Othen 8(t) = O(tPr) + O(t) for small t.

Proof. (&) Since §(t) — 0 we have
1
st = / (tzbs(3(t2), t2) + bps%(zt))z ™ dz (165)
0

which for small t is manifestly contractive in asmall sup ball in a space of
analytic functions in aneighborhood of t = 0.
(b) Fixing some n, from (164) and Lemma 23 we see that
LICOINS
ty

18] < + (th — DBl

O

(In fact it is not difficult to show that in case (b), § can be written as an
analytic function in the two variables t and t".)
With u = $f we get the equation in variations

uhy + hot' = (26 + ap)u + 1 (166)
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whence u isanalytic aslong ashy # 0. This equation being linear we can
use classical Frobenius theory and, in the only interesting case fi(b;) > 0
we have u(%p) = (Ap2 — 20851 — @)~ # 0. Thus an arbitrarily small
variation of A, makes hg(&g) # O.

6.9. Therecursive system for F,

In applications it is usually more convenient to determine the functions F,
recursively, from their differential equation. Formally the calculation isthe
following.

TheseriesF = Yo X "Fm(&) isaformal solution of (2); substitution
in the equation and identification of coefficients of x ™ yields the recursive
system (56), (57). To determine the F’s associated to y we first note
that these functions are analytic at & = 0 (cf. Theorem 1). Denoting by

Fmj, ] = 1, .., n the components of F,, a simple calculation shows that
(56) has a unique analytic solution satisfying Fo1(£) = & + O(¢?) and
Fo.j(§) = O(&?) for j = 2,...,n. For m = 1, there is a one parameter

family of solutions of (57) having a Taylor series at & = 0, and they have
the form F11(8) = ¢ + O(&?) and Fyj(§) = O&?) for j = 2,...,n.
The parameter ¢; is determined from the condition that (57) has an analytic
solution for m = 2. For this value of ¢, there is a one parameter family
of solutions F, analytic at &£ = 0 and this new parameter is determined by
analyzing the eguation of F3. The procedure can be continued to any order
in m, in the same way; in particular, the constant ¢, is only determined at
step m + 1 from the condition of analyticity of Fp, 1.

6.10. Sketch of a classical proof of Theorem 1

It is also interesting to mention a direct, classical proof (i.e. not involving
results of exponential asymptotics) of Theorem 1. (Since we do not rely on
this more involved approach, we only give a brief outline of this proof.)

Having determined theinitial conditionsfor F, asabove, equations (56),
(57) can be transformed to integral equations possessing unique analytic
solutions Fy, for small &.

To show (20) let y(x) be a solution of (2) such that y(X) — 0in Srans.
Denote

N
Rn(x) = x"* (y(x) -y x—mFm(ax)))
m=0
(the remainder of y(x) with respect to the truncated expansion). Then Ry
satisfies the differential equation
Rn

dd—x +[A+x A= (N+DD]Ry =Ex(,Rn)  (167)
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where
En(X, Rn) = dyg(0, Fo)Rn + F (RN + un(X) + EMy(x, Ry)  (168)

with E™y(x, Ry) = O(RZ).

Let Ryj, j = 1,..n denote the components of Ry and Ey; be the
components of Ey.

Equation (167) can be written in the integral form

X

Ry j(x) = e +iXxNT1-ei /0 eissTN=He E (s, RN (9) ds (169)
Xt
]

(for j =1, ..., n). For an appropriate (rather delicate) choice of theinitial
points x? and of the contours of integration in (169) the integral operators
defined by ther.h.s. of (169) are contractive for N sufficiently large, hence
(169) has a unique analytic solution Ry.
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