Asymptotic and transasymptotic matching; formation of singularities

\[
\frac{1}{h(\xi_s)} = \left(A - \frac{109}{10} \right)^2 + \frac{1}{12x^2} + O(1/x^3)
\]

whence \(A = \frac{109}{10} \) (because \(1/h \) is analytic at \(\xi_s \)) and we have

\[
\xi_s = 12 + \frac{109}{10x} + O(x^{-2})
\]

(6.70)

FIGURE 6.4: Poles of (4.85) for \(C = -12 \) (\(\diamond \)) and \(C = 12 \) (+), calculated via (6.70). The light circles are on the second line of poles.

Given a solution \(h \), the constant \(C \) in (6.13) for which (6.67) holds can be calculated from asymptotic information in any direction above the real line by near least term truncation, namely

\[
C = \lim_{\arg(x) = \phi} \exp(x)x^{1/2} \left(h(x) - \sum_{k \leq |x|} \frac{\tilde{h}_{0,k}}{x^k} \right)
\]

(6.71)

(this is a particular case of much more general formulas [19] where \(\sum_{k>0} \tilde{h}_{0,k}x^{-k} \) is the common asymptotic series of all solutions of (4.85) which are small in \(\mathbb{H} \).)