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1. Review of some results in classical
asymptotics

1.1 Asymptotic expansions and asymptotic power series

Classical asymptotics typically deals with the qualitative and quantitative
description of the behavior of a function (in some direction) near a point,
usually a singularity of the function. This description is usually provided in
the form of an asymptotic expansion, a formal series (that is, there are no
convergence requirements) of simpler functions f̃k,

f ∼∼∼ f̃ =
∞∑

k=0

f̃k(t) (as t→ t0) (1.1)

in which each successive term is much smaller than its predecessors, written

f̃k+1(t) = o(f̃k(t)) or f̃k+1(t) � f̃k(t)

denoting

lim
t→t0

f̃k+1(t)/f̃k(t) = 0 (1.2)

Functions asymptotic to a series. The relation f ∼∼∼ f̃ between an ac-
tual function and a formal expansion is defined as a sequence of limits, the
Poincaré definition of asymptoticity

f(t)−
N∑

k=0

f̃k(t) = f(t)− f̃ [N ](t) = o(f̃N (t)) (∀N ∈ N) (1.3)

Condition (1.3) can then be also written as

f(t)−
N∑

k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N) (1.4)

where g(t) = O(h(t)) means lim supt→t0 |g(t)/h(t)| <∞
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Note. It is often important to use one-sided limits or more generally to
restrict the limiting process to special directions or curves in the complex
plane ending at t0. We allow for this case, and only mention the direction or
curve when it matters for the result.

Especially in this case there are some technical advantages in changing
over to t0 = +∞; in this case we shall usually denote by x the variable. We
ordinarily use z for variable when the limiting point is zero.

1.1a Asymptotic power series

A special role is played by power series, which are series of the form

S̃ =
∞∑

k=0

ckz
k (z → 0) (1.5)

Remark. The prevailing convention allows for some (or even all) of the ck’s
to be zero to ensure better algebraic properties. If a ck is zero then (1.2) fails
trivially in which case (1.5) is not, strictly speaking, an asymptotic series.

A function has a given asymptotic power series iff (1.3) by

f(z)−
N∑

k=0

ckz
k = O(zN+1) (∀N ∈ N) (1.6)

In this sense the power series at zero of e−1/x2
is the zero series. It is

certainly incorrect to conclude that the asymptotic behavior of e−1/x2
is zero.

We use the boldface notation ∼∼∼ for the stronger asymptoticity condition in
(1.3).

Asymptotic power series form an algebra; addition of asymptotic power
series is defined in the usual way:

A

∞∑
k=0

ckz
k +B

∞∑
k=0

c′kz
k =

∞∑
k=0

(Ack +Bc′k)zk

while multiplication is defined as in the convergent case( ∞∑
k=0

ckz
k

)( ∞∑
k=0

c′kz
k

)
=

∞∑
k=0

 k∑
j=0

cjc
′
k−j

 zk

Remark 1.7 If the series f̃ is convergent and f is its sum (note the ambi-
guity of the “sum” notation) f =

∑∞
k=0 ckz

k then f ∼ f̃ .

The proof of this remark follows directly from the definition of convergence.

Lemma 1.8 (Uniqueness of the asymptotic series to a function) If f(z) ∼
f̃ =

∑∞
k=0 f̃kz

k as z → 0 then the f̃k are unique.
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Proof. Assume that we also have f(z) ∼ F̃ =
∑∞

k=0 F̃kz
k. We then have (cf.

(1.3))

F̃ [N ](z)− f̃ [N ](z) = o(zN )

which is impossible unless gN (z) = F̃ [N ](z)− f̃ [N ](z) = 0, as it can be easily
checked, since gN is a polynomial of degree N in z.

The proof of the following lemma is immediate:

Lemma 1.9 (Algebraic properties of asymptoticity to a power series) If f ∼
f̃ =

∑∞
k=0 ckz

k and g ∼ g̃ =
∑∞

k=0 dkz
k then

(i) Af +Bg ∼ Af̃ +Bg̃
(ii) fg ∼ f̃ g̃

Sometimes it is convenient to check an (apparently) weaker condition of
asymptoticity:

Lemma 1.10 There exists a sequence pn →∞ such that for any n there is
a p(n) such that

f(z)− f̃ [pn](z) = o(zn) as z → 0

then f ∼ f̃ .

Proof. If pn ≤ n for all n there is nothing to show, otherwise, without loss of
generality we may assume that pn ≥ n (indeed, otherwise we extract such a
subsequence). We then have

f(z)− f̃ [n] = (f(z)− f̃ [pn]) + (f̃ [pn] − f̃ [n]) = o(zn) (z → 0)

as it can be easily since z−n−1(f̃ [pn] − f̃ [n]) is a polynomial.

We now show that any asymptotic series is asymptotic to some function.
A sharper version of the proposition below, the Borel-Ritt lemma, will be
proved later.

Proposition 1.11 Let f̃ =
∑∞

k=0 akz
k be a power series. There exists a

function f(z) such that f(z) ∼ f̃ as z → 0.

Proof. The following elementary proof has some ideas in common with opti-
mal truncation of series, a powerful numerical technique in asymptotics.

By Remark 1.7 we can assume, without loss of generality, that the series
has zero radius of convergence.

For every z, we will add “sufficiently many but not too many” terms of
the series f̃ .

For every z let N(z) be the largest N such that |an| ≤ 2−n|z|−n/2 for
all n ≤ N . (N(z) < ∞, otherwise the series would have nonzero radius of
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convergence.) It is also easy to see that N(z) is increasing as |z| decreases
and that N(z) →∞ as z → 0. Consider

f(z) =
N(z)∑
j=0

anz
n

Let N be given and choose z0 such that N(z0) ≥ N . For |z| < |z0| we have

∣∣∣∣∣f(z)−
N∑

n=0

anz
n

∣∣∣∣∣ =
∣∣∣∣∣∣

N(z)∑
n=N+1

anz
n

∣∣∣∣∣∣ ≤
N(z)∑

j=N+1

|zj/2|2−j ≤ |z|N/2+1/2

Using now Lemma 1.10, the proof follows.

There is certainly no uniqueness in this generality. Given a power series there
are many functions asymptotic to it. Indeed there are many functions asymp-
totic to the (identically) zero power series at zero, in any sectorial punctured
neighborhood of zero in the complex plane, and even on the Riemann surface
of the log on C \ {0}, e.g. e−x−1/n

has this property in a sector of width 2nπ.

1.1b Integration and differentiation of asymptotic power series.

While asymptotic power series can be safely integrated term by term as the
next proposition will show, differentiation is more delicate. We will much
later see that this asymmetry is largely in suitable spaces of functions and
expansions. But for the moment note that the function e−1/z2

sin(e1/z4
) is

asymptotic to the zero power series as z → 0 with z real although the deriva-
tive is unbounded and thus not asymptotic to the zero series.

Proposition 1.12 Assume f(x) is integrable near x = 0 and that

f(z) ∼ f̃ =
∞∑

k=0

f̃kz
k

Then ∫ z

0

f(s)ds ∼
∫
f̃ :=

∞∑
k=0

f̃k

k + 1
zk+1

Proof. This follows from the fact that
∫ z

0
o(sn)ds = o(zn+1) as can be seen

by immediate estimates.

Sectorial asymptotic power series of analytic function can be differenti-
ated:
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Proposition 1.13 Assume f(x) is analytic in the strip Sa = {x : |x| >
R, |=(x)| < a}. Let α < a and and Sα = {x : |x| > R, |=(x)| < α} and
assume that

f(x) ∼ f̃(x) =
∞∑

k=0

ckx
−k (|x| → ∞, x ∈ Sα)

Then, for α′ < α we have

f ′(x) ∼ f̃ ′(x) :=
∞∑

k=0

− kck
xk+1

(|x| → ∞, x ∈ Sα′)

Proof. We have f(x) = f̃ [N ](x)+ gN (x) where clearly g is analytic in Sa and
|g(x)| ≤ Const.|x|−N−1 in Sα. But then, for x ∈ Sα′ and δ = 1

2 (α − α′) we
get for some C > 0 which depends on δ but not on x,

|g′N (x)| = 1
2π

∣∣∣∣∣
∮
|x−s|=δ

g(s)ds
(s− x)2

∣∣∣∣∣ ≤ C

|x|N+1
(|x| → ∞, x ∈ Sα′)

By Lemma 1.10, the proof follows.

In many instances the functions (scales) fk are combinations of expo-
nentials, powers of x, and logarithms. This is not simply a matter of choice
or an accident, but reflects some important fact about the relation between
asymptotic expansions and functions which will be clarified shortly.

1.1c Asymptotics of integrals: first results

Example: Integration by parts and elementary truncation to the
least term. A solution of the differential equation

f ′ − 2xf = 1 (1.14)

is the complementary error function

I(x) = ex2
∫ ∞

x

e−s2
ds (1.15)

Let us find the asymptotic behavior of I(x) for x → ∞. One very simple
technique is integration by parts, done in a way that the successive terms
decrease rapidly. We have
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I(x) =
1
2x

− ex2

2

∫ ∞

x

e−s2

s2
ds =

1
2x

− 1
4x2

+
3ex2

4

∫ ∞

x

e−s2

s4
ds = ...

=
m−1∑
k=0

(−1)kΓ (k + 1
2 )

2
√
πx2k+1

+
(−1)mex2

Γ (m+ 1
2 )

2
√
π

∫ ∞

x

e−s2

s2m+1
ds (1.16)

where is is easy to see that the series generated in this way is an alternating
series and by looking at the remainder term we see that the actual value
of I(x) is always contained between two successive truncations of the power
series obtained, for instance

1
2x

− 1
4x3

≤ I(x) ≤ 1
2x

− 1
4x3

+
3

8x5
(1.17)

1
2x

− 1
4x3

+
3

8x5
− 5

16x7
≤ I(x) ≤ 1

2x
− 1

4x3
+

3
8x5

− 5
16x7

+
105
32x9

(1.18)

Thus the error term when truncating the series is always of the order of
magnitude of the first discarded term. The series (1.16) has zero radius of
convergence, and thus for large x, although the terms start by decreasing
rapidly, they ultimately increase again and tend to infinity. The best ap-
proximation based on (1.16) is thus obtained by optimal truncation, at the
(x−dependent) order where the discarded term is minimal. This procedure
is called truncation at the least term and in an alternating series example like
the present one is immediately justified; more analysis is required in general.
The least term in our example is of order 10−12 when x = 5 and of order
10−45 when x = 10 (!) Although ultimately divergent the series provides very
accurate information about the function represented.

*
Often solutions of differential or difference equations are presented in the

form

F (x) =
∫ b

a

exg(s)f(s)ds (1.19)

and the behavior as x → ∞ of F (x) is needed. Three particular cases are
more important: (1) The case where all parameters are real (dealt with by
the so-called Laplace method); (2) the case where everything is real except
x which is taken to be purely imaginary (stationary phase method) and (3)
Everything is complex and f and g are analytic (Steepest descent method).
In this latter case, the integral may also come as a contour integral along
some path.

(1) The Laplace method. Even when very little regularity can be assumed
about the functions, we can still infer something about the large x behavior
of (1.19).
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Proposition 1.20 If g(s) ∈ L∞([a, b]) then

lim
x→∞

(∫ b

a

exg(s)ds

)1/x

= e‖g‖∞

Proof. This is simply the fact that ‖f‖n → ‖f‖∞.

Note that this does not give the asymptotic expansion of (1.19) for large x
in the sense of (1.3). For that, more regularity needs to be assumed.

Proposition 1.21 (g is maximum at one endpoint) Assume f is continuous
on [a, b], f(a) 6= 0, g is in C1[a, b] and g′ < −α < 0 on [a, b]. Then

Jx :=
∫ b

a

f(s)exg(s)ds =
f(a)exg(a)

x|g′(a)|
(1 + o(1)) (x→ +∞) (1.22)

Note: The derivative of g enters in the final result, so regularity is needed.

Proof. Without loss of generality, we may assume a = 0, b = 1. Let ε be
small enough and choose δ such that if x < δ we have |f(x)− f(0)| < ε and
|g′(x)− g′(0)| < ε.
We write ∫ 1

0

f(s)exg(s)ds =
∫ δ

0

f(s)exg(s)ds+
∫ 1

δ

f(s)exg(s)ds (1.23)

the last integral in (1.23) is bounded by∫ 1

δ

f(s)exg(s)ds ≤ ‖f‖∞exg(0)ex(g(δ)−g(0)) (1.24)

For the middle integral in (1.23) we have

∫ δ

0

f(s)exg(s)ds ≤ (f(0) + ε)
∫ δ

0

ex[g(0)+(g′(0)+ε)s]ds

≤ −e
xg(0)

x

f(0) + ε

g′(0) + ε

[
1− exδ(g′(0)+ε)

]
(1.25)

Combining these estimates, as x→∞ we thus obtain

lim sup
x→∞

xe−xg(0)

∫ 1

0

f(s)exg(s)ds ≤ − f(0) + ε

g′(0) + ε
(1.26)

A lower bound is obtained in a similar way. Since ε is arbitrary, the result
follows.
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When the maximum is reached inside the interval of integration, a similar
analysis requires more regularity.

Proposition 1.27 (Interior maximum) Assume f ∈ C[−1, 1], g ∈ C2[−1, 1]
has a unique absolute maximum, at x = 0, and that f(0) 6= 0 and g′′(0) < 0.
Then

∫ 1

−1

f(s)exg(s)ds =

√
2π

x|g′′(0)|
f(0)exg(0)(1 + o(1)) (x→ +∞) (1.28)

Proof. The proof is similar to the previous one. Let ε be small enough and let
δ be such that |s| < δ implies |g′′(s)− g′′(0)| < ε and also |f(s)− f(0)| < ε.
We write

∫ 1

−1

exg(s)f(s)ds =
∫ δ

−δ

exg(s)f(s)ds+
∫
|s|≥δ

exg(s)f(s)ds (1.29)

The last term will not contribute in the limit since by assumption for some
α > 0 and |s| > δ we have g(s)− g(0) < −α < 0 and thus

e−xg(0)
√
x

∫
|s|≥δ

exg(s)f(s)ds ≤ 2
√
x‖f‖∞e−xα → 0 as x→∞ (1.30)

On the other hand,

∫ δ

−δ

exg(s)f(s)ds ≤ (f(0) + ε)
∫ δ

−δ

exg(0)+ x
2 (g′′(0)+ε)s2

ds

≤ (f(0)+ε)exg(0)

∫ ∞

−∞
exg(0)+ x

2 (g′′(0)+ε)s2
ds =

√
2π

|g′′(0)− ε|
(f(0)+ε)exg(0)

(1.31)

An inequality in the opposite direction is obtained in the same way by noting
that ∫ a

−a
e−xs2

ds∫∞
−∞ e−xs2ds

→ 1 as x→∞ (1.32)

as can be seen by changing variables to u = sx−
1
2 .

With appropriate decay conditions, the interval of integration does not
have to be compact. For instance, let J ⊂ R be an interval (finite or not) and
[a, b] ⊂ J .
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Proposition 1.33 (Interior maximum, noncompact interval) Assume f ∈
C[a, b] ∩ L∞(J), g ∈ C2[a, b] has a unique absolute maximum at x = c and
that f(c) 6= 0 and g′′(c) < 0.

Assume further that g is measurable in J and g(c)−g(s) = α+h(s) where
α > 0, h(s) > 0 on J \ [a, b] and e−h(s) ∈ L1(J). Then,

∫ B

A

f(s)exg(s)ds =

√
2π

x|g′′(c)|
f(c)exg(c)(1 + o(1)) (x→ +∞) (1.34)

Proof. This case reduces to the compact interval case by noting that

∣∣∣∣∣√xe−xg(c)

∫
J\[a,b]

exg(s)f(s)ds

∣∣∣∣∣ ≤ √
x‖f‖∞e−xα

∫
J

e−xh(s)ds

≤ Const.
√
xe−xα → 0 as x→∞ (1.35)

Example. We see that the last proposition applies to the Γ function by writing

n! =
∫ ∞

0

e−ttndt = nn+1

∫ ∞

0

en(−t+ln t)dt (1.36)

whence we get Stirling’s formula

n! =
√

2πn
(n
e

)n

(1 + o(1))

1.1d Watson’s Lemma

We note that in many instances integral representations of functions are
amenable to Laplace transforms

LF :=
∫ ∞

0

e−xpF (p)dp (1.37)

The behavior of LF for large x relates to the behavior for small p of F .
It will be shown in the sequel that solutions of generic analytic differential

equations, under mild assumptions can be conveniently expressed in terms of
Laplace transforms.

For the error function note that∫ ∞

x

e−s2
ds = x

∫ ∞

1

e−x2u2
du =

x

2

∫ ∞

0

e−x2p

√
p+ 1

dp

For the Γ function, writing
∫∞
0

=
∫ 1

0
+
∫∞
1

in (1.36) we can make the sub-
stitution t− ln t = p and obtain (see §1.1e )
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n! =
∫ ∞

0

e−npW (p)dp

Furthermore, note that the integral in Proposition 1.21 can be brought to
the form (1.37) by extending f by zero to the whole line and changing variable
to g(t+ a) = g(a) + u. Similarly u = g(sign(s)

√
s)− g(0) in Proposition 1.27

brings it to a problem of the form (1.37).

Lemma 1.38 Let F ∈ L1(R+) x = ρeiφ, φ ∈ (−π/2, π/2) and assume

F (p) ∼ pβ

with <(β) > −1 as p→ 0+. Then∫ ∞

0

F (p)e−pxdp ∼ Γ (β + 1)x−β−1 (ρ→∞)

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the
characteristic function of the set A and φ = arg(x). We choose C, a > 0 such
that |F (p)| < C|pβ | on [0, a]. Since

∣∣∣∣∫ ∞

a

F (p)e−pxdp
∣∣∣∣ ≤ e−xa‖F‖1 (1.39)

we have, and after the change of variable s = p/|x|,

xβ+1

∫ ∞

0

F (p)e−pxdp = eiφ(β+1)

∫ ∞

0

sβU(s/|x|)χ[0,a](s/|x|)e
−seiφ

ds

+O(|x|β+1e−xa) → Γ (β + 1) (|x| → ∞) (1.40)

Watson’s Lemma, presented below, states that the asymptotic series at
infinity of (LF )(x) is obtained by formal term-by-term integration of the
asymptotic series of F (p) for small p, provided F has such a series.

Lemma 1.41 Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1 as

p→ 0+ for some constants βi with <(βi) > 0, i = 1, 2. Then

LF ∼
∞∑

k=0

ckΓ (kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H.

Proof. Induction, using Lemma 2.67. 2
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1.1e Example: Gamma function

We start from the representation

n! =
∫ ∞

0

tne−tdt = nn+1

∫ ∞

0

e−n(s−ln s)ds

= nn+1

∫ 1

0

e−n(s−ln s)ds+ nn+1

∫ ∞

1

e−n(s−ln s)ds (1.42)

On (0, 1) and (1,∞) separately, the function s−ln(s) is monotonic and we may
write, after inverting s− ln(s) = t on the two intervals to get s1,2 = s1,2(t),

n! = nn+1

∫ ∞

1

e−nt(s′2(t)− s′1(t))dt = nn+1e−n

∫ ∞

0

e−npG′(p)dp (1.43)

where G(p) = s2(1 + p) − s1(1 + p)). In order to determine the asymptotic
behavior of n! we need to determine the small p behavior of the function
G′(p)

Remark 1.44 The function G(p) is an analytic function in
√
p and thus

G′(p) has a convergent Puiseux series

∞∑
k=−1

ckp
k/2 =

√
2p−1/2 +

√
2

6
p1/2 +

√
2

216
p3/2 − 139

√
2

97200
p5/2 + ...

Thus, by Watson’s Lemma, for large n we have

n! ∼
√

2πnnne−n

(
1 +

1
12n

+
1

288n2
− 139

51840n3
+ ...

)
(1.45)

Proof. We write s = 1 + S and t = 1 + p and the equation s − ln(s) = t
becomes S − ln(1 + S) = p. Note that S − ln(1 + S) = S2U(S)/2 where
U(0) = 1 and U(S) is analytic for small S; with the natural branch of the
square root,

√
U(S) = H(S) is also analytic. We rewrite S− ln(1+S) = p as

SH(S) = ±
√

2σ where σ2 = p. Since (SH(S))′|S=0 = 1 the implicit function
theorem ensures the existence of two functions S1,2(σ) (corresponding to the
two choices of sign) which are analytic in σ. The concrete expansion may be
gotten by implicit differentiation in SH(S) = ±

√
2σ, for instance.

1.1f Borel-Ritt Lemma: end of proof in a half plane

Proposition 1.46 Given a formal power series f̃ =
∑∞

k=0
ck

xk+1 there exists
an entire function f(x), of exponential order one, which is asymptotic to f̃
in the right half plane, i.e., if φ ∈ (−π/2, π/2) then
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f(x) ∼ f̃ as x = ρeiφ, ρ→ +∞

Proof. Let F̃ =
∑∞

k=0
ck

k! p
k, let F (p) be a function asymptotic to F̃ as in

Proposition 1.11. Then clearly the function

f(x) =
∫ 1

0

e−xpF (p)dp

is entire, bounded by Const.e|x|, and, by Watson’s Lemma has the desired
properties.

Exercises.
(1) How can this method be modified to give a function analytic in a sector
of opening 2πn for an arbitrary fixed n which is asymptotic to f̃?

(2) Assume F is bounded on [0, 1] and has an asymptotic expansion F (t) ∼∑∞
k=0 ckt

k as t→ 0+. Let f(x) =
∫ 1

0
e−xpF (p)dp

(a) Find necessary and sufficient conditions on F such that f̃ , the asymp-
totic power series of f for large x, is a convergent series for |x| > R > 0.

(c) Show that in case (a) there is a convergent representation of f in the
form f̃ + e−xf̃1 where f̃1 is also a convergent series for |x| > R > 0.

(b) Assume that f̃ converges to f(x). Show that f is zero.
(3) The width of the sector in Proposition 1.46 cannot be extended to a more
than a half plane: Show that if f is entire and bounded in a sector of opening
exceeding π, and of exponential order one then it is constant. (This follows
immediately from the Phragmen-Lindelöf principle; an alternative proof can
be derived from elementary properties of Fourier transforms and contour
deformation.) The exponential order has to play a role in the proof: check
that the function

∫∞
0
e−px−p2

dp is bounded for arg(x) ∈ (− 3π
4 ,

3π
4 ). How wide

can such a sector be made?

1.1g Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
look at the case where there is minimal regularity; the following is a version
of the Riemann–Lebesgue lemma.

Proposition 1.47 Assume f ∈ L1[0, 1]. Then
∫ 2π

0
eixtf(t)dt→ 0 as x→∞.

It is enough to show the result on a set which is dense in L1. Since
trigonometric polynomials are dense in C[0, 2π] in the sup norm, and thus
in L1[0, 2π], it suffices to look at trigonometric polynomials, thus at eikx for
fixed k, where the integral can be expressed explicitly and gives
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∫ 2π

0

eixseiksds = O(x−1) for large x. 2

No rate of decay follows without further knowledge about the regularity of
f . We have the following characterization:

Proposition 1.48 For η ∈ (0, 1] let the Hη[0, 1] be the Hölder continuous
functions of order η on [0, 1], i.e., the functions with the property that there
is some C such that for all x, x′ ∈ [0, 1] we have |f(x)− f(x′)| ≤ C|x− x′|η.

(i) We have f ∈ Hη[0, 1] ⇒
∫ 1

0
f(s)eixsds = O(x−η) as x→∞.

(ii) If f ∈ L1(R) and |x|ηf(x) ∈ L1(R) with η ∈ (0, 1], then its Fourier
transform f̂ =

∫∞
−∞ f(x)e−ixsds is in Hη(R).

(iii) Let f ∈ L1(R). If xnf ∈ L1(R) with n ∈ N then f̂ ∈ C [n](R); If
e|Ax|f ∈ L1(R) then f̂ extends analytically in a strip of width |A| centered on
R.

Note. The rate of decay may improve if the lack of regularity is due
to behavior at isolated points for otherwise smoother functions. Such is for
instance the function f(x) =

√
x, which is in H1/2[0, 1] but not in Hη[0, 1] if

η > 1/2, and yet
∫ 1

0
eixs

√
sds = O(x−1) as shown at the end of the proof of

Proposition 1.56.

Proof. (i) We have as x→∞

∣∣∣∣∫ 1

0

f(s)eixsds

∣∣∣∣ =∣∣∣∣∣∣
∑

j∈[0, x
2π−1)

(∫ (2j+1)πx−1

2jπx−1
f(s)eixsds+

∫ (2j+2)πx−1

(2j+1)πx−1
f(s)eixsds

)∣∣∣∣∣∣+O(x−1)

=

∣∣∣∣∣∣
∑

j∈[0, x
2π−1)

∫ (2j+1)πx−1

2jπx−1

(
f(s)− f(s+ π/x)

)
eixsds

∣∣∣∣∣∣+O(x−1)

≤
∑

j∈[0, x
2π−1)

C
(π
x

)η π

x
≤ Cx−η +O(x−1) (1.49)

(ii) We see that

f̂(s)− f̂(s′)
(s− s′)η

=
∫ ∞

−∞

eixs − eixs′

(xs− xs′)η
xηf(x)dx

is bounded.
(iii) Follows in the same way as (ii), using dominated convergence.
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Notes In part (i), compactness of the interval is crucial. Indeed, the
function f(x) = 1 on the interval [n, n+ e−n2

] for n ∈ N and zero otherwise
is in L1(R) and further has the property that f and e|Ax|f ∈ L1(R) for any
A, and thus f̂ is entire. Thus f is the Fourier transform of an entire function,
f̂ , and nevertheless does not decay pointwise as x→∞.
(2) It is worth mentioning that in Laplace type integrals it suffices for a
function to be continuous to ensure an O(x−1) decay of the integral. This
is for instance seen in Watson’s Lemma when β = 0, but in Fourier-like
integrals, continuity does not ensure O(x−1) decay. When the conditions for
the steepest descent method studied in the next section apply, a better control
of decay of a Fourier type integral may be achieved by transforming it into a
Laplace-like one.

Proposition 1.50 Assume f ∈ Cn[a, b]. Then, if m < n we have

∫ b

a

eixtf(t)dt = eixa
m∑

k=1

ckx
−k + eixb

m∑
k=1

dkx
−k + o(x−m)

= eixt

(
f(t)
ix

− f ′(t)
(ix)2

+ ...+ (−1)m−1 f
(m)(t)
(ix)m

)∣∣∣∣b
a

+ o(x−m) (1.51)

Proof. This follows by integration by parts since

∫ b

a

eixtf(t)dt = eixt

(
f(t)
ix

− f ′(t)
(ix)2

+ ...+ (−1)m−1 f
(m−1)(t)
(ix)m

)∣∣∣∣b
a

+
(−1)m

(ix)m

∫ b

a

f (m)(t)eixtdt (1.52)

Corollary 1.53 (1) Assume f ∈ C∞[a, b] is periodic with period b−a. Then∫ b

a
f(t)eint = o(n−m) for any m > 0 as n→ +∞, n ∈ Z.
(2) Assume f ∈ C∞0 [a, b], a smooth function which vanishes with all

derivatives at the endpoints; then f̂(x) =
∫ b

a
f(t)eixt = o(x−m) for any m > 0

as x→ +∞.

Exercises. (a) Show that if is analytic in a neighborhood of [a, b] but is not
an entire function, then both series in (1.51) have zero radius of convergence.

(b) In Corollary 1.53 (2) show that lim supx→∞ eε|x||f̂(x)| = ∞ for any
ε > 0 unless f = 0.

Oscillatory integrals with monotonic phase.

Proposition 1.54 Let the real valued functions f ∈ Cm[a, b] and g ∈
Cm+1[a, b] and assume g′ 6= 0 on [a, b]. Then
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∫ b

a

f(t)eixg(t)dt = eixg(a)
m∑

k=1

ckx
−k + eixg(b)

m∑
k=1

dkx
−k + o(x−m) (1.55)

as x → ∞, where the coefficients ck and dk can be computed by Taylor ex-
panding f and g at the endpoints of the interval of integration.

Proof. Since g′ 6= 0 we may invert g(t) = G in C [m+1][a, b], change variables
in the integral and write∫ b

a

f(t)eixg(t)dt =
∫ g(b)

g(a)

f(G(g))eixgG′(g)dg

and apply Proposition 1.50 to the latter integral. The computation of the
coefficients ck and dk is straightforward.

Stationary phase method. We consider now the case when g(s) has a
stationary point inside the interval [a, b]. In this case the main contribution to
the integral on the lhs of (1.55) comes from a neighborhood of the stationary
point of g since around that point the oscillations that determine the integral
to be small are less rapid. We have the following result:

Proposition 1.56 Assume the real valued functions f, g ∈ C∞[a, b] and that
g′(c) = 0 g′′(x) 6= 0 on [a, b]. Then for any m ∈ N we have

J =
∫ b

a

f(s)eixg(s)ds = eixg(c)
2m∑
k=1

ckx
−k/2

+ eixg(a)
m∑

k=1

dkx
−k + eixg(b)

m∑
k=1

ekx
−k + o(x−m) (1.57)

for large x, where the coefficients of the expansion can be calculated by Taylor
expansion around a, b and c of the integrand. In particular, we have

c1 =

√
2πi
g′′(c)

f(c)

Proof. It is convenient split the integral into
∫ c

a
+
∫ b

c
and reduce to the case

when the extremum is at one endpoint. By a change of variables we make
c = 0 and b = 1, and by subtracting out g(0) we arrange g(0) = 0. We analyze
the case g′′ > 0, the other case being similar. Let g′′(0) = 2α. On the interval
[0, 1] g is monotonic and we change variables to g(s) = G.

We can write

g(s) =
∫ s

0

(s− t)g′′(t)dt = s2
∫

0

(1− u)g′′(su)du := s2αH(s)
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with H ∈ C∞, H > 0 on [0, 1] and H(0) = 1. Thus h(t) =
√
H ∈ C∞, h′ 6= 0

on (0, 1], and (sh)′(0) = 1 and (sh)−1 ∈ C∞ implying that the equation
g(s) = t has a solution of the form G(

√
t) with G ∈ C∞. With b = g(1) we

get

J =
∫ b

0

t−1/2F (
√
t)eixtdt

with F ∈ C∞. As above, we can write F (
√
t) = F (0) +

√
tF1(

√
t), F1 ∈ C∞.

Now

∫ b

0

t−1/2eixtdt =
∫ ∞

0

t−1/2eixtdt−
∫ ∞

b

t−1/2eixtdt

=
√
π

ix
+

i

x
√
b
eixb − i

2x

∫ ∞

b

t−3/2eixt (1.58)

By integration by parts,

∫ b

0

F1(
√
t)eixtdt =

1
ix
F1(

√
t)eixt

∣∣∣∣b
0

− 1
ix

∫ b

0

t−1/2F2(
√
t)eixtdt

with F2 in C∞. The proof is completed by induction.
Note It is easy to see that in the settings of Watson’s Lemma and of Propo-
sitions 1.50, 1.54 and 1.56 the asymptotic expansions are differentiable, in
the sense that the integral transforms are differentiable and their derivative
is asymptotic to the formal derivative of the associated expansion.

1.1h Remarks about the form of asymptotic expansions

The asymptotic expansions seen in the previous examples have as a common
feature that they are written in terms of powers of the variable, exponentials
and logs, e.g.

∫ ∞

x

e−s2
ds ∼ e−x2

(
1 +

1
2x

− 1
4x2

+
5

8x3
− ...

)
(1.59)

n! ∼
√

2πen ln n−n− 1
2 ln n

(
1 +

1
12n

+ ...

)
(1.60)∫ x

1

et

t
∼ ex

(
1
x

+
1
x2

+
2
x3

+ ...

)
(1.61)

Hardy noted that “No function has yet presented itself whose asymptotic
expansion cannot be expressed in terms of exponentials, power series and
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logs”. The modern conjecture of Écalle states that functions of natural origin
can be isomorphically represented by “transseries” in the same way as an
analytic function is locally given by a convergent Taylor series. Transseries
are formal combinations of exponentials, power series and logs which are
asymptotic. It is convenient to take the limit setting x→ +∞.

1.2 Steepest descent method

There are instances when there is further analytic structure in a problem
involving oscillatory integrals with large parameter which can be used to get
sharper estimates on the asymptotic behavior.

1.2a Examples

Example 1. Consider the problem of finding the asymptotic behavior of the
integral

J(n) =
∫ π

−π

e−int

2− eit
dt :=

∫ π

−π

F (t)dt

as n → ∞. We see by corollary 1.53 that J = o(x−m) for any m ∈ N. In
this case the stationary phase method fails to provide show what the leading
asymptotic behavior of the integral is (it only shows what it is not). We are
dealing here with an analytic periodic function, and the Fourier coefficients
decay faster than power-like. We can use this analyticity information to un-
derstand in fact what the behavior is for large n. Note that F is analytic in
C \ {−i ln 2 + 2kπi}k∈Z. and meromorphic in C. Furthermore, as N →∞ we
have F (t − iN) → 0 exponentially fast. This allows us to push the contour
of integration down, in the following way. Note that∮

C

F (t)dt = −2πiRes
(
F (t); t = −i ln 2

)
where the contour C of integration is a clockwise rectangle with vertices
−π, π,−iN +π,−iN −π for any N sufficiently large. As N →∞ the integral
over the segment −iN + π,−iN − π goes to zero exponentially fast, and we
find out that∫ π

−π

F (t)dt =
∫ −π−i∞

−π

F (t)dt−
∫ π−i∞

π

F (t)dt+
π

2
2−n

Note now that the two integrals cancel each-other completely because of
periodicity of the integrand and we are left with

J(n) = π2−n
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Note also that the same calculation works if we replace n ∈ N with x ∈ R+.
In this case the integrals will not cancel each-other for all x and we end up
with

J(x) = i(eixπ−e−ixπ)
∫ ∞

0

e−xs

2 + es
ds+π2−x = −2 sinπx

∫ ∞

0

e−xs

2 + es
ds+π2−x

which is now in the form of a combination of integrals to which Watson’s
Lemma applies and gives a power series behavior and a small exponential.
By applying Watson’s lemma we get

J(x)− ∼ 2 sinπx
(

1
3x

− 2
9x2

− 4
27x3

+
8

27x4
+

80
81x5

− 224
243x6

+ ...

)
+ π2−x

(1.62)
which is a simple example of a transseries. We shall see that (1.62) is the
actual transseries of J(x). However the power series diverges factorially and
adding to it the exponentially small term makes classical sense only if n is an
integer. The divergence follows from the fact that the term of order k of the
series is by Watson’s lemma k! times the Taylor coefficient of the function
(2+es)−1 at s = 0 and this function is not entire. Thus its Taylor coefficients
must grow faster than ak for some a. Thus the power series part cannot be
simply subtracted out of J to see “what is left” and on the other hand 2−x

is smaller for large enough x than any x−m thus cannot be made part of the
scales x−m. In some sense we may say that Poincaré type asymptoticity is
restricted to ordinal type ω and our example has higher ordinal length.

*
Example 2. The Bessel function J0(ξ) can be written as 1

π Re I, where

I =
∫ π/2

−π/2

eiξ cos tdt (1.63)

which in turn equals

I =
∫ −π/2+i∞

−π/2

eiξ cos tdt+
∫

γ

eiξ cos tdt+
∫ π/2−i∞

π/2

eiξ cos tdt (1.64)

as shown in the figure. All the curves involved in this decomposition of I are
lines of constant imaginary part of the exponent, and the ordinary Laplace
method can be applied to find their asymptotic behavior for ξ → +∞ (note
also that the integral along the curve γ, called Sommerfeld contour, is the
only one contributing to J0).

*
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–1 1

x

Proposition 1.65 (Fourier coefficients of analytic functions) Assume
f is periodic of period 2π and is analytic in a strip of width > R > 0 sit-
ting in the upper half plane over the real line. Then the Fourier coefficients
(2π)−1

∫ 2π

0
eintf(t)dt are (at most) O(e−nR) for large n.

Proof. By analyticity, we have

∫ 2π

0

eintf(t)dt =
∫ iR

0

eintf(t)dt−
∫ 2π+iR

2π

eintf(t)dt+
∫ 2π+iR

iR

eintf(t)dt

The first two integrals on the rhs cancel by periodicity while the last one is
manifestly O(e−nR) for large n.

1.2b A more general discussion

Let ∫
C

f(s)exg(s)ds (1.66)

where g is analytic and f is meromorphic in a domain in the complex plane
of the contour C and x is a large parameter.

The crucial idea is to use deformation of contours to bring the integral
to one which is suitable to the application of the Laplace method. We can
assume without loss of generality that x is real and positive.
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(A) Let g = u + iv. and assume for C ′ is a curve such that v = K is
constant along C ′. Then

∫
C′
f(s)exg(s)ds = exiK

∫
C′
f(s)exu(s)ds = exiK

∫ 1

0

f(γ(t))exu(s)γ′(t)dt

is such that the Laplace method may apply. The method of steepest descent
consists in using the meromorphicity of f , analyticity of g to deform the
contour of integration such that modulo residues, the original integral can be
written as a sum of integrals of the type C ′ mentioned. The name steepest
descent comes from the following remark. As a consequence of the Cauchy-
Riemann equations we have ∇u · ∇v = 0 and the lines v = K are lines
of steepest variation of |exg(s)|, and that to best control the integral it is
convenient to go along the descent direction. If we interpret ∇u ·∇v = 0 as a
PDE for v, uxvx + uyvy = 0, the characteristic curves of this equation solve
the system of ODEs

ẋ = −ux(x, y); ẏ = −uy(x, y) (1.67)

Note that (x(s), y(s)); s > 0 are the curves of steepest descent of u. As-
sume for simplicity that g is entire and f is meromorphic. We can let
the points on the curve C = (x0(τ), y0(τ)); τ ∈ [0, 1] evolve with (1.67)
keeping the endpoints fixed. More precisely, at time t consider the curve
(t) = C1 ∪ C2 ∪ C3 where C1 = (x(s, x0(0)), y(s, y0(0)); s ∈ [0, t), C2 =
x(t, x0(τ)), y(t, y0(τ)), τ ∈ [0, 1]) and C3 = (x(s, x0(1)), y(s, y0(1)); s ∈ [0, t)
(see figure). Clearly,∫

C

f(s)exg(s)ds =
∫

C(t)

f(s)exg(s)ds (1.68)

We can see that z(t, x0(τ)) = (x(t, x0(τ)), y(t, x0(τ))) has a limit as t → ∞
on the Riemann surface, since

d

dt
u
(
x(t), y(t)

)
= −u2

x − u2
y (1.69)

Define S as the smallest forward invariant set with respect to the evolution
(1.67) which contains (x0(0), y0(0)), all the limits in C of z(t, x0(τ)) (by
(1.69), these limits are saddle points of g, i.e. points where g′ = 0) and the
descent lines originating at these points. The set S is a union of steepest
descent curves of u, S = ∪nCn and, if sj are poles of f crossed by the curve
C(t) we have, under suitable convergence assumptions1,
1 which are required, as can be seen by applying the described procedure to very

simple integral ∫ i

0

exe−z

dz

The procedure described in (B) is better in many respects.
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∫
C

f(s)exg(s)ds =
∑

n

∫
Cn

f(s)exg(s)ds+ 2πi
∑

j

Res(f(s)exg(s))s=sj (1.70)

and the situation described in (A) above has been achieved.
One can allow for branch points of f , each of which adds a contributions

of the form ∫
C

∆f(s)exg(s)ds

where C is a cut starting at the branch point of f , along a line of steepest
descent of g, and ∆f(s) is the jump across the cut of f .

(B) It is often more convenient to proceed as follows.
We may assume we are dealing with a simple smooth curve. We assume

g′ 6= 0 at the endpoints (the case of vanishing derivative is illustrated shortly
on an example). Then, possibly after an appropriate small deformation of C
we have g′ 6= 0 along the path of integration C and g is invertible in a small
enough neighborhood D of C. We make the change of variable g(s) = −ζ
and note that the image of C is smooth and has at most finitely many self-
intersections. We can break this curve into piecewise smooth, simple curves.
Without loss of generality we then assume that the image , C ′ of C is sim-
ple and take the endpoints of C ′ to be 0 and i. We deform the contour of
integration toward +∞ and end up with a sum of integrals of the form

∑
n

∫ cn+∞

cn

f (s(ζ)) e−xζ ds

dζ
dζ + 2πi

∑
j

Res
(
f((s(ζ))e−xζ ds

dζ

)
s=sj

+
∑

j

∫ dj+∞

dj

∆

[
f(s(ζ))

ds

dζ

]
e−xζdζ (1.71)

If more convenient, one can alternatively subdivide C such that g′ is nonzero
on the (open) subintervals.
Example In the integral (1.72) we have, using the substitution cos(t) = it,

I =
∫ π/2

−π/2

eiξ cos tdt =
∫ 0

−π/2

eiξ cos tdt+
∫ π/2

0

eiξ cos tdt = 2
∫ π/2

0

eiξ cos tdt

=
∫ ∞

0

e−ξt

√
1 + t2

dt+
∫ i+∞

i

e−ξt

√
1 + t2

dt (1.72)

which can be immediately brought to a combination of Laplace transforms
of functions having convergent Puiseux series at the origin.
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Other examples (1) To find the behavior of the integral∫ 1

−1

eixs

s2 + 1
ds

for large positive x, we deform the contour of integration in the upper half
plane toward i∞ where lines of steepest descent “end,” collect the residue at
the pole and write

∫ 1

−1

eixs

s2 + 1
ds = −

∫ −1+i∞

−1

eixs

s2 + 1
ds+

∫ 1+i∞

1

eixs

s2 + 1
ds+ πe−x

= −ie−ix

∫ ∞

0

e−xt

1 + (it− 1)2
dt+ ieix

∫ ∞

0

e−xt

1 + (it+ 1)2
dt+ πe−x

∼ e−ix
∞∑

k=1

ckx
−k + eix

∞∑
k=1

dkx
−k + πe−x (1.73)

by Watson’s Lemma, where we kept the exponentially small term since it
turns out that this is also the complete transseries of our function.

(2) Similarly, one can check that the contour in∫ 1

−1

eixs2
ds

can be deformed in such a way that the integral becomes

2eix

∫ ∞

0

e−xu

2
√
u+ i

du+
∫ √

i∞

−
√

i∞
eixs2

ds = 2eix

∫ ∞

0

e−xu

2
√
u+ i

du+
√

2πi√
x

∼
√

2πi√
x

+ eix
∞∑

k=1

ckx
−k (1.74)

(and where one of the integrals now passes through the saddle point s = 0);
the last expression is the transseries of our integral.

1.2c Asymptotics of Taylor coefficients

There is dual relation between the (trans)asymptotic behavior of the Taylor
coefficients of an analytic function and the structure of its singularities in the
complex plane. We will study a few examples in which this relationship is
exhibited.

Proposition 1.75 Assume f is analytic in the open unit disk and on the
boundary of the disk it has an isolated singularity, say at z = 1, in a neigh-
borhood of which the function is described by a convergent Puiseux series. In
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other words f is analytic in a disk of radius 1+ ε with a cut on (1, 1+ ε) and
near x = 1 we have

f(z) = (1− z)β1A1(z) + ...+ (1− z)βmAm(z)

where A1, ..., Am are analytic in a neighborhood of z = 1. Then we have

ck ∼ k−β1−1
∑

j=0∞

cj;1
kj

+ ...+ k−βn−1
∑

j=0∞

cj;m
kj

where the coefficients cj;m can be calculated from the Taylor coefficients of
the function Am, and conversely, this asymptotic expansion determines the
functions Am. The theorem has a straightforward generalization to the case
when there are finitely many isolated singularities on the unit circle.

Proof. We have

ck−1 =
1

2πi

∮
f(s)
sk

ds

where the contour is a small circle around the origin. This contour can be
deformed, by assumption, to the union between the C1+ε, the circle of radius
(1 + ε), an integral along and below the lower side of the cut, avoiding z = 1
and then moving forward along and above the upper side of the cut, and
whose sum we denote as

∫
C

. The integral along C1+ε can be estimated by

1
2π

∣∣∣∣∣
∮

C1+ε

f(s)
sk

ds

∣∣∣∣∣ ≤ ‖f‖∞(1 + ε)−k = O((1 + ε)−k)

and will not participate in the asymptotic expansion. By checking the
branches of the roots we can write the integral along C as a sum of inte-
grals of the form

1
2πi

∫
C

(1− s)βA(s)s−kds (1.76)

we can restrict ourselves to the case when β is not an integer, the other case
being trivial. By performing an appropriate number of integrations we can
make <(β) > 0. We then have

1
2πi

∫
C

(1− s)βA(s)s−kds = − sin(πβ)
π

∫ 1+ε

1

(s− 1)βA(s)s−kds

= − sin(πβ)
π

∫ ε

0

tβA(t)(1 + t)−kdt = − sin(πβ)
π

∫ ε

0

tβA(t)e−k ln(1+t)dt

(1.77)

where it is convenient to change variables to t + 1 = eu. This is a regular
change of variables, and noting that eu − 1 = uφ(u) where φ(0) = 1 we have
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− sin(πβ)
π

∫ ε

0

tβA(t)e−k ln(1+t)dt = − sin(πβ)
π

∫ ln(1+ε)

0

uβφ(u)A(eu)e−kudu

= − sin(πβ)
π

∫ ln(1+ε)

0

uβG(u)e−kudu = (1.78)

where the assumptions of Watson’s lemma are satisfied and we thus have

ck−1 ∼ k−β−1
∞∑

j=0

dj

kj

where the dj can be calculated straightforwardly from the Taylor coefficients
of A.

To generalize to the case when there are n isolated singularities on the unit
circle note that the same path deformation argument would work, avoiding
each isolated singularity separately, and we end up with a sum of integrals
of the type studied. Each can be reduced to the z = 1 case by taking g(z) =
f(zeiφ and noting that g(n) = einφf (n).

1.3 Singularities of differential equations

We will first review briefly some basic notions about singularities of linear
differential equations.

1.3a Linear meromorphic differential equations. Regular and
irregular singularities

A linear meromorphic m-th order differential equation has the canonical form

y(m) +Dn−1(x)y(n−1) + ...+D0(x)y = D(x) (1.79)

where the coefficients Dj(x) are meromorphic near x0. We note first that any
equation of the form (1.79) can be brought to a homogeneous meromorphic
of order n = m+ 1

y(n) + Cn−1(x)y(n−1) + ...+ C0(x)y = 0 (1.80)

by applying the operator D(x) d
dx

1
D(x) to (1.79). We want to look at the

possible singularities of the solutions of this equation, y(x). Note first that
by the general theory of linear differential equations if all coefficients are
analytic at a point x0 then the solution is also analytic. Such a point is
called regular point. In the linear case singularities can only arise because of
singularities in the coefficients.
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The main distinction is made with respect to the type of local solutions,
whether they can be expressed as convergent asymptotic series (regular sin-
gularity) or not (irregular one).

Theorem 1.81 (Frobenius) If near the point x = x0 the coefficients Cn−j,
j = 1...n can be written as (x−x0)−jAn−j(x) where An−j are analytic, then
there is a fundamental system of solutions in the form

ym(x) = (x− x0)rm

Nm∑
j=0

(ln(x− x0))jBj;m(x) (1.82)

where Bj;m are analytic in an open disk centered at x0 with radius equal to the
distance from x0 to the first singularity of Aj. The powers rm are solutions
of the indicial equation

r(r−1) · · · (r−n+1)+An−1(x0)r(r−1) · · · (r−n+2)+ . . .+A0(x0) = 0
Furthermore, logs appear only in the resonant case, when two (or more) char-
acteristic roots differ by an integer.

A straightforward way to prove the theorem is by induction on n. A trans-
formation of the type y = xrmz reduces the equation (1.80) to an equation of
the same type, but where one of the characteristic roots is zero. One can show
there is an analytic solution z0 of this equation by inserting a power series,
identifying the coefficients and estimating the growth of the coefficients. The
substitution z = z0

∫
g(s)ds gives an equation for g which is of the same type

as (1.80) but of order n − 1. We will not go into the details of the general
case but instead we will illustrate the approach on the simple equation

x(x− 1)y′′ + y = 0

around x = 0 whose indicial equation is r(r − 1) = 0 (a resonant case).
Substituting y0 =

∑∞
k=0 ckx

k in the equation and identifying the powers of
x yields the recurrence

ck+1 =
k2 − k + 1
k(k + 1)

ck

with c0 = 0 and c1 arbitrary. By linearity we may take c1 = 1 and by
induction we see that ck < 1. Thus the power series has radius of convergence
1, and it converges up to the nearest singularity of the equation which is at
x = 1. We let y0 = y0

∫
g(s)ds and get for h the equation

g′ + c(x)g = 0

where c(x) = 2y′0
y0

= 2
x + A(x) with A(x) is analytic. The point x = 0 is a

regular singular point and in fact we see that g(x) = C1x
−2B(x) where C1

is an arbitrary constant and B(x) is some function analytic at x = 0. Thus∫
g(s)ds = C1(a

x + b ln(x) + A1(x)) + C2 where A1(x) is analytic at x = 0.
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Going back to the original variables we see that we have a fundamental set of
solutions in the form y0(x), B1(x)+ lnxB2(x) where B1 and B2 are analytic.

A converse of this theorem also holds, namely

Theorem 1.83 (Fuchs) If a meromorphic linear differential equation has,
at x = x0, a fundamental system of solutions in the form (1.82), then x0 is
a regular singular point of the equation.

In fact, for irregular singularities the general formal solution of the equation
may contain divergent power series and exponentially small (large) terms,
which lead naturally to the concept of transseries, studied later.

Example. Consider the equation

y′ +
1
x2
y = 1 (1.84)

which has an irregular singularity at x = 0 since the order of the pole in
C0 = x−2 exceeds the order of the equation. Substituting y =

∑∞
k=0 ckx

k we
get c0 = c1 = 0, c2 = 1 and in general the recurrence

ck+1 = −kck
whence ck = (−1)k(k − 1)! and the series has zero radius of convergence.
The associated homogeneous equation y′ + 1

x2 y = 0 has the general solution
y = Ce1/x with an exponential singularity at x = 0.

1.3b Singularities of nonlinear differential equations; formal
Painlevé test

For nonlinear differential equations, the solutions may be singular at points
x where the equation is regular. Indeed, for example, the equation

y′ = y2 + 1

has a one parameter family of solutions y(x) = tan(x+C); each solution has
infinitely many poles. Since the location of these poles depends on C, thus
on the solution itself, these singularities are called movable or spontaneous.
Painlevé studied the problem of finding differential equations whose only mov-
able singularities are poles. These equations were interpreted as giving “nice”
functions, with reasonable behavior in the complex plane. We can think of this
property as guaranteeing some form of integrability of the equation, in the
following sense. If we denote by Y (x;x0;C1, C2) the solution of the differen-
tial equation y′′ = F (x, y, y′) with initial conditions y(x0) = C1, y

′(x0) = C1

we see that y(x1) = Y (x1;x; y(x), y′(x)) is formally constant along trajecto-
ries and so is y′(x1) = Y ′(x;x0; y(x), y′(x)). This gives thus two “integrals of
motion” in C provided the solution Y is well defined almost everywhere in
C, i.e., if Y is meromorphic.
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On the contrary, movable branch-points, if bad enough, may make the
inversion process badly multi-valued, and one may expect in such circum-
stances that any integral of motion, which is necessarily a function of the
Ci, is badly behaved. Since the Painlevé test is not invariant under changes
of coordinates, failure of the Painlevé test does not imply nonintegrability.
M. Kruskal introduced a test of nonintegrability, the poly-Painlevé test which
measures whether branching is “dense” in which case one does expect absence
of integrals of motion.

Example Painlevé’s equation P1. This equation is usually written in the
form

g′′ = 6g2 + z (1.85)

which, by the substitution y(z) = αy(βz), βz = x, β = 61/5, α = 6−4/5

becomes
y′′ = y2 + x (1.86)

We will look at the local behavior of a solution that blows up, and will find
solutions that are meromorphic but not analytic. In a neighborhood of a point
where y is large the dominant equation is y′′ = y2 which can be integrated
explicitly in terms of elliptic functions and its solutions have double poles.
Alternatively, we could have looked for a power-like behavior

y ∼ A(x− x0)p

where p < 0 and obtained, to leading order, the equation Ap(p − 1)xp−2 =
A2p2 which gives p = −2 and A = 6 (the solution A = 0 is inconsistent with
our assumption). We are next looking for actual solutions which are of the
form 6(x− x0)−2(1 + o(1)) and apply the “squeezing” method. Substituting
y(x) = 6(x− x0)−2 + δ(x) and taking x = x0 + z leads to the equation

δ′′ =
12
z2
δ + z + x0 + δ2 (1.87)

Note now that our assumption δ = o(z)−2 makes δ2 = o( 12
z2 δ) which shows

that the nonlinear term in (1.87) is negligible. (Thus, to leading order, our
equation is linear! This is a general phenomenon: taking out more and more
terms out of the local expansion, the correction becomes less and less impor-
tant, and an equation becomes approximately linear with this procedure.) It
is then natural to apply the general strategy in asymptotics, separating out
the large terms from the small terms and setting an iteration scheme accord-
ingly (or, equivalently, writing a fixed point equation for the solution based
on this separation). We take δ(z)2 = r(z) and solve the remaining (linear)
equation as if r was known (by variation of constants), to get, after substitut-
ing r for its value an identity as an integral equation which by construction
is supposed to be contractive.
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δ = − 1
10
x0z

2 − 1
6
z3 + Cz4 +

D

z3
− 1

7z3

∫ z

0

s4r(s)ds+
z4

7

∫ z

0

s−3r(s)ds

= − 1
10
x0z

2 − 1
6
z3 + Cz4 + J(δ) (1.88)

the assumption that δ = o(z−2) forces D = 0. To find δ formally, we would
simply iterate (1.88) in the following way: We take r = 0 first and obtain
δ0 = − 1

10x0z
2 − 1

6z
3 + Cz4. Then take r = δ20 and compute δ1 from (1.88)

and so on. This yields:

δ = − 1
10
x0z

2 − 1
6
z3 + Cz4 +

x2
0

1800
z6 +

x0

900
z7 + ... (1.89)

This series is actually convergent. To see that, we scale out the leading power
of z in δ, z2 and write δ = z2u. The equation for u is

u = −x0

10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0

10
− z

6
+ Cz2 + J(u) (1.90)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ε such that this is a contractive equation for u in the ball
‖u‖∞ < C1 in the space of analytic functions in the disk |z| < ε. Our conclu-
sion is that δ is analytic and that y is meromorphic near x = x0.

Thus the equation PI passes the local Painlevé test.
Note. The true Painlevé test requires that y is globally meromorphic, and

we did not prove this. That indeed y is globally meromorphic is also true,
but the proof is more delicate (see e.g. [1]).

An equation taken “at random” will generically fail even the local Painlevé
test. For instance, for the simpler, autonomous, equation

f ′′ + f ′ + f2 = 0 (1.91)

the same analysis yields a local behavior starting with a double pole,
f ∼ −6z−2. Taking f = −6z−2 + δ(z) with δ = o(z−2) again leads to a
nearly linear equation for δ which can be solved by convergent iteration,
using arguments similar to the ones above. The iteration is now (for some
a 6= 0)

δ =
6
5z

+ Cz4 − 1
7z3

∫ z

0

s4r(s)ds+
z4

7

∫ z

a

s−3r(s)ds (1.92)

but now the leading behavior of δ is larger, δ = 6
5z . Iterating in the same way

as before, we see that this will eventually produce logs in the expansion for
δ (it first appears in the second integral, thus in the form z4 ln z). We get
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δ =
6
5z

+
1
50

+
z

250
+

7z2

5000

+
79

75000
z3 − 117

2187500
z4 ln(z) + Cz4 + ... (1.93)

where later terms will contain higher and higher powers of ln(z). This is ef-
fectively a series in powers of z and ln z a simple transseries, which here is
classically convergent, as can be straightforwardly shown using the contrac-
tive mapping method, as above.

1.4 Singular perturbations

In problems depending analytically on a small parameter, internal or exter-
nal, the dependence of the solution on this parameter may be analytic or
not; the dependence on the parameter may be regular or singular. In differ-
ential equations, singular perturbations are usually those in which the small
perturbation is such that the highest derivative does not participate in the
dominant balance. An example is the Schrödinger equation

−ε2ψ′′ + V (x)ψ − Eψ = 0 (1.94)

for small ε, which will be studied in more detail later. Setting ε = 0 removes
the second derivative from the equation. Similarly, in the problem

x2f ′ + f = x2 (1.95)

the presence of x2 in front of f ′ makes it subdominant if f ∼ xp for some
p. In this sense the Airy equation that we looked at in §2.109 is singularly
perturbed at x = ∞, as can be seen by taking x = 1/z. It turns out that
in many of these problems the behavior of solutions is exponential in the
parameter, generically yielding level one transseries, of the form QeP where P
and Q have algebraic behavior in the parameter. An exponential substitution
of the form f = ew may be used in order to make the leading behavior
algebraic. This is the first step in the method known as WKB.

We have already used this substitution in §2.109 to determine the asymp-
totic behavior of the Airy functions and of the factorial. We will first illustrate
the idea in some further instances.

Consider the heat equation

ψt = ψxx (1.96)

This is a degenerate (parabolic) PDE. The effect of this degeneracy is similar
to that of a singular perturbation. If we attempt to solve the PDE in the
spirit of Cauchy-Kowalewski’s method by a power series
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ψ =
∞∑

k=0

tkFk(x) (1.97)

this series will generically have zero radius of convergence. Indeed, intro-
ducing this expansion in the equation and identifying the powers of t we
get a recurrence relation for the coefficients Fk = F ′′k−1/k whose solution,
Fk = F

(2k)
0 /k! behaves like Fk ∼ k! for large k, if F is analytic but not entire.

If we take ψ = ew in (1.96) we get

wt = w2
x + wxx (1.98)

where the assumption of algebraic behavior of w is expected to make w2
x �

wxx and so the leading equation is approximately

wt = w2
x (1.99)

which can be solved by characteristics, e.g. in the following way. We take
wx = u and get for u the quasilinear equation

ut = 2uux (1.100)

with a particular solution u = −x/(2t), giving w = −x2/(4t). We thus take
w = −x2/(4t) + δ and get for δ the equation

δt +
x

t
δx +

1
2t

= δ2x + δxx (1.101)

where we have separated the relatively small terms to the rhs. We would
normally solve the leading equation (the lhs of (1.101)) and continue the
process, but for this equation we note that δ = − 1

2 ln t solves not only the
leading equation, but the full equation (1.101). Thus

w = −x
2

4t
− 1

2
ln t (1.102)

which gives the classical heat kernel

ψ =
1√
t
e−

x2
4t (1.103)

This exact solvability is of course rather accidental, but a perturbation ap-
proach formally works in a more PDE general context.

1.4a Singularly perturbed Schrödinger equation (1.94). Setting
and heuristics

We look at (1.94) under the assumption that V ∈ C∞(R) and would like to
understand the behavior of solutions for small ε. Applying the WKB trans-
formation ψ = ew we get
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−ε2w′2 − ε2w′′ + V (x)− E = 0 (1.104)

where, near an x0 where V (x0)−E 6= 0 the only consistent balance is between
−ε2w′2 and V (x)−E with ε2w′′ much smaller than both. We then write the
equation in the iterative form

w′
2
n+1 = ε−2U − w′′n (1.105)

or

w′ = ±
√
ε−2U − w′′n = ±

√
U

ε

√
1− ε2w′′

U
(1.106)

and solve it formally, taking first w′′0 = 0. To first order we thus have

w′ = ±ε−1U1/2 (1.107)

Using this to approximate w′′ we get

w′ ≈ ±ε−1U1/2 − 1
4
U ′

U
(1.108)

and thus

w ≈ ±ε−1

∫
U1/2(s)ds− 1

4
lnU (1.109)

and thus

ψ ∼ e±ε−1 ∫
U1/2(s)dsU−1/4 (1.110)

If we proceed formally we would get an expansion of the form

ψ ∼ exp
(
±ε−1

∫
U1/2(s)ds

)
U−1/4

(
1 + εF1(x) + ε2F2(x) + ...

)
(1.111)

There are two possibilities compatible with our assumption about x0, namely
V (x0) > E and V (x0) < E. In the first case there is (formally) an exponen-
tially small solution and an exponentially large one, in the latter two rapidly
oscillating ones.

The points where V (x0) = E are special in this analysis and are called
turning points. In applying our approximation procedure we needed the quan-
tity ε2w′′U−1 to be small. To leading order, w′ = ε−1U1/2. The formal con-
dition of validity of the iteration is then

εU ′U−3/2 � 1 (1.112)

which typically rules out small neighborhoods of points where U = 0. For
instance if U has a simple root at x = 0, the only one that we will consider
here (but multiple roots are not substantially more difficult) then condition
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(1.112) reads x� ε2/3. The region where this condition holds is called outer
region. In a small region where (1.112) fails, called inner region, a different
approximation will be sought. We see that V (x) − E = V ′(0)x + x2h(x) =:
αx+ x2h(x) where h(x) ∈ C∞(R). We then write

−ε2ψ′′ + αx = −x2h(x)ψ (1.113)

and treat the rhs of (1.113) as a small perturbation. The substitution x =
ε2/3t makes the leading equation an Airy equation:

−ψ′′ + αtψ = −ε2/3t2h(ε2/3t)ψ (1.114)

which is a regularly perturbed equation! For a perturbation method to apply,
we merely need that x2h(x)ψ in (1.113) is much smaller than the lhs, roughly
requiring x � 1. This shows that the inner and outer regions overlap, there
is a subregion of both the matching region where both expansions apply, and
where, by equating them, the free constants in each of them can be linked.

1.4b Outer region. Rigorous analysis

We first look at a region where U(x) is bounded away from zero. We will
write U = F 2.

Proposition 1.115 Let F ∈ C∞(R), F 2 ∈ R, and assume F (x) 6= 0 in
[a, b]. Then for small enough ε there exists a fundamental set of solutions of
(1.94) in the form

ψ± = Φ±(x; ε) exp
[
±ε−1

∫
F (s)ds

]
(1.116)

where Φ±(x; ε) are C∞ in ε > 0.

Proof. We show that there exists a fundamental set of solutions in the form

ψ± = exp
[
±ε−1R±(x; ε)

]
(1.117)

where R±(x; ε) are C∞ in ε. The proof is by rigorous WKB.
Note first that linear independence is immediate, since for small enough

ε the ratio of the two solutions cannot be a constant, given their ε behavior.
We take ψ = ew/ε and get, as before, to leading order w′ = ±F . We

look at the plus sign case, the other case being similar. It is then natural to
substitute w = F + δ; we get

δ′ + 2ε−1Fδ = −F ′ − ε−1δ2 (1.118)

which we transform into an integral equation by treating the rhs as if it
was known and integrating the resulting linear inhomogeneous differential
equation. Setting H =

∫
F the result is



1.4 Singular perturbations 33

δ = −e− 2H
ε

∫ x

a

F ′(s)e
2H(s)

ε ds− 1
ε
e−

2H
ε

∫ x

a

δ2(s)e
2H(s)

ε ds =: J(δ) =: δ0+N(δ)

(1.119)
We assume that F > 0 on (a, b), the case F < 0 being very similar. The case
F ∈ iR is not too different either, as we will explain at the end.

Let now ‖F ′‖∞ = A in (a, b) and assume also that mins∈(a,b) |U(s)| >
B > 0.

Lemma 1.120 For small ε, the operator J is contractive in a ball B := {δ :
‖δ‖∞ ≤ 2AB−1ε}

Proof. i) Preservation of B. We have

|δ0(x)| ≤ Ae−
2
ε H(x)

∫ x

a

e
2
ε H(s)ds

By assumption, H is increasing on (a, b) and H ′ 6= 0 and thus, by the
Laplace method, cf. Proposition 1.21, for small ε we have

|δ0(x)| ≤ 2Ae−
2
ε H(s) e

2
ε H

2
εH

′ ≤ εAB−1

Note We need this type of estimates to be uniform in x ∈ [a, b] as ε→ 0. To
see that this is the case, we write

∫ x

a

e
2
ε H(s)ds =

∫ x

a

e
2
ε H(s) 2F (s)

ε

ε

2F (s)
ds

≤ ε

2B
e

2
ε H(s)

∣∣∣∣∣
x

a

≤ ε

2B
e

2
ε H(x) (1.121)

Similarly, ∣∣∣∣1ε e− 2H
ε

∫ x

a

δ2(s)e
2H(s)

ε ds

∣∣∣∣ ≤ 2ε2A2B−3

and thus, for small ε and δ ∈ B we have

J(δ) ≤ ε−1AB−1 + 2ε2A2B−3 ≤ 2εAB−1

ii) Contractivity. We have, with δ1, δ2 ∈ B, using similarly Laplace’s
method,
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|J(δ2)− J(δ1)| ≤
1
ε
e−

2H
ε

∫ x

a

|δ2(s)− δ1(s)||δ2(s) + δ1(s)|e
2H(s)

ε ds

≤ ε2A2

B3
‖δ2 − δ1‖ (1.122)

and thus the map is contractive for small enough ε.

Note. We see that the conditions of preservation of B and contractivity allow
for a dependence of (a, b) on ε. Assume for instance a, b > 0, V (x) = E has
no root in [a, b + γ) with γ > 0, and that a is small. Assume further that
V (0) = E is a simple root, |V ′(0)| = m 6= 0. Then for some C > 0 we have
B ≥ Cm2a2 and the condition of contractivity reads

ε2m

m3a3
< 1

i.e. a > ε2/3 and for small enough ε this is also enough to ensure preservation
of B which allows for matching with the inner region expansions.
We thus find that the equation δ = J(δ) has a unique solution and that,
furthermore, ‖δ‖ ≤ const.ε. Using this information and (1.122) which implies

‖J(δ)‖ ≤ εA

B2
2AB−1ε

we easily get that, for some constants Ci > 0 independent on ε,

|δ − δ0| ≤ C1ε|δ| ≤ C1ε|δ0|+ C1ε|δ − δ0|

and thus
|δ − δ0| ≤ C2ε|δ0|

and thus, applying again Laplace’s method we get

δ ∼ −εF ′

2F
(1.123)

which gives

ψ ∼ exp
(
±ε−1

∫
U1/2(s)ds

)
U−1/4

The proof of the C∞ dependence on ε can be done by induction, using (1.123)
to estimate δ2 in the fixed point equation, to get an improved estimate on δ,
etc.
In the case F ∈ iR, the proof is the same, by using the Stationary Phase
method instead of the Laplace Method.
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1.4c Inner region. Rigorous analysis

By rescaling the independent variable we may assume without loss of gener-
ality that α = 1 in (1.114) which we rewrite as

−ψ′′ + tψ = −ε2/3t2h1(ε2/3t)ψ := f(t) (1.124)

which can be transformed in an integral equation in the usual way,

ψ(t) = −Ai(t)
∫ t

f(s)Bi(s)ds+ Bi(t)
∫ t

f(s)Ai(s)ds+ C1Ai(t) + C2Bi(t)

(1.125)
where Ai, Bi are the usual Airy functions, with the asymptotic behavior

Ai(t) ∼ 1√
π
t−1/4e−

2
3 t

3
2 ; Bi(t) ∼ 1√

π
t−1/4e

2
3 t

3
2 (1.126)

and

|t−1/4Ai(t)| < const., |t−1/4Bi(t)| < const. (1.127)

as t → −∞. In view of (1.126) we must be careful in choosing the limits of
integration in (1.125). It is convenient to ensure that the second term does not
have a fast growth as t→∞, and for this purpose we need to integrate from t
toward infinity in the associated integral. The rule of thumb is to ensure that
the maximum of the integrand is achieved near the endpoint of integration.
We choose to look at an interval in the original variable x ∈ IM = [−M,M ]
where we shall allow for ε-dependence of M . We then write the integral
equation with concrete limits in the form below, which we analyze in IM .

ψ(t) = −Ai(t)
∫ t

0

f(s)Bi(s)ds+

Bi(t)
∫ t

M

f(s)Ai(s)ds+ C1Ai(t) + C2Bi(t) = Jψ + ψ0 (1.128)

Proposition 1.129 For some positive const., if ε is small enough (1.128)
is contractive in the sup norm if M ≤ const.ε2/5.

Proof. Using the Laplace method we see that for t > 0 we have

t−1/4e−
2
3 t

3
2

∫ t

0

s−1/4e
2
3 s

3
2 ds ≤ const.(|t|+ 1)−1

and also
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t−1/4e
2
3 t

3
2

∫ M

t

s−1/4e−
2
3 s

3
2 ds ≤ t−1/4e

2
3 t

3
2

∫ ∞

t

s−1/4e−
2
3 s

3
2 ds

≤ const.(|t|+ 1)−1 (1.130)

and thus for a constant independent of ε, using (1.126) we get

|Jψ(t)| ≤ const.ε2/3(|t|+ 1)−1 sup
s∈[0,t]

|ψ(s)|

for t > 0. For t < 0 we use (1.127) and get

∣∣∣∣Ai(t)
∫ t

M

f(s)Bi(s)ds
∣∣∣∣ ≤ (1 + |t|)−1/4 sup

s∈[−t,0]

|f(s)|(const.+
∫ 0

t

s−1/4ds

and get for a constant independent of ε

|Jψ(t)| ≤ const.ε2/3(1 + |t|)5/2 ≤ const.ε2/3(ε−2/3M)5/2 < 1

We see that for small enough ε, the regions where the outer and inner equa-
tions are contractive overlap. This allows for performing asymptotic matching
in order to relate these two solutions. For instance, from the contractivity ar-
gument it follows that

ψ = (1− J)−1ψ0 =
∞∑

k=0

Jkψ0

giving a power series asymptotics in powers of ε2/3 for ψ.

1.4d Matching

We may choose for instance x = const.ε1/2 for which the inner expansion (in
powers of ε2/3) and the outer expansion (in powers of ε) are valid at the same
time. We assume that x lies in the oscillatory region for the Airy functions
(the other case is slightly more complicated).

We note that in this region of x the coefficient of εk of the outer expansion
will be large, of order (U ′U−3/2)k ∼ ε−3k/4. A similar estimate holds for
the terms of the inner expansion. Both expansions will thus effectively be
expansions in ε−1/4. Since they represent the same solution, they must agree
and thus the coefficients of the two expansions are linked. This enables fixing
the constants C1 and C2 once the outer solution is prescribed.



2. Introduction to transseries and analyzable
function

Classical asymptotics typically deals with the qualitative and quantitative
description of the behavior of a function (in some direction) near a point,
usually a singularity of the function. This description is usually provided in
the form of an asymptotic expansion (1.1)in which each successive term is
much smaller than its predecessors. To ensure the non-triviality of the repre-
sentation, it is normally understood in asymptotics that if f is not identically
zero, then the scales of the expansion are chosen so that at least one of the
f̃k, k ∈ N, is nonzero. Thus, although e−1/z is, asymptotic for z ↓ 0 to its
Maclaurin series

∑∞
k=0 0 zk (in the sense that e−1/z = o(zm) for any m in

the given limit) the series is not considered to contain the asymptotic behav-
ior of e−1/z for z ↓ 0 (such a description would be too uninformative, many
functions are asymptotic to the zero series). Rather, one takes e−1/z to be
its own asymptotic representation.

This leads to an important distinction between asymptotic expansions and
Taylor series. While the operator f 7→ T (f) which associates to f its Taylor
series is clearly linear, the asymptotic expansion of f , E(f), is not linear, and
in fact has very poor algebraic properties. Indeed, it is not difficult to see
that

Ei(x;C) = P
∫ x

C

dt
et

t
∼

∞∑
k=0

k!ex

xk+1
= f̃(x) (x→ +∞) (2.1)

for any starting point C ∈ C, while if we assumed linearity we would get from
(2.1) and (??) the unacceptable conclusion Const = P

∫ C

−∞t
−1etdt = Ei(x)−

Ei(x;C) ∼ 0. Although many obstacles to freely manipulating expansions
arise in this simple way, there is no simple way out. Also because of the non-
triviality of the kernel of T , the description provided by classical asymptotics
is fundamentally incomplete. There is no unambiguous way to determine f
from its classical asymptotic expansion alone.

The previous discussion suggests trying a representation of the form

Ei(x;C) ∼
∞∑

k=0

k!ex

xk+1
+ C1 (x→ +∞) (2.2)
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but, because of the divergence of the series, C1 cannot be defined straightfor-
wardly as the expansion of Ei(x;C)−

∑∞
k=0 k!e

xx−k−1. Furthermore, (2.2) is
clearly meaningless relative to definition (1.3).1 Indeed, the limiting values im-
plicit in the o symbol in (1.3) will be the same whether we take fk = exx−k−1

or exx−k−1 + C1. In some sense C1 is in the kernel of E (except of course,
that E is not linear). Although Ei(x;C) and Ei(x;C ′) differ by a constant,
this constant is beyond all orders of their common expansion (2.1), that is,
the constant is exponentially small relative to the terms of the expansion.

It is however very important to note that convergence or divergence are
relative to a topology. The series

∑∞
k=0 k!e

xx−k−1 is divergent relative to
the usual topology. It is natural to ask the question whether there are other
topologies in suitable function spaces that would make this series convergent,
and which have good properties.

2.1 Analytic function theory as a toy model of the
theory of analyzable functions

One can meaningfully trace the source of these complications to the nontrivial
nature of the singularity of Ei(x) at x = ∞. There is a sharp contrast between
the limited properties of asymptotic expansions in general, with which very
few operations are allowed, and the rich properties of T acting on the space
of germs of analytic functions. In the latter case, which is a prototype in
constructing a comprehensive theory of analyzable functions, the correspon-
dence between functions and their expansions, Taylor expansion is a faithful
isomorphism, linear and multiplicative and commuting with differentiation,
restricted composition and integration.

Let A denote the set of germs of analytic functions at z = 0, let C[[z]]
be the space of formal series in z with complex coefficients, of the form∑∞

k=0 ckz
k, and define Cc[[z]] as the subspace of series with nonzero radius

of convergence.
The Maclaurin series of a function in A is also its asymptotic series at

zero. Moreover, the map M : A 7→ Cc[[z]] is an isomorphism and its inverse
M−1 = S is simply the operator of summation of series in Cc[[z]]. M and S
commute with all usual (and many unusual) function operations which are
defined on A, in particular we have, with f̃ , f̃1 and f̃2 in Cc[[z]]

1 Until recently, for reasons not entirely clear, the common assumption was that
expansions such as (2.2) must be meaningless altogether, i.e. relative to any
possible definition of asymptotic expansions.
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(1) S{αf̃1 + βf̃2} = αS f̃1 + βS f̃2
(2) S{f̃1f̃2} = S f̃1S f̃2

(3) S{f̃?} =
(
S f̃
)?

(4) S
{
f̃
}′ =

(
S f̃
)′

; S
{∫ x

0

f̃

}
=
∫ x

0

S f̃

(5) S{f̃1 ◦ f̃2} = S f̃1 ◦ S f̃2
(6) S1 = 1 (2.3)

f̃?(z) = f̃(z). In fact M is such a good isomorphism between A and Cc[[z]],
that usually no distinction is made between formal (albeit convergent) ex-
pansions and their sums which are actual functions.

As a consequence, whenever a problem of an analytical nature can be
solved in Cc[[z]], where the solution procedure is often algorithmic and of
an algebraic nature, S provides an actual solution of the same problem. For
example, if ỹ is a formal solution of the equation

ỹ′ = ỹ2 + z (2.4)

as a series in powers of z, with nonzero radius of convergence, and we let
y = Sy we may write, using (2.3),(

ỹ′ = ỹ2 + z
)
⇔
(
S {ỹ′} = S

{
ỹ2
}

+ z
)
⇔
(
y′ = y2 + z

)
i.e. ỹ is a formal solution of (2.4) iff y is an actual solution. The same reasoning
would work in most natural problems with analytic coefficients for which
solutions ỹ ∈ CC [[z]] can be found.

In contrast, asymptotic expansions in general are compatible with vir-
tually no function operations, and solving formally a problem in a space
of non-convergent expansions, within a classical setting and without further
analysis contains little rigorously usable information. Rigor aside, in many
problems it appears that formal expansions, even together with the terms
beyond all orders, do provide nevertheless very reliable information about
the properties of actual solutions.

It is the task of the theory of analyzable functions to transform these
formal approaches into a rigorous method and make asymptotic analysis into
a natural extension of analytic function theory in which an isomorphism like
(2.3) holds in much wider generality.

The ideas of the theory of analyzable functions can be traced back to
Euler, and were developed in the work of Cauchy, who discovered and rig-
orously applied optimal truncation techniques, by Stokes who used optimal
truncation successfully in the study of solutions of differential systems and
discovered what is now called Stokes’ phenomenon, by Borel who found the
first powerful technique to deal with divergent expansions, and by Dingle and
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Berry who substantially extended optimal truncation methods. In the early
80’s exponential asymptotics became a field of its own, with the theory of
towers and nice functions introduced by Martin Kruskal and the theory of
transseries and analyzable functions of Jean Écalle, who also proposed a very
comprehensive generalization of the technique of Borel summation.

Setting of the problem. One operation is clearly missing from both A
and Cc[[z]] namely division, and this severely limits the range of problems
that can be solved in either A or Cc[[z]]. The question is then which spaces
A1 ⊃ A and S1 ⊃ Cc[[z]] are closed under all function operations, including
division, and are such that an extension of M is an isomorphism between
them? (Because of the existence of an isomorphism between A1 and the
formal expansions S1 the functions in A1 will be called called, in agreement
with Écalle, formalizable). Exploring the limits of formalizability is at the
core of the modern theory of analyzable functions.

In addition to the obvious theoretical interest, there are many important
practical applications. One application of such a theory, for instance for some
generic classes of differential systems where it has been worked out, is the
possibility of solving problems starting from formal expansions, which are
easy to produce (in an algebraic and algorithmic way), and from which the
isomorphism produces, constructively, actual solutions.

In general, the question of formalizability is delicate. Adjoining division to
the set of operations opens the way to a slew of more sophisticated functions
and representations. For instance, a short chain of simple operations leads
from the identity, through log branched functions, to the exponential integral
and its factorially divergent expansion:

x−→
÷
x−1−→∫ lnx−→

÷

1
lnx

−→∫
∫ x

0

dt
ln t

=
∫ ln x

−∞
dt
et

t

On the other hand, if a space A1 ⊃ A is only closed under simple function
operations (algebraic ones, including division and complex conjugation ; dif-
ferentiation and integration; composition and function inversion) this may
not even suffice to solve differential equations. Indeed, A1 would only contain
functions that are expressible through elementary functions and quadratures
thereof, too restricted to contain solutions of general differential systems. On
the other hand, a too comprehensive enlargement of A is likely to have poor
analytic properties.

While enlargements A1 have been found for some specific classes of prob-
lems, it is still an open problem what space A1 would be suitable for a general
theory of analyzable functions.

In constructing the correspondence (isomorphism) between A1 and S1 one
of the most powerful tools is Borel summation.
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2.2 Formal asymptotic power series (APS)

Definition 2.5 For x→∞, an APS is a formal structure of the type

∞∑
i=1

ci
xki

(2.6)

where k1 < k2 < ... < kn < ....

where M ∈ Z can be negative.
Examples. (1) Integer power series, i.e. series of the form

∞∑
k=M

ck
xk

(2.7)

(2) An important instance are the finitely generated power series, of the form∑
ki≥M

ck1,k2,...,kn

xα1k1+...+αnkn
(2.8)

where α1 > 0, ..., αn > 0.

Proposition 2.9 A series of the form (2.8) is (can be rearranged as) an
APS.

Proof. For the proof we note that for any L ∈ Z, the set

{(k1, k2, ..., kn) ∈ Zn : ki ≥M for 1 ≤ i ≤ n and L ≥
n∑

i=1

αiki}

is finite. Indeed, ki are bounded below, αi > 0 and
∑n

i=1 αiki →∞ if one or
more ki is unbounded.

Thus (2.8) can be written in the form (2.6). In particular we can define the
dominance of a series in the following way:

Definition 2.10 If S is a nonzero APS of the type (2.6) we define Dom(S)
to be ci1x

−ki1 where i1 is the first i in (2.6) for which ci 6= 0.

Operations with APS. The following operations are defined in a natural
way and have the usual properties: +,−,×, / differentiation and composition
S1 ◦ S2 where S2 is a series such that k1 < 0.
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Asymptotic order relation. We naturally write

Cxp � Dxq iff p < q

Definition 2.11 For two nonzero APSs S1, s2 we write S1 � S2 iff
Dom(S1) � Dom(S2).

Proposition 2.12 Dom(S1S2) = Dom(S1)Dom(S2), and if Dom(S) 6=
const then Dom(S′) = Dom(S)′.

Proof. Straightforward.

Thus we have

Proposition 2.13 (i) S1 � T and S2 � T imply S1 + S2 � T .
(ii) S1 � T1 and S2 � T2 imply S1S2 � T1T2.
(iii) S � T implies 1

S � 1
T .

(iv) S � T � 1 implies S′ � T ′ � 1 and 1 � S � T implies S′ � T ′.
(v) There is the following trichotomy for two nonzero APSs : S � T or

S � T or else S
T − C � 1 for some constant C.

Proof. Straightforward.

Proposition 2.14 Any nonzero APS S can be uniquely decomposed in the
following way

S = L+ C + s

where C is a constant and L and s are APS, with the property that L has
nonzero coefficients only for positive powers of x (L is purely large) and s
has nonzero coefficients only for negative powers of x (s is purely small).

Proof. Straightforward.

Example.

Proposition 2.15 The differential equation

y′ + y =
1
x

+ y3 (2.16)

has a unique solution as an APS which is purely small.

Proof. For the existence part, note that direct substitution of a formal integer
power series y0 =

∑∞
k=1 ckx

−k leads to the recurrence relation c1 = 1 and for
k ≥ 2,

ck = (k − 1)ck−1 +
∑

k1+k2+k3=k;ki≥1

ck1ck2ck3

for which direct induction shows the existence of a solution, and we have
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y0 =
1
x

+
1
x2

+
3
x3

+
12
x4

+
60
x5

+ · · ·

For uniqueness assume y0 and y1 are APS solutions and let δ = y1−y0. Then
δ satisfies

δ′ + δ = 3y2
0δ + 3y0δ2 + δ3 (2.17)

Since by assumption δ � 1 we have Dom(δ′) � Dom(δ) and similarly
Dom(3y2

0δ + 3y0δ2 + δ3) � Dom(δ). But this implies Dom(δ) = 0 and thus
δ = 0.

The exponential.

Proposition 2.18 The differential equations f ′ ± f = 0 have no nontrivial
solution as an APS.

Proof. If Dom(f) = 0 then f = 1+s where s is purely small and thus s′ � s.
But then the equation s′+s+1 = 0 is contradictory. Similarly if f = s where
s is purely small then s′ + s = 0 implies Dom(s) = 0. If instead f � 1 then
Dom(f) �Dom(f ′) which is a contradiction.

Thus the exponential, if we need to introduce it, is a new element. We would
like its introduction to preserve the basic structures of APS and the asymp-
totic ordering. Then ex � 1 or ex � 1 or finally ex − c � 1. The last
inequality would give, after differentiation, ex � 1 which contradicts it, so
we only have two choices. Both are consistent, and correspond to choosing a
sign in x→ ±∞. We choose x→ +∞ and impose ex � 1.

Proposition 2.19 If s is a purely small series then the equation y′ = s′y
(corresponding intuitively to y = es) has APS solutions of the form C + s1
where s1 is small. If we choose C = 1 then s1 = s1;1 is uniquely defined.

Proof. Straightforward.

Definition 2.20 We define es = 1+s1;1, and in general if S = L+C+s we
write eS = C(1 + s1;1)eL where eL is to be thought of as a primary symbol,
subject to the further definitions eL1+L2 = eL1eL2 and (eL)′ = L′eL.

Exponential power series (EPS). A simple example of EPS is a formal
series of the form

∞∑
i,j=1

cij
ekixxkj

(2.21)

where ki are increasing in i and kj are increasing in j. Again the usual
operations are well defined on EPS (composition is nor defined on (2.21) but
would be if more general terms of the form C(1+ s1;1)eL are allowed; we will
postpone this until the formal introduction of transseries).
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The order relation will be defined by ek1xxk2 � ek3xxk4 iff k1 > k3 or if
k1 = k3 and k2 > k4. Then we can still define the dominance of a structure
of the form (2.21).

The question is what is the general formal solution of (??)? For this we
have to assume we have a space A of formal objects in which all operations
involved in (??) make sense and have the usual properties. A would be some
differential algebra. We would like this space to contain x−1 so that the equa-
tion makes sense, and then A will contain all inverse powers of x, including
constants (power zero), and in fact to be large enough to contain our formal
solution (??). It is natural to assume that f ′ = 0 has the general solution in
A, f = C for some constant C.

Then if ỹ is any solution of (??) then f̃ = ỹ − ỹ0 will satisfy the homo-
geneous equation f ′ + f = 0. To proceed, we may include solutions of this
homogeneous equation (or postulate there are no nontrivial ones; in this lat-
ter case, we settle for with a differential algebra of formal power series). If we
call this solution e−x and the solution of the related equation f ′−f = 0 by ex

we see that (e−xex)′ = 0 thus e−xex = C for some C and we can normalize
our choice of ex to make C = 1. Then the general solution of y′ + y = 0 is
Ce−x. Indeed, we may multiply by ex and get (yex)′ = 0, i.e. yex = C or
y = Ce−x.

Exponential power series solutions for (2.16). We now look again at
the prototypical nonlinear equation (2.16) and we look for further small solu-
tions. We take y = y0+δ. The equation for δ is (2.17) where we search for solu-
tions δ � 1, in which assumption the terms on the right hand side of the equa-
tion are subdominant. We have δ′ + δ(1 + o(1)) = 0 thus δ = Ce−x+o(x)and
this suggests the substitution δ = ew. We get

w′ + 1 = 3y2
0 + 3y0ew + e2w

and since ew = δ � 1 the dominant balance is between the terms on the left
hand side, thus w = −x+ C + w1 and we get

w′1 = 3y2
0 + 3y0e−xew1 + e−2x+2w1

We have y0e−xew1 = y0δ = y0e
−x+o(x). Since −x + o(x) � n ln(x) we have

y0e
−xew1 � x−n for any n and thus w′1 = O(x−2) then w1 = O(x−1). Thus,

ew1 = 1+w1 +w2
1/2+ ... and consequently 3y0e−xew1 +e−2x+2w1 is negligible

with respect to y2
0 . Again by dominant balance, to leading order, w′1 = 3y2

0

and thus w1 =
∫

3y2
0 +w2 := φ1 +w2 (φ1 is a formal power series). It follows

that, to leading order, we have

w′2 = 3y0e−x

and thus w2 = φ2e
−x where φ2 is a power series. Continuing this process of

iteration, we can see inductively that w must be of the form
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w = −x+
∞∑

k=0

φke
−kx

where φk are formal power series, which means

y =
∞∑

k=0

e−kxyk (2.22)

where yk are also formal power series. Having this knowledge, it is more
convenient to plug in(2.22) directly in the equation and solve for the unknown
series yk. We obtain the system

y′0 + y0 = x−1 + y3
0

y′1 = 3y2
0y1

· · · (2.23)

y′k − kyk − 3y2
0yk = 3y0

∑
k1+k2=k;ki≥1

yk1yk2 +
∑

k1+k2+k3=k;ki≥1

yk1yk2yk3

· · ·

We can easily see by induction that this system of equations does admit
a solution where yk are power series. Furthermore, y1 is defined up to an
arbitrary multiplicative constant, and there is no further freedom in yk, whose
equation can be solved by our usual iteration procedure, after placing the
subdominant term y′k on the RHS.

Choosing then y0 in such a way that y[1]
1 = 1 + ax−1 + ... we have y1 =

Cy
[1]
1 . By the special structure of the RHS of the general equation in (2.23) we

see that if y[1]
k is the solution with the choice y1 = y

[1]
1 we see, by induction,

that the solution when y1 = Cy
[1]
1 is Cky

[1]
k . Thus the general formal solution

of (??) in our setting should be

∞∑
k=0

Cky
[1]
k e−kx

where y[1]
0 = y0.

2.3 Preview of general properties of transseries

Transseries will be studied in more carefully later.

1. Transseries have an exponential level (height) which is the highest order
of composition of the exponential, and similarly a logarithmic depth; both
of these are finite; exp(exp(x2)) + lnx has height 2 and depth 1.
It is convenient to first construct transseries without logs and then define
the general ones by composition to the right with an iterated log.
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2. Transseries of level zero are simply finitely generated asymptotic power
series. That is, given α1, ..., αn with <(αi) > 0 a level zero transseries is
a sum of the form

S =
∑

ki≥Mi

ck1,...,knx
−α1k1−...−αnkn (2.24)

where M1, ...,Mn are integers, positive or negative; the terms of S are
therefore nonincreasing in ki and bounded above by O(x−α1M1−...−αnMn).

3. A term of the form m = x−α1k1−...−αnkn is a level zero (trans)monomial.
4. The lower bound for ki easily implies that there are only finitely many

terms with the same monomial. Indeed, the equation α1k1+...+αnkn = p
does not have solutions if <(αi)ki > |p|+

∑
j 6=i |αj ||Mj |.

5. A transmonomial is small m = o(1) and large if 1/m is small. m is neither
large nor small iff m = 1 i.e., −α1k1− ...−αnkn = 0; this is a degenerate
case and for some purposes it is not considered a monomial.

6. A level zero transseries can be decomposed as L + const + s where L,
which could be zero, is the purely large part in the sense that it contains
only large monomials and s is small.
Assuming the coefficient of x−α1M1−...−αnMn is nonzero, we can write

S = const x−α1M1−...−αnMn(1 + s)

where s is small.
7. Operations are defined on level zero transseries in the natural way. The

product of level zero transseries is a level zero transseries where as in 4
above the lower bound for ki entails that there are only finitely many
terms with the same monomial in the product.

8. It is easy to see that the expression (1 − s)−1 := 1 − s + s2 − ... is well
defined and this allows definition of division via

1/S = const−1xα1M1+...+αnMn(1− s)−1

9. xα1M1+...+αnMn is the leading order and const is the leading constant.
10. It can be checked that level zero transseries form a differential field.

Composition S(s) is also well defined whenever s is a large transseries.
11. Level one. The exponential ex has no asymptotic power series at infinity

(in particular, its power series about zero is not of the form (2.24) and
ex is taken to be its own expansion. It is a new element.

12. A level one transmonomial is of the form µ = meL where m is a level zero
transmonomial and L is a purely large level zero transseries. µ is large
if the leading constant of L is positive and small otherwise. If L is large
and positive then eL is, by definition, much larger than any monomial of
level zero. We define naturally eL1eL2 = eL1+L2 .
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13. A level one transseries is of the form

S =
∑

ki≥Mi

ck1,...,kn
µ−k1

1 · · · µ−kn
n :=

∑
k≥M

ckµk (2.25)

where µi are large level one transmonomials.
With the operations defined naturally as above, level one transseries form
a differential field.

14. We define, for a small transseries, es =
∑∞

k=0 s
k/k!. If s is of level zero,

then es is of level zero too.
15. The construction proceeds similarly, by induction and a general exponential-

free transseries is one obtained at some level of the induction. They form
a differential field.

16. It can be shown, by induction, that S′ = 0 iff S = const.

17. Dominance: If S 6= 0 then there is a largest transmonomial µ−k1
1 · · ·µ−kn

n

in S, with nonzero coefficient, C. Then Dom(S) = Cµ−k1
1 · · · µ−kn

n . If
S is a nonzero transseries, then S = Dom(S)(1 + s) where s is purely
small, i.e., all the transmonomials in s are small. It can be shown (the
construction will be given later) that a base of monomials can then be
chosen such that all Mi in s are positive.

18. Topology.
a) If S̃ is the space of transseries generated by the monomials µ1, ..., µn

then, by definition, the sequence S[j] converges to S given in (2.25)
if for any k there is a j0 = j0(k) such that c[j]k = ck for all j ≥ j0.

b) This topology is metrizable, see the discussion after Definition 3.17.
c) In this topology, addition and multiplication are continuous, but mul-

tiplication by scalars is not.
d) It is easy to check that any Cauchy sequence is convergent and

transseries form a complete linear metric space.
e) Contractive mappings: A function (operator) A : S̃ → S̃ is contrac-

tive if for some α < 1 and any S1, S2 ∈ S̃ we have d(A(S1)−A(S2)) ≤
αd(S1 − S2).

f) Fixed point theorem. It can be proved in the usual way that if A is
contractive, then the equation S = S0 + A(S) has a unique fixed
point.
Examples –This is a convenient way to show the existence of mul-
tiplicative inverses. It is enough to invert 1 + s with s small. We
choose a basis such that all Mi in s are positive. Then the equation
y = −s− sy is contractive.
–The equation y = 1/x−y′ is contractive within level zero transseries;
It has a unique solution.

19. If Ln = log(log(... log(x))) n times, and T is an exponential-free transseries
then T (Ln) is a general transseries. They form a differential field, closed
under integration, composition to the right with large transseries, and
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many other operations; this closure is proved as part of the general in-
duction.

20. The theory of differential equations in transseries has many similarities
with the usual theory. For instance it is easy to show, using an integrating
factor and 16 above that the equation y′ = y has the general solution
Cex and that the equation y” = xy has at most two linearly independent
solutions. We will find two such solutions in the examples below.

*
The type of exponential growth is related to the factorial power of diver-

gence of the power series. For illustration we take

g′′ + 2z−1g′ − z−5g = 1 (2.26)

The presence of a pole of higher order than the equation makes the power
series expansion

∑
k ckz

k of a solution diverge (ck ∝ kp, p > 0), since at the
level of the recurrence for the ck it implies that coefficients with larger k are
given in terms of earlier ones multiplied by powers of n. In our specific case
we get

cn+3 = n(n+ 1)cn

with the solution
c3k = const.Γ (k + 1/3)Γ (k)

roughly,

ck ∝ (k!)2/3 (2.27)

2.3a Representability in terms of Laplace transforms

We divide by the exponential and change variable 2
3x

3/2 = s to linearize
the exponent and ensure that the transformed function has an asymptotic
series with factorial divergence. Such a series can be obtained by Watson’s
lemma from a convergent series. Inverse Laplace transform in then likely to
regularize the equation.

Taking f(x) = e
2
3 x3/2

h( 2
3x

3/2) we get

h′′ +
(
2 +

1
3s

)
h′ +

1
3s
h = 0 (2.28)

and with H = L−1(h) we get

p(p− 2)H ′ =
5
3
(1− p)H

which indeed has a regular singularity at p = 0. The solution is
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H = Cp−5/6(2− p)−5/6

and it can be easily checked that any integral of the form

h =
∫ ∞eiφ

0

e−psH(p)dp

for φ 6= 0 is a solution of (2.28) yielding the expression

f = e
2
3 x3/2

∫ ∞eiφ

0

e−
2
3 x3/2pp−5/6(2− p)−5/6dp (2.29)

for a solution of the Airy equation. A second solution can be obtained in a
similar way, replacing e

2
3 x3/2

by e−
2
3 x3/2

, or by taking the difference between
two integrals of the form (2.29).

Example 2. By a similar method, we can find a formal solution for the
Gamma function an+1 = nan. We look directly for transseries of level at least
one, an = efn and thus fn+1 = lnn + fn. It is clear that fn+1 − fn � fn;
this suggests to write fn+1 = fn + f ′n + 1

2f
′′
n + ... and, taking f ′ = h we get

the equation

hn = lnn− 1
2
h′n −

1
6
h′′n − ... (2.30)

which is contractive in transseries of zero height. We get

h = lnn− 1
2n

− 1
12n2

+
1

120n4
...

and thus

fn = n lnn− n− 1
2

lnn+
1

12n
− 1

360n3
...+ C

Expression as Laplace transform. The procedure in (2.30) indicates fac-
torial divergence and suggests taking inverse Laplace transform of gn =
fn − (n lnn− n+ 1

2 lnn).
Inverse Laplace transform is given by the Bromwich integral along a ver-

tical contour in the right half plane:

(L−1F )(x) :=
1

2πi

∫ c+i∞

c−i∞
expF (p)dp

The recurrence satisfied by g is

gn+1 − gn = qn = 1−
(1

2
+ n

)
ln
(
1 +

1
n

)
=

1
12n2

− 1
12n3

+ ...

First note that L−1q = p−2L−1q′′ which can be easily evaluated by residues
since
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q′′ =
1
n
− 1
n+ 1

− 1
2

( 1
(n+ 1)2

+
1
n2

)
Thus, with L−1gn := G we get

(e−p − 1)G(p) =
1− p

2
−
(p

2
+ 1
)
e−p

p2

gn =
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2
e−npdp

(It is easy to check that the integrand is analytic at zero; its Taylor series is
1
12 −

1
720p

2 +O(p3).)
The integral is well defined, and it easily follows that

fn = C + n(lnn− 1)− 1
2

lnn+
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2
e−npdp

solves our recurrence. The constant C = 1
2 ln(2π) is most easily obtained by

comparing with Stirling’s series (1.45) and we thus get the identity

lnΓ (n) = n(lnn− 1)− 1
2

lnn+
1
2

ln(2π) +
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2
e−npdp

(2.31)
which holds with n replaced by z ∈ C as well.

Other recurrences can be dealt with in the same way. One can calculate∑n
j=1 j

−1 as a solution of the recurrence

sn+1 − sn =
1
n

Proceeding as in the Gamma function example, we have f ′ − 1
n = O(n−2)

and the substitution sn = lnn+ gn yields

gn+1 − gn =
1
n

+ ln
( n

n+ 1

)
and in the same way we get

fn = C + lnn+
∫ ∞

0

e−np
(1
p
− 1

1− e−p

)
dp

where the constant can be obtained from the initial condition, f1 = 0,
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C = −
∫ ∞

0

e−p
(1
p
− 1

1− e−p

)
dp

which, by comparison with the usual asymptotic expansion of the harmonic
sum also gives

γ =
∫ ∞

0

e−p
( 1

1− e−p
− 1
p

)
dp

Comparison with (2.31) gives

n−1∑
j=0

1
j
− γ = lnn+

∫ ∞

0

e−np
(1
p
− 1

1− e−p

)
dp =

Γ ′(n)
Γ (n)

(2.32)

Exercise: Zeta function. Use the same strategy to show that

n!ζ(n) =
∫ ∞

0

pn−1 e−p

1− e−p
dp =

∫ 1

0

lnn−1 s

1− s
ds (2.33)

2.3b What is special about Borel summation

The Laplace Transform is defined on integrable functions of at most expo-
nential growth by

L{F}(x) :=
∫ ∞

0

e−pxF (p)dp (<(x) > x0)

When dealing with functions defined in the complex domain it is useful to
allow for different contours of integration; Lφ denotes the Laplace Transform
in the direction φ:

Lφ{F}(x) :=
∫ ∞eiφ

0

e−pxF (p)dp (<(xe−iφ) > x0)

The formal Laplace Transform, still denoted L : C[[p]] 7→ C[[x−1]] is defined
by

L{s} = L

{ ∞∑
k=0

ckp
k

}
=

∞∑
k=0

ckL{pk} =
∞∑

k=0

ckk!x−k−1 (2.34)

(with L{pα−1} = Γ (α)x−α the definition extends straightforwardly to non-
integer power series). The Borel Transform, B : C[[x−1]] 7→ C[[p]] is the
(formal) inverse of the operator L in (2.34).

We note that

B{x−1} = 1
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whereas

L−1{x−1} =
{

1 <(p) > 0
0 <(p) < 0

This difference is related to allowing for directional Laplace Transforms. Oth-
erwise, if f̃ is convergent, the functions B{f̃} and L−1{f̃} coincide in the right
half plane (cf. also Remark 2.42 below).

Because the k − th coefficient of B{f̃} is smaller by a factor k! than the
corresponding coefficient of f̃ , B{f̃} may converge even if f̃ does not. Since
factorial divergence is commonplace in analytic problems (for reasons that
will become clear in the sequel) this convergence-improving property of B is
very useful.

Also important is that the combination LB is, formally, the identity
operator, and must thus have, when properly interpreted, good commutation
properties with function operations.

These two facts account for the central role played by LB, the operator
of Borel summation in the theory of analyzable functions.

Summable series

6

B

?

B−1

Convergent series�
S
-

T

Analytic germsAnalytic functions �
AC

-

?

6

L−1L

Analyzable functions -
�

Borel summation

Definition of Borel summation and basic properties.
Series of the form f̃ =

∑∞
k=0 ckx

−β1k1−...−βmkm−r with <(βj) > 0 fre-
quently arise as formal solutions of differential systems. We will first analyze
the case m = 1, r = 1, β = 1 but the theory extends without difficulty to
more general series.

Borel summation is relative to a direction, see Remark 2.42. The same
formal series f̃ may yield different functions by Borel summation in different
directions.

Borel summation along R+ consists in three operations:
1. Borel Transform, f̃ 7→ B{f̃}. Assuming that B{f̃} is convergent and

extends analytically in a neighborhood of R+, step 2 is possible:
2. Summation and analytic continuation, B{f̃} 7→ AC ◦

∑
{B{f̃}} =:

F (p), with F real analytic on R+. The further assumption that F (p) grows
at most exponentially makes the last step possible:
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3. Laplace Transform, F 7→
∫∞
0
F (p)e−pxdp =: LB{f̃}, defined in some

half plane <(x) > x0.
The domain of Borel summation is the subspace SB of series for which

the conditions for the steps 1-3 above are met. For 3 we can require that for
some constants CF , νF we have |F (p)| ≤ CF e

νF p.

Note 2.35 Equivalently we can say that the series f̃ is Borel summable if it
is the asymptotic series as x→ +∞ of LF with F analytic in a neighborhood
DR+ of R+ (in particular, we say such a function is real-analytic on [0,+∞))
and exponentially bounded at infinity. The domain DR+ as well as the bounds
may depend on F . The definition is unambiguous since on the one hand the
asymptotic series of a function is unique, and, by Watson’s Lemma, if the
asymptotic series of LF is zero, then the Taylor series of F at p = 0 is zero
as well, and then F ≡ 0.

Definition 2.36 (Inverse Laplace space convolution) If f, g ∈ L1
loc then

(f ∗ g)(p) :=
∫ p

0

f(s)g(p− s)ds (2.37)

Lemma 2.38 The space of functions which are in L1[0, ε) for some ε >
0 and real-analytic on (0,∞) is closed under convolution. If F and G are
exponentially bounded then so is F ∗G.

Proof. The statement about L1 is standard. Analyticity follows by writing∫ p

0

f1(s)f2(p− s)ds = p

∫ 1

0

f1(pt)f2(p(1− t))dt (2.39)

which is manifestly analytic in p. Clearly,

|F ∗G| ≤ CFCGp e
(νF +νG)p ≤ CFCG e

(νF +νG+1)p

Proposition 2.40 (i) SB is a differential algebra,2 and LB : SB 7→ LBSB is
a differential algebra isomorphism.3

(ii) If Sc ⊂ SB denotes the differential algebra of convergent power series,
and we identify a convergent power series with its sum, then LB is the identity
on Sc.

(iii) In addition, for f̃ ∈ SB, LB{f̃} ∼ f̃ as |x| → ∞, <(x) > 0.

Proof. (i) Clearly SB is a linear space; furthermore, f̃ = 0 ⇐⇒ Bf̃ =
0 ⇐⇒ LB{f̃} = 0 (the last step follows from the injectivity of L which, in
our case also follows from Watson’s Lemma as in Note 2.35 above.)

To show multiplicativity, we use Note 2.35. Analyticity and exponential
bounds of |F ∗ G| follow from Lemma2.38. Consequently, F ∗ G is Laplace
2 with respect to formal addition, multiplication, and differentiation of power se-

ries.
3 See also § 2.3c for a summary of the properties of L.
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transformable, and by elementary properties of Laplace transforms (or by
performing a simple change of variables in a double integral) we see that

L(F ∗G) = LF LG

It remains to show that the asymptotic expansion of L(F ∗G) is indeed the
product of the asymptotic series of LF and LG, which is a consequence of
the more general fact that the asymptotic series of a product is the product
of the corresponding asymptotic series.

(ii) Since f̃1 = f̃ =
∑∞

k=0 ckx
−k−1 is convergent, then |ck| ≤ CRk for some

C,R and F (p) =
∑∞

k=0 ckp
k/k! is entire, |F (p)| ≤

∑∞
k=0 CR

kpk/k! = CeRp

and thus F is Laplace transformable for |x| > R. By dominated convergence
we have for |x| > R,

L
{ ∞∑

k=0

ckp
k/k!

}
= lim

N→∞
L
{ N∑

k=0

ckp
k/k!

}
=

∞∑
k=0

ckx
−k−1 = f(x)

(iii) This part follows simply from Watson’s lemma, cf. § 2.3c . 2

Remark 2.41 The results above can be rephrased for more general series of
the form

∑∞
k=0 ckx

−k−r by noting that for <(ρ) > −1 we have

Lp ρ = x−ρ−1Γ (ρ+ 1)

and thus

B

( ∞∑
k=0

ckx
−k−r

)
= c0

pr−1

Γ (r)
+
pr−1

Γ (r)
∗ B

( ∞∑
k=1

ckx
−k

)
Furthermore, Borel summation summation naturally extends to to series of
the form

∞∑
k=−M

ckx
−k−r

where M ∈ N by defining

LB

( ∞∑
k=−M

ckx
−k−r

)
=

0∑
k=−M

ckx
−k−r + LB

( ∞∑
k=0

ckx
−k−r

)

and more general powers can be allowed, replacing analyticity in p with ana-
lyticity in pβ1 , ..., pβm .
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Remark 2.42 We note that in the last step in Borel summation we may
take the integral in p along a different half-line in C, as long as <(xp) > 0,
and the algebraic properties are preserved. But it is easy to check that the
path matters, in general. For instance, if x ∈ R+ and Bf̃ = (1 − p)−1, the
half line can be any ray in the open right half plane, other than R+. But∫ ∞ei0+

0

e−xp

1− p
dp−

∫ ∞ei0−

0

e−xp

1− p
dp = 2πie−x

thus a convention for a choice of ray is needed.
(i) For the ray eiφR+, we take F = ACσBf̃ and define

(LB)φ f̃ =
∫ ∞e−iφ

0

e−pxF (p)dp = L−φF = LF (·e−iφ) (2.43)

i.e., by convention, Laplace Transform is taken in the direction that ensures
xp ∈ R+. We can also say that Borel summation of f̃ along the ray arg(x) = φ
is defined as the (real) Borel summation of f̃(xeiφ).

(ii) Related to (i), control over the analytic properties of Bf̃ near p = 0 is
essential to Borel summability (classical or generalized). Indeed, by a result
due to Borel and Ritt, for any power series f̃ =

∑∞
k=0 ckx

−k and any sector
S there exist (many) functions f analytic in S and asymptotic in S to f̃ [?].
Now, choosing δ > 0, a sector S of angle larger than π + δ, and any f such
that f ∼ f̃ in S, and denoting f1 = f , then Proposition 2.52 below shows that
f−c0−c1x−1 = L{F1} with F1 analytic in a sector of angle δ; in addition, by
Watson’s lemma (see Lemma 2.70), L{F1} ∼ f̃1 in S. Any series would thus
be “summable” (very non-uniquely) in this weak sense. Summable series f̃
are distinguished by the analytic properties of F1 at p = 0.

(iii) Since in most cases of interest Bf̃ has singularities in the complex
plane, different functions LBφf̃ are obtained for different φ. For example, we
have

LBφ

∞∑
k=0

k!
xk+1

= L−φ{(1− p)−1} =
{

e−xEi(x)− πi for φ ∈ (−π, 0)
e−xEi(x) + πi for φ ∈ (0, π)

(2.44)
(iv) On the other hand it can be seen by deforming the contour in L that if
Bf̃ is analytic and has uniform exponential bounds at infinity for arg(p) ∈
(−δ1, δ2), then the function LBφf̃ is the same for all arg(x) ∈ (−δ2, δ1), in
contrast to (2.44).

Recovering exact solutions from formal series. If a differential equa-
tion has a formal solution f̃ ∈ SB then LBf̃ is an actual solution of the same
equation. For example



56 2. Introduction

f ′ − f = x−1 (2.45)

for x → ∞ has the series solution f̃ =
∑∞

k=0(−x)−k−1k! and B{f̃} =∑∞
k=0(−p)k sums to the Laplace transformable function (1 + p)−1. Now, for

any f̃ ∈ SB and f ∈ LB(SB) we have

f̃ ′ − f̃ − x−1 = 0 ⇐⇒ LB
(
f̃ ′ − f̃ − x−1

)
= 0 (2.46)

⇐⇒
(
LB{f̃}

)′ − LB{f̃} − x−1 = 0 (2.47)

In particular,

LB{f̃} =
∫ ∞

0

e−pxdp
1 + p

= f (2.48)

is an actual solution of (2.45). Solving the analytic problem (2.45) in LB(SB)
has reduced thus to an essentially algebraic question, that of finding f̃ .

Some of the difficulties of Borel summation. A serious problem with
classical Borel summation is that its domain of definition is not large enough.
First, LB only applies to power series, while for instance the general solution
of (2.45) is LB{f̃} + Cex. This deficiency could, however, be corrected by
naturally extending LB to the exponential by the formula LB exp(ax) =
exp(ax).

There is a subtler and much more severe difficulty, however. The change
of variable x 7→ (−x) in (2.45) leads to the equation f ′ + f = 1/x, with
formal solution f̃ =

∑∞
k=0 k!x

−k−1. We now get
∑
Bf̃ = (1 − p)−1 which is

not Laplace transformable, because of the nonintegrable singularity at p = 1.
Although one can avoid the singularity by shifting the contour of L in the
complex plane, there is no systematic way to define the shift to allow for
arbitrary location of the (isolated) singularities of Bf̃ , and if the contour of
integration has to depend on f̃ , then the linearity of LB is lost. (Commutation
with complex conjugation is also lost if the contour of integration is not
fixed.) Restricting however the location of singularities would make Borel
summability incompatible with the trivial change of variable x 7→ Const.x.

Finally, LB cannot be usefully restricted to those f̃ ∈ SB for which
F1 = B{ ˜xrf} is entire and |F1(p)| ≤ C1e

C2|p| in C, because this simply
entails the convergence of f̃ . Indeed, by shifting the contour of integration
in
∫∞
0
e−pxF1(p)dp and rotating x simultaneously to keep xp real and posi-

tive, we see that (LF1)(x) is single-valued near infinity. By Proposition 2.40
LF1 ∼ f̃1 as |x| → ∞, x ∈ C, therefore ∞ is a removable singularity of LF1

and the series f̃1 converges.
Incidentally, the example just given shows an important feature of diver-

gent expansions. A single-valued function f cannot be asymptotic to the same
divergent expansion in every direction in the complex plane: the asymptotic
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behavior of f must therefore vary with the direction at infinity. This is a
manifestation of Stokes’ phenomenon.

Since the restrictions needed for classical Borel summation to apply do
not allow it to define a sufficiently general isomorphism, one looks instead at
extensions of LB, as an operator.

2.3c Appendix. Properties of the Laplace transform

Proposition 2.49 If F ∈ L1(R+) then LF is analytic in the right half plane
H and continuous on the imaginary axis ∂H, and L{F}(x) → 0 as x → ∞
in H.

Proof. Continuity and analyticity are preserved by integration against a fi-
nite measure (F (p)dp). Equivalently, they follow by dominated convergence,
as ε→ 0, of

∫∞
0
e−isp(e−ipε − 1)F (p)dp and

∫∞
0
e−xp(e−pε − 1)ε−1F (p)dp re-

spectively, the last integral for <(x) > 0. The stated limit also follows easily
from dominated convergence, if | arg(x) ± π/2| > δ; the general case follows
from the case | arg(x)| = π/2 which is a consequence of the Riemann-Lebesgue
lemma. 2

First inversion formula. Let H denote the space of analytic functions in
H.

Proposition 2.50 (i) L : L1(R+) 7→ H and ‖L{F}‖∞ ≤ ‖F‖1.
(ii) L : L1 7→ L(L1) is invertible, and the inverse is given by

F (x) = F̂−1{L{F}(it)}(x) (2.51)

for ( x ∈ R+) where F̂ is the Fourier transform.

Proof. Part (i) is immediate, since |e−xp| ≤ 1. (ii) Extending F on R− by
zero we have L{F}(it) =

∫∞
−∞ e−iptF (p)dp = F̂F . 2

Second inversion formula. Laplace transform is not surjective from L1 to
H but functions in H with sufficient decay do belong to L(L1).

Proposition 2.52 (i) Assume δ ≥ 0 and f is analytic in a sector of angle
more than π, Hδ := {x : | arg(x)| < π + δ} and continuous on ∂Hδ, and that
for some K > 0 and any x ∈ Hδ

|f(x)| ≤ K(|x|2 + 1)−1 (2.53)

Then L−1f is well defined by

F = L−1f =
1

2πi

∫ +i∞

−i∞
dt eptf(t) (2.54)

and
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∫ ∞

0

dp e−pxF (p) = LL−1f = f(x)

and in addition ‖L−1{f}‖∞ ≤ Kπ and L−1{f} → 0 as p→∞.
(ii) If δ > 0 then F = L−1f is analytic in the sector S = {p 6= 0 :

| arg(p)| < δ}. In addition, supS |F | ≤ Kπ and F (p) → 0 as p→∞ in S.

Proof. (i) We have∫ ∞

0

dp e−px

∫ ∞

−∞
ds eipsif(is) =

∫ ∞

−∞
dt f(is)

∫ ∞

0

dp e−pxeips (2.55)

=
∫ i∞

−i∞
f(z)(x− z)−1dz = 2πif(x) (2.56)

where we applied Fubini’s theorem and then pushed the contour of integration
past x to infinity. The norm is obtained by majorizing |feips| byK(|x2|+1)−1.

(ii) We have for any δ′ < δ, by (2.53),

∫ i∞

−i∞
ds epsf(s) =

(∫ 0

−i∞
+
∫ i∞

0

)
ds epsf(s)

=

(∫ 0

−i∞e−iδ′
+
∫ i∞eiδ′

0

)
ds epsf(s) (2.57)

and analyticity is clear in (2.57).
For (ii) we note that (i) applies in

⋃
|δ′|<δ

eiδ′H0. 2

Proposition 2.58 Let F be analytic in the open sector Sp = eiφR+ with
φ ∈ (−δ, δ) be such that |F (|x|eiφ)| ≤ g(|x|) for some g ∈ L1[0, ε) bounded as
x→∞. Then f = LF is analytic in the sector Sx = {x : | arg(x)| < π/2+ δ}
and f(x) → 0 as |x| → ∞, arg(x) = θ ∈ (−π/2− δ, π/2 + δ).

Proof. Because of the analyticity of F and the decay conditions for large
p, the path of Laplace integration can be rotated by any angle φ ∈ (−δ, δ)
without changing (LF )(x) (see also the next example). This means Proposi-
tion 2.49 applies in ∪|φ|<δe

iφH.
Note that without further assumptions on LF , F is not necessarily ana-

lytic at p = 0.

Corollary 2.59 The kernel of L is trivial: if F ∈ L1(R+) and LF = 0 then
F = 0.

Proof. An immediate consequence of the first inversion formula. 2

Example Rotation of the contour of integration in the complex plane is a
convenient way to calculate the change in asymptotic behavior with respect
to the sector of analysis. We illustrate this on a simple case:
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y(x) :=
∫ ∞

0

e−px

1 + p
dp (2.60)

and we would like, say, to find the asymptotic behavior in the complex plane
of the analytic continuation of this integral with respect to x after one anti-
clockwise loop around infinity. Analytic continuation (if it exists) is unique,
so we proceed in a natural way, by deforming the contour of integration. We
note that for x ∈ R+ y(x) also equals

y(x) =
∫ ∞e−iπ/4

0

e−px

1 + p
dp (2.61)

but this integral is manifestly analytic for arg(x) ∈ (−π
4 ,

3π
4 ). Thus the ana-

lytic continuation y(xeiπ/2), x ∈ R+, is given by

y(xeiπ/2) =
∫ ∞e−iπ/4

0

e−pxeiπ/2

1 + p
dp (2.62)

which is also equal to

y(xeiπ/2) =
∫ ∞e−3iπ/4

0

e−pxeiπ/2

1 + p
dp (2.63)

which is now manifestly analytic for arg(x) ∈ (π/4, 5π/4). We have, in par-
ticular, the analytic continuation

y(xeiπ) =
∫ ∞e−3iπ/4

0

e−pxeiπ

1 + p
dp (2.64)

in which it would be convenient to rotate again the contour of integration
clockwise, by π/2. This time however we cross a pole of the integrand and
collect a residue, −2πiex in the process.

y(xeiπ) =
∫ ∞e−5iπ/4

0

e−pxeiπ

1 + p
dp− 2πiex (2.65)

Now the process can be continued in the same way, and we get

y(xe2πi) =
∫ ∞

0

e−px

1 + p
dp− 2πiex (2.66)

Remark. It is useful to note that by continuity and analyticity, it is enough
to have LF (x) = 0 on any set with an accumulation point in the right half
plane to ensure F ≡ 0.
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Asymptotic properties Laplace transforms. The asymptotic behavior
of Laplace integrals is particularly important given that every analyzable
function should be convergently expressed by generalized Borel summation
of a transseries.

Lemma 2.67 Let F ∈ L1(R+) and assume F (p) ∼ pβ with <(β) > −1 as
p → 0+. Then LF ∼ Γ (β + 1)x−β−1 along any ray ρ in the open right half
plane H◦.

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the
characteristic function of the set A and φ = arg(x). We choose C, a > 0 such
that |F (p)| < C|pβ | on [0, a]. Since

∣∣∣∣∫ ∞

a

F (p)e−pxdp
∣∣∣∣ ≤ e−xa‖F‖1 (2.68)

we have, and after the change of variable s = p/|x|,

xβ+1

∫ ∞

0

F (p)e−pxdp = eiφ(β+1)

∫ ∞

0

sβU(s/|x|)χ[0,a](s/|x|)e
−seiφ

ds

+O(|x|β+1e−xa) → Γ (β + 1) (|x| → ∞) (2.69)

Watson’s Lemma, presented below, states that the asymptotic series at
infinity of (LF )(x) is obtained by formal term-by-term integration of the
asymptotic series of F (p) for small p, provided F has such a series.

Lemma 2.70 Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1 as

p→ 0+ for some constants βi with <(βi) > 0, i = 1, 2. Then

LF ∼
∞∑

k=0

ckΓ (kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H◦.

Proof Induction, using Lemma 2.67. 2

2.4 Gevrey classes, least term truncation, and Borel
summation

In the simple example of Ei(x), factorial divergence is associated with the
possible presence of exponentially small terms, terms beyond all orders. This
and the power-of-factorial-like divergence of formal asymptotic series of so-
lutions of differential equations are quite general phenomena, as will become
clear in the following chapters.
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Let now f̃ =
∑∞

k=0 ckx
−k be a formal power series and f a function

asymptotic to it. The definition (1.3) provides for large x estimates of the
value of f(x) within o(x−N ), N ∈ N, which are, as we have seen, insufficient
to pin down a unique f associated to f̃ . Simply widening the sector in which
(1.3) is required cannot change this situation since, for instance, exp(−x1/m)
is beyond all orders of f̃ in a sector of angle almost mπ.

It seems then reasonable to attempt to (a) lower the errors in the ap-
proximation of f by the truncates of f̃ to less than O(e−Const.|x|), to roughly
match the “natural” indeterminacy of f , and then (b) look for estimates in
a wide enough sector in the hope of ruling out any possible terms beyond
all orders, in this way restoring uniqueness of the association between f and
f̃ . In some cases this strategy is successful. One important technique in this
class is due to Gevrey (see e.g. [?]).

The formal series

f̃(x) =
∞∑

k=0

ckx
−k

is Gevrey of order 1/m, or Gevrey-(1/m) if |ck| ≤ C1C
k
2 (k!)m for some C1, C2.

Taking x = ym and g̃(y) = f̃(x), then g̃ is Gevrey-1 (albeit not necessarily
an integer power series, but noninteger power series can be treated very sim-
ilarly) and we will focus on this case.

Remarks 2.71 (a) The Gevrey order of the series
∑

k(k!)rxk r > 0, is the
same as that of

∑
k(rk)!xk. Indeed, if ε > 0 we have, by Stirling’s formula,

Const (1 + ε)−k ≤ (rk)!/(k!)r ∼ Const k
1
2−r ≤ Const (1 + ε)k

(b) There is a simple connection between the Gevrey order of formal power
series solutions of a differential equation at an irregular singular point and the
type of exponentials of the associated homogeneous equation. For illustration
consider the example of the equation xq+1y′ − ay = 1 in a neighborhood
of zero, with q ∈ N. The coefficients ck of a formal power series solution
ỹ =

∑
k≥0 ckx

k satisfy the recurrence a0 = 0 and (k − q)ck−q + ack = 0 if
k − q > 0. If q ≥ 1 we get cjq+q = ajj!, the series diverges and x = 0 is an
irregular singularity. Using part (a) above we see that the series is Gevrey-q.
On the other hand, the solution of the homogeneous equation xq+1y′−ay = 0
is C exp

(
−a

qx
−q
)
. Precise asymptotic control of the coefficients of formal

power series solutions can be obtained for quite general differential systems,
see e.g. [?].

Exercise. Formulate and prove a more general result in the spirit of Remark
2.71 (b) for n-th order linear differential equations.

*
Let f̃ be Gevrey-1. A function f is Gevrey-1 asymptotic to f̃ as x → ∞

in a sector S if for some C3, C4, C5, and all x ∈ S with |x| > C5 and all N
we have
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|f(x)− f̃ [N ]| ≤ C1C
N+1
2 |x|−N−1(N + 1)! (2.72)

i.e. the error f − f̃ [N ] is of the same form as the first omitted term in f̃ .

Remark 2.73 If f̃ is Gevrey-1 and f is Gevrey-1 asymptotic to f̃ then f
can be approximated by f̃ with exponential precision in the following sense.
Let N = b |x/C2| c, the integer part of |x|; then for any C > C2 we have

f(x)− f̃ [N ](x) = o(e−|x|/C) |x| large) (2.74)

Indeed, applying Stirling’s formula we have

N !N−NCN
2 |x|−N = O(

√
Ne−|x|/C2)

2

Notes. (a) A heuristic discussion about the strategy may be helpful now;
rigorous statements will follow.

Usually the imprecision implied by (2.74) is larger than the potential
terms beyond a Gevrey-1 series f̃ , at least in some directions.

However, if the estimate (2.74) holds for f in a sector Sπ+ of opening more
than π, then it is easy to see that (2.74) cannot hold at the same time for f
and for f +C ′e−C′′xp

x−m, no matter what C ′′,m, p are, unless C ′ = 0. Since
terms beyond all orders, if present, are expected to be some combinations of
powers, exponentials and logs, these and similar attempts suggest that if f
satisfies (2.74) in Sπ+, then f is unique. Theorem 2.75 below shows that this
is true.

(b) It is also interesting that when there is a unique f in Sπ+ with the
property (2.74), then f̃ is Borel summable, and f is precisely the Borel sum
of f̃ (Theorem 2.75 below).4

(c) However the same theorem suggests that unless the series f̃ is trivial,
there must exist some Sπ+ in which no f is Gevrey−1-asymptotic to f̃ and
where this method of associating an f to f̃ fails. In addition we note that
there is no entire function of exponential order one at infinity (i.e., f(x) ≤
C1 exp(C2|x|)) which is Gevrey−1 asymptotic to a divergent series in more
than a half plane. Indeed if there was such a function f then the Phragmén-
Lindelöf principle applied in C\Sπ+ would imply that f is bounded at infinity,
thus f and f̃ would be constant.

(d) Summation to the least term as will be detailed in the Chapter 4,
is in a sense a refined version of Gevrey asymptotics. It requires optimal
constants in addition to an improved form of Rel. (2.72). In this way the

4 Borel summability is clearly not ensured by the Gevrey character of f̃ alone,
since such estimates give no information about

∑
Bf̃ beyond the implied disk

of convergence.
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imprecision of approximation of f by f̃ turns out to be smaller than the
largest exponentially small term beyond all orders, and thus the cases in
which uniqueness is ensured are more numerous.
Connection between Gevrey asymptotics and Borel summation.

Theorem 2.75 Let f̃ =
∑∞

k=2 ckx
−k be a Gevrey-1 series and assume the

function f is analytic for large x in Sπ+ = {x : | arg(x)| < π/2+ δ} for some
δ > 0 and Gevrey-1 asymptotic to f̃ in Sπ+. Then

(i) f is unique.
(ii) f̃ is Borel summable in any direction eiθR+ with |θ| < δ and f =

LBθf̃ .
(iii) B(f̃) is analytic (at p = 0 and) in the sector Sδ = {p : arg(p) ∈

(−δ, δ)}, and uniformly bounded in any closed subsector.
(iv) Conversely, if f̃ is Borel summable along any ray in the sector Sδ

given by | arg(x)| < δ, and uniformly bounded in any closed subsector of
Sδ, then f is Gevrey-1 with respect to its asymptotic series f̃ in the sector
| arg(x)| ≤ π/2 + δ.

Notes. (i) In particular, when the assumptions of the theorem are met,
Borel summability follows using only asymptotic estimates.

(ii) We also see that the cases described in Theorem 2.75 in which Gevrey
estimates ensure uniqueness of the association between f̃ and f are less gen-
eral than those in which f̃ is Borel summable.

Proof of Theorem 2.75. (i) If f1 and f2 satisfy the assumption of the
theorem, then by Proposition 2.73, for some constants C1, C2 we have

|f1(x)− f2(x)| < C1e
−C2|x| (2.76)

in a sector of opening more then π. Since f1 and f2 are analytic, Phragmén-
Lindelöf’s principle gives f1 − f2 = 0. Alternatively, we could note that by
Proposition 2.52 L−1{f1 − f2} exists and is analytic for arg(p) ∈ (−δ, δ)
and that, by (2.76), for |p| < C2 the contour of integration in (2.54) can be
pushed to infinity implying that L−1{f1−f2} = 0 on the interval (0, C2). By
analyticity L−1{f1 − f2} ≡ 0 and the inversion formula gives f1 − f2 = 0.

(ii) By a simple change of variables we arrange C1 = C2 = 1. The series
F̃1 = Bf̃ is convergent for |p| < 1 and defines an analytic function, F1. By
Proposition 2.52, the function F = L−1f is analytic for |p| > 0, | arg(p)| < δ,
and F (p) is analytic and uniformly bounded if | arg(p)| < δ1 < δ. We now
show that F is analytic for |p| < 1. Taking p real, p ∈ [0, 1) we obtain in view
of (2.72) that

|F (p)− F̃ [N−1](p)| ≤
∫ i∞+N

−i∞+N

d|s|
∣∣∣f(s)− f̃ [N−1](s)

∣∣∣ e<(ps)

≤ N !epN

∫ ∞

−∞

dx
|x+ iN |N

= N !epN

∫ ∞

−∞

dx
(x2 +N2)N/2

(2.77)
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where we take x = N tan t and get the estimate for the last term

N !epN

NN−1

∫ π/2

−π/2

cosN−2(t)dt ∼ 2πNe(p−1)N (N →∞) (2.78)

(using, for instance, by the Laplace method). Since the RHS in (2.78) vanishes
in the limit N → ∞ for p ∈ [0, 1), this implies F = F1 for p ∈ [0, 1), thus
F = F1 for any p with |p| < 1 and also for any p with | arg(p)| < δ.

Since
∑
Bf̃ = L−1f , (iii) follows now from Proposition 2.52.

(iv) Let |φ| < δ. We have, by integration by parts,

f(x)− f̃ [N−1](x) = x−NL dN

dpN
F (2.79)

On the other hand, F is analytic in Sa, some a = a(φ)−neighborhood of
the sector {p : | arg(p)| < |φ|}. Estimating Cauchy’s formula on an a−circle
around the point p with | arg(p)| < |φ| we get

|F (n)(p)| ≤ N !a(φ)−N‖F (p)‖∞;Sa

Thus, by (2.79), with |θ| ≤ |φ| chosen so that γ = cos(θ− arg(x)) is maximal
we have

∣∣∣f(x)− f̃ [N ]
∣∣∣ = ∣∣∣∣∣x−N

∫ ∞ exp(−iθ)

0

F (N)(p)e−pxdp

∣∣∣∣∣
≤ N !a−N |x|−N‖F‖∞;Sa

∫ ∞

0

e−pxγdp = N !a−Nγ−1|x|−N−1‖F‖∞;Sa

(2.80)

2

Stokes lines. Theorem 2.75 and the discussion in §2.3b show that for a
non-convergent Gevrey-1 series f̃ there must exist sectors of opening more
than π where no f is Gevrey−1 asymptotic to f̃ . These “singular” directions
reflect the presence of the local Stokes phenomenon.
Definition. Let f̃ be Gevrey-1.

We say that f̃ is Gevrey-1 asymptotic in S(φ; ε;R) where

S(φ; ε;R) = {x : |x| > R, | arg(x)− φ| < π/2 + ε}

if there exists f analytic S(φ; ε;R) such that f G1∼ f̃ in S(φ; ε;R) (then this
f is unique, by Theorem 2.75).

If φ is such that f̃ is not Gevrey-1 asymptotic in S(φ; ε;R), we say that
dφ = {x : arg(x) = φ} is a Stokes ray for f̃ .

Proposition 2.81 Let f̃ be Gevrey-1. Then f̃ is divergent iff it has at least
a Stokes ray.
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Proof. This property of f̃ is clearly independent of any finite number of terms
in f̃ so we may assume f̃ =

∑∞
k=2 fkx

−k. If f̃ is convergent then clearly it
has no Stokes directions. For the converse, we assume that f̃ has no Stokes
directions and for φ ∈ [0, 2π + δ] we let εφ > 0, Rφ, fφ be such that fφ

G1∼ f̃

in S(φ; εφ;Rφ). If E(φ) is the sup of εφ such that f̃ is Gevrey-1 asymptotic
in S(φ; εφ;Rφ) for some Rφ then it is easy to check that E(φ) is continuous
in φ and then, for some N ∈ N we have infφ∈[0,2π+δ]E(φ) > (2/N) > 0.
In all sectors Sj = S(j/N ; εj/N ;Rj/N ) with 0 ≤ j/N < 2π + δ the series
f̃ is Gevrey-1 asymptotic, and since Sj ∩ Sj+1 is wider than π we have by
Theorem 2.75 that f(j+1)/N = fj/N if 0 ≤ j/N < 2π + δ. Thus fj/N = f
is independent of j and in particular f is single-valued at infinity. Thus, by
Liouville’s theorem f is analytic at infinity and f̃ is convergent.

2.4a Strategies of Borel summation of formal power series
solutions: an introduction

Assume we intend to solve using Borel summability techniques an ODE, say

y′ + y = x−2 + y3 (2.82)

To find a formal power series solution we proceed as usual, separating out
the dominant terms, in this case y and x−2. We get the iterations scheme

y[n](x)− x−2 = y3
[n−1] − y′[n] (2.83)

with y[0] = 0. After a few iterations we get

ỹ(x) = x−2+2x−3+6x−4+24x−5+121x−6+732x−7+5154x−8+· · · (2.84)

For differential equations of this kind there exist results in great generality as
to the Borel summability of formal transseries solutions, and we shall see a
few of these in the sequel. The purpose now is to illustrate a strategy of proof
that is convenient and which applies to a reasonably large class of settings.

It would be technically awkward to prove that after Borel transform the
series is convergent, extends analytically along the real line and better ap-
proach is has the required exponential bounds towards infinity.

A better approach is to get a direct grip on the Borel transform of ỹ via
the equation it satisfies. This equation is the formal inverse Laplace transform
of (2.83), namely, setting Y = Bỹ

−pY + Y = p+ Y ∗ Y ∗ Y := p+ Y ∗3 (2.85)

We then show that the equation (2.85) has a (unique) solution which is
analytic in a neighborhood of the origin together with a sector centered on
R+ in which this solution has exponential bounds. Thus Y is Laplace trans-
formable, and immediate verification shows that y = LY satisfies (2.82).
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Furthermore, since the Maclaurin series S(Y ) formally satisfies (2.85) then
the formal Laplace (inverse Borel) transform B−1SY is a formal solution of
(2.82), and thus equals ỹ since this solution, as we proved in many similar set-
tings is unique. But since then SY = Bỹ it follows that ỹ is Borel summable,
and the Borel sum solves (2.82).

The transformed equations are expected to have analytic solutions, there-
fore to be more regular than the original ones.

Regularizing the heat equation.

fxx − ft = 0 (2.86)

Since (2.86) is parabolic, power series solutions

f =
∞∑

k=0

tkFk(x) =
∞∑

k=0

F
(2k)
0

k!
tk (2.87)

are divergent even if F0 is analytic (but not entire). Nevertheless, under
suitable assumptions, Borel summability results of such formal solutions have
been shown by Lutz, Miyake, and Schäfke [?] and more general results of
multisummability of linear PDEs have been obtained by Balser [?].

The heat equation can be regularized by a suitable Borel summation. The
divergence implied, under analyticity assumptions, by (2.87) is Fk = O(k!)
which indicates Borel summation with respect to t−1. Indeed, the substitution

t = 1/τ ; f(t, x) = t−1/2g(τ, x) (2.88)

yields

gττ + τ2gτ +
1
2
τg = 0

which becomes after formal inverse Laplace transform (Borel transform) in
τ ,

pĝpp +
3
2
ĝp − ĝxx = 0 (2.89)

which is brought, by the substitution ĝ(p, x) = p−
1
2u(x, 2p

1
2 ); y = 2p

1
2 , to

the wave equation, which is hyperbolic, thus regular

uxx − uyy = 0. (2.90)

Existence and uniqueness of solutions to regular equations is guaranteed by
Cauchy-Kowalevsky theory. For this simple equation the general solution
is certainly available in explicit form: u = f(x − y) + g(x + y) with f, g
arbitrary twice differentiable functions. Since the solution of (2.90) is related
to a solution of (2.86) through (2.88), to ensure that we do get a solution it
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is easy to check that we need to choose f = g (up to an irrelevant additive
constant which can be absorbed into f) which yields,

f(t, x) = t−
1
2

∫ ∞

0

y−
1
2

[
u
(
x+ 2 y

1
2

)
+ u

(
x− 2 y

1
2

)]
exp

(
−y
t

)
dy (2.91)

which, after splitting the integral and making the substitutions x± 2 y
1
2 = s

is transformed into the usual Heat kernel solution,

f(t, x) = t−
1
2

∫ ∞

−∞
u(s) exp

(
− (x− s)2

4t

)
ds (2.92)

*

2.4b Convolutions: elementary properties

The transformed equation (2.85) is a convolution equation and it is useful
to list first some elementary properties of convolutions. Some spaces are well
suited for the study of convolution algebras.

(1) Let ν ∈ R+ and define L1
ν := {f : R+ : f(p)e−νp ∈ L1(R+)}; then the

norm ‖f‖ν is defined as ‖f(p)e−νp‖1 where ‖ · ‖1 denotes the L1 norm.

Proposition 2.93 L1
ν is a Banach algebra with respect to convolution.

Proof. Note first that if f ∈ L1
ν then the Laplace transform of f exists for

Re(x) ≥ ν and f, g ∈ L1
ν implies

‖f ∗ g‖ν =
∫ ∞

0

e−νp

∣∣∣∣∫ p

0

f(s)g(p− s)ds
∣∣∣∣ dp

=
∫ ∞

0

∣∣∣∣∫ p

0

f(s)e−νsg(p− s)e−ν(p−s)ds

∣∣∣∣ dp
≤
∫ ∞

0

∫ p

0

∣∣f(s)e−νs
∣∣ ∣∣∣g(p− s)e−ν(p−s)

∣∣∣ dsdp
=
∫ ∞

0

∣∣f(s)e−νs
∣∣ ∫ ∞

0

ds
∣∣g(s)e−νs

∣∣ ds = ‖f‖ν‖g‖ν (2.94)

In particular, convolution is well defined in L1
ν and we have, by a very similar

calculation,

L [f ∗ g] = (Lf)(Lg) (2.95)

Furthermore,

L [f ∗ (g ∗ h)] = L[f ]L [g ∗ h] = L[f ]L[g]L[h] = L [(f ∗ g) ∗ h] (2.96)
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and since the Laplace transform is injective, we get

f ∗ (g ∗ h) = (f ∗ g) ∗ h (2.97)

and convolution is associative. Similarly, it is easy to see that

f ∗ g = g ∗ f, f ∗ (g + h) = f ∗ g + f ∗ h (2.98)

(2) Another important space is AK;ν , the space of analytic functions ana-
lytic in a star-shaped neighborhood N ∈ C of the interval [0,K] in the norm
(ν ∈ R+)

‖f‖ = K sup
p∈N

∣∣∣e−ν|p|f(p)
∣∣∣

Note This norm is equivalent with the sup norm, but is useful in controlling
exponential growth.

Proposition 2.99 The space AK;ν is a Banach algebra with respect to con-
volution.

Proof. Analyticity of convolution is proved in the same way as Lemma 2.38.
Associativity and commutativity of convolution are shown either by a strat-
egy similar to the one in the previous proposition, or by direct verification.

To show continuity of convolution we let |p| = P , p = Peiφ and note that

∣∣∣∣Ke−νP

∫ p

0

f(s)g(p− s)ds
∣∣∣∣ =

∣∣∣∣∣Ke−νP

∫ P

0

f(teiφ)g((P − t)eiφ)dt

∣∣∣∣∣
=

∣∣∣∣∣K−1

∫ P

0

Kf(teiφ)e−νtKg((P − t)eiφ)e−ν(P−t)dt

∣∣∣∣∣
≤ K−1‖f‖‖g‖

∫ P

0

d|t| = ‖f‖‖g‖ (2.100)

(3) Finally, we note that the space AK,ν;0 = {f ∈ AK,ν : f(0) = 0} is a
closed subalgebra of AK,ν .

Focusing spaces and algebras. An important property of the norms intro-
duced, on the spaces L1

ν and AK,ν;0 is that for any f in these spaces ‖f‖ → 0
as ν → ∞. In the case L1

ν this is an immediate consequence of dominated
convergence.

More generally, we say that a family of norms ‖‖ν depending on a param-
eter ν ∈ R+ is focusing if for any f with ‖f‖ν0 <∞

‖f‖ν ↓ 0 as ν ↑ ∞ (2.101)
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Let E be a linear space and {‖‖ν} a family of norms satisfying (2.101). For
each ν we define a Banach space Bν as the completion of {f ∈ E : ‖f‖ν <∞}.
Enlarging E if needed, we may assume that Bν ⊂ E . For α < β, (2.101) shows
that the identity is an embedding of Bα in Bβ . Let F ⊂ E be the projective
limit of the Bν . That is to say

F :=
⋃
ν>0

Bν (2.102)

is endowed with the topology in which a sequence is convergent if it converges
in some Bν . We call F a focusing space.

Consider now the case when (Bν ,+, ∗, ‖‖ν) are commutative Banach al-
gebras. Then F inherits a structure of a commutative algebra, in which ∗
(“convolution”) is continuous. We say that (F , ∗, ‖‖ν) is a focusing alge-
bra.
Examples The spaces

⋃
ν>0 L

1
ν and

⋃
ν>0AK;ν;0 are focusing algebras.

2.5 Borel summability of solutions of nonlinear
equations: an introduction

We will analyze a simple example which will however illustrate many of the
important technical points in Borel summation of nonlinear systems. Consider
the equation:

y′ − y = x−2 + y3 (2.103)

Formal inverse Laplace transform of (2.103) yields, with the notation L−1y =
Y and Y ∗3 = Y ∗ Y ∗ Y ,

−pY − Y = p+ Y ∗3 (2.104)

Proposition 2.105 (i) Assume Y ∈ L1
ν is a solution of (2.104). Then y =

LY is a solution of (2.103).
(ii) Assume Y is analytic at the origin then y has an asymptotic power

series as x → ∞ which is the formal Laplace transform of the Maclaurin
series of Y .

(iii) In the assumption (iii), the formal power series solution of (2.103)
is Borel summable, and it Borel sums to y.

Proof. (i) Taking y = LY we get straightforwardly equation (2.103) by taking
the Laplace transform of (2.104).

(ii) Watson’s Lemma directly implies this conclusion.
(iii) Since the Maclaurin series of Y TY is a formal solution of (2.104) it

follows easily that its formal Laplace transform B−1TY is a formal solution
of (2.103). But the uniqueness of the formal power series solution for (2.103)
is shown as for (2.16).
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We now show that the assumptions in (i) and (ii) in the previous Proposition
hold.

Proposition 2.106 For large enough ν, the equation

Y = − p

p+ 1
− 1
p+ 1

Y ∗3 = NY

is contractive in a small ball in L1
ν and thus has a unique solution there.

Proof. Let ε be small, choose ν such that ‖p(p + 1)−1‖ν ≤ ε/2 (which is
possible since L1

ν is a focusing algebra) and define the ball Bε = {f : ‖f‖ν ≤ ε.
It is easy to see that N (Bε) ⊂ Bε. Contractivity follows from

‖Y ∗1 3− Y ∗32 ‖ = ‖(Y1 − Y2) ∗ (Y ∗21 + Y1 ∗ Y2 + Y ∗22 )‖ ≤ 3ε2‖(Y1 − Y2)‖

2.5a Preview of solution of differential equations by generalized
Borel summation

The type of equations for which complete rigorous results exist are of the
form

y′ = f(x−1,y) y ∈ Cn, x ∈ C (2.107)

where
(i) f is analytic in a neighborhood Vx × Vy of (0,0), under the genericity
conditions that:
(ii) the eigenvalues λj of the matrix Λ̂ = −

{
∂fi

∂yj
(0,0)

}
i,j=1,2,...n

are linearly

independent over Z (in particular λj 6= 0) and such that
(iii) arg λj are all different.

(In fact somewhat less restrictive conditions are used, namely those of [?]
§1.1.2.)

By elementary changes of variables, the system (3.117) can be brought to
the normalized form [?],

y′ = −Λ̂y +
1
x
Ây + g(x−1,y) (2.108)

where Λ̂ = diag{λj}, Â = diag{αj} are constant matrices, g is analytic at
(0,0) and g(x−1,y) = O(x−2) + O(|y|2) as x → ∞ and y → 0. Performing
a further transformation of the type y 7→ y −

∑M
k=1 akx

−k (which takes out
M terms of the formal asymptotic series solutions of the equation), makes

g(|x|−1,y) = O(x−M−1; |y|2; |x−2y|) (x→∞; y → 0)
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where
M ≥ max

j
<(αj)

and O(a; b; c) means (at most) of the order of the largest among a, b, c.
Our analysis applies to solutions y(x) such that y(x) → 0 as x → ∞

along some arbitrary direction d = {x ∈ C : arg(x) = φ}. We shall exemplify
some of these transformations in the sequel.

An n-parameter formal solution of (3.115) (under the assumptions men-
tioned) as a combination of powers and exponentials is found in the form

ỹ(x) =
∞∑

k1,k2,...,kn=0{
Ck1

1 Ck2
2 · · ·Ckn

n e−(k1λ1+k2λ2+...knλn)xxk1α1+k2α2+...knαn ỹk1,k2,...,kn

}
:=

∑
k∈(N∪{0})n

Cke−λ·kxxα·kỹk(x) (2.109)

where ỹk are (usually factorially divergent) formal power series and in general

ỹk(x) =
∞∑

r=0

ỹk;r

xr
(2.110)

that can be determined by formal substitution of (2.109) in (3.115); C ∈
Cn is a vector of parameters5 (we use the notations Ck =

∏n
j=1 C

kj

j , λ =
(λ1, ..., λn), α = (α1, ..., αn), |k| = k1 + ...+ kn).

Given a direction d in the complex x-plane the transseries (on d), are, in
our context, those exponential series (2.109) which are formally asymptotic
on d, i.e. the terms Cke−λ·kxxα·kx−r (with k ∈ (N ∪ {0})n, r ∈ N ∪ {0})
form a well ordered set with respect to � on d (see also [?]). In other words,
indices i for which the corresponding term e−λix is not formally small in d
may not appear, that is, must be associated with Ci = 0.

The results proven for this type of equations may be, informally, summa-
rized in the following.

i) All ỹk are generalized Borel summable at the same time.

ii) The Borel summed series yk = Bỹk exist in a half plane H = {x :
<(x) > x0} for some x0 independent of k and are analytic there.

5 In the general case when some assumptions made here do not hold, the general
formal solution may also involve compositions of exponentials, logs and powers
[?].
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iii) There exists a constant c independent of k so that supx∈H |yk| ≤ ck.
Thus, the new series,

y =
∑

k∈(N∪{0})n

Cke−λ·kxxα·kyk(x) (2.111)

is convergent for any C for which the corresponding expansion (2.109)
is a transseries, in a region given by the condition |Cie

−λixxαi | < c−1
i

(remember that Ci is zero if |e−λix| is not small).

iv) The function y obtained in this way is a solution of the differential
equation (3.117).

v) Any solution of the differential equation (3.117) which tends to zero
in some direction d can be written in the form (2.111) for a unique
C, this constant depending usually on the sector where d is. This
dependence is a manifestation of the Stokes phenomenon.

vi) The Borel summation operator B is the usual Borel summation in
any direction d of x which is not a Stokes direction. However B is
still an isomorphism, whether d is a Stokes direction or not.

Some remarks about structure of singularities in Borel space and
resurgence phenomena. Let us look at a very simple prototypical example

y′′ + (2 + x−1)y′ − (3 + x−1)y = x−1y2

We take y1 = y, y2 = y′ and get a system of equations of the form(
y1
y2

)′
=
(

0 1
−2 3

)(
y1
y2

)
+

1
x

(
0 0
1 1

)(
y1
y2

)
+

1
x

(
0
y2
1

)
Diagonalization of the two 2-by-2 matrices on the right hand side is achieved
easily my making a transformation of the dependent variable of the form
y 7→ (M̂1 + x−1M̂)y for suitably chosen M̂i and the system that results is of
the form

(
y1
y2

)′
=
(
−1 0
0 2

)(
y1
y2

)
+

1
x

(
α1 0
0 α2

)(
y1
y2

)
+
(
g1(x−1, y1, y2)
g2(x−1, y1, y2)

)
satisfying our assumptions. In this particular example, the eigenvalues,
though not linearly independent over Z still satisfy the weaker conditions in
[?] and the general theory applies. If the direction of interest for the variable
x is R+, then the only admissible exponential is e−x as e2x tends to infinity
instead of being small. Thus there is in the direction of R+ a one-parameter
only family of transseries, in the form

n∑
k=0

Cke−kxxkαỹk(x)
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Analytic continuations. The series ỹk will be classically Borel summable
in any direction other than R+ and R−. It turns out that along any Stokes
direction, here R+ and R−, the Borel transforms Yk = Bỹk develop arrays of
singularities. These singularities are located at positive multiple integers of
1, and −2. It is proved that the functions Yk can be continued analytically
along any paths in the complex plane that go towards infinity (the modulus
of p increases along the path) and cross between the singular points in the
arrays at most once. Borel summability along the special directions of the
singularities is ensured both in a sense of distributions, in which generalized
Laplace transform is taken through the singular points, or, equivalently, as a
specific average of analytic continuations along the paths mentioned above.
The averaging formula is the same, irrespective of the differential equation.

Resurgence. This is another very important phenomenon that occurs in
differential systems, in which the higher index series ỹk are related to ỹ0

in a way that does not depend on the differential equation and permits re-
construction of the ỹk, thus of the general formal solution and ultimately of
the whole differential equation from the mere knowledge of ỹ0. For instance
under proper normalization, the Yk are related to differences in the analytic
continuations of Y0 along the various paths between singularities.

Normalization procedures. Many equations which are not presented in
the form (3.117) can be brought to this form by changes of variables. The key
idea to do this in a systematic way is to calculate the transseries solutions of
the equation, find the transformations which bring that to the normal form
(2.109), and then apply these transformations to the original variables in the
differential equation. The first part of the analysis need not be rigorous, as
the conclusions are made rigorous in the sequel.

We illustrate this on a simple equation, as t→∞:

u′ = u3 − t (2.112)

This is not of the form (3.117) due to the fact that g(u, t) = u3 − t is not
analytic in t at t = ∞. This can be however remedied in the way we described
before.

As we have already seen before, dominant balance for large t requires
writing the equation (2.112) in the form

u = (t+ u′)1/3 (2.113)

and we have u′ � t. Three branches of the cubic root are possible and are
investigated similarly, but we aim here merely at illustration and choose the
simplest. Iterating (2.113) in the usual way, we are lead to a formal series
solution in the form
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ũ = t1/3 +
1
9
t−4/3 + ... = t1/3

∞∑
k=0

ũk

t5k/3
(2.114)

To find the full transseries we now substitute u = ũ+ δ in (2.112) and keep
the dominant terms. We get

δ′

δ
=

9
5
t2/3 +

2
3

ln t

from which it follows that

δ = Ct2/3e
9
5 t5/3

(2.115)

Since the normalized transseries must have exponentials of the form e−x, the
adequate independent variable must then be x = − 9

5 t
5/3. In this variable,

the formal power series (2.114) takes the form

ũ = x1/5
∞∑

k=0

ũk

xk
(2.116)

But this should have been of the form
∑∞

k=0
ũk

xk . Thus the right dependent
variable is h = x1/5u. In this variable, we are led to the equation

h′ +
1
5x
h+ 3h3 − 1

9
= 0 (2.117)

where analyticity at infinity is now ensured! The only remaining transforma-
tion is to pull out a few terms out of h, to make the nonlinearity of the order
g = O(x−2, h2). This is done by calculating, again by dominant balance,
the first two terms in the 1/x power expansion of h, namely 1/3 − x−1/15
and subtracting them out of h, i.e., changing to the new dependent variable
y = h− 1/3 + x−1/15. This yields

y′ = −y +
1
5x

y + g(y, x−1) (2.118)

where

g(y, x−1) = −3(y2 + y3) +
3y2

5x
− 1

15x2
− y

25x2
+

1
3253x3

(2.119)

We see that

λ = 1, α = 1/5 (2.120)
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Sections §2.109 and §2.3 are helpful to motivate the rigorous but relatively
more abstract constructions of this chapter.

Transseries are comprehensive generalizations of power series, constructed
to represent analytic functions not only at regular points but at complicated
singularities as well.

Because of Stokes’ phenomenon the same function may have differ-
ent transseries in different directions at the singularity. Loosely speaking,
transseries are asymptotic, finitely generated combinations powers, logarithms
and exponentials, and represent a closure of usual power series under a wide
variety of operations. Because of this, they are able to describe most func-
tions of “natural origin”, to use an expression of Écalle. Asymptotic means
that the terms can be ordered decreasingly, with respect to the order relation
f1(x) � f2(x) if f1(x) = o(f2(x)) as x→ x0. It is usually convened to place
x0 at ∞ and make the direction of the analysis that of R+. A simple example
of a transseries of exponential level 1 with generators 1/x, e−x, as x→ +∞,
is

∞∑
k,m=0

ckme
−kxx−m

where ckm ∈ C. An example of a transseries of exponential level 2, with level
0 generators x−1 and x−

√
2, level 1 generator exp(x), and level 2 generators

exp(
∑∞

k=0 cke
xx−k) and exp(−ex) is

e
∑∞

k=0 ckexx−k

+
∞∑

k=0

dkx
−k

√
2 + e−ex

Some examples of transseries-like expressions which are in fact not transseries
as x→ +∞ are

∑∞
k=0 x

k (it fails the asymptoticity condition) and
∑∞

k=0e
−enx

(it does not have finitely many generators, this property is described precisely
in the sequel).

The underlying structure behind the condition of asymptoticity is that of
well ordering. In order to formalize the notion of transseries and study their
properties, it is useful to first introduce and study more general abstract
expansions, over a well ordered set.
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3.0b Totally ordered sets; well ordered sets

Let A be an ordered set, with respect to ≤. If x 6≤ y we write x > y or
y < x. A is totally ordered if any two elements are comparable, i.e., if for
any x, y ∈ A we have x ≥ y or y ≥ x. If A is not totally ordered, it is called
partially ordered.

The set A is well ordered with respect to > if every nonempty totally
ordered subset (chain) of A has a minimal element, i.e.

A′ ⊂ A =⇒ ∃M ∈ A′ such that ∀x ∈ A′, M ≤ x

If any nonempty totally ordered subset of A has a maximal element, we
say that A is well ordered with respect to <.

3.0c Finite chain property

A has the finite descending chain property if there is no infinite strictly
decreasing sequence in A, in other words if f : N 7→ A is decreasing, then f
is constant for large n.

Proposition 3.1 A is well ordered with respect to > iff it has the finite
descending chain property.

Proof. A strictly decreasing infinite sequence is obviously totally ordered
and has no minimal element. For the converse, if there exists A′ ⊂ A such
that ∀x ∈ A′ ∃ y =: f(x) ∈ A′, f(x) < x then for x0 ∈ A′, the sequence
{f (n)(x0)}n∈N is an infinite descending chain in A.

Example: multi-indices. N is well ordered with respect to >, and so is

NM − k0 := {k ∈ ZM : k ≥ −k0}

with respect to the order relation m ≥ n iff mi ≥ ni ∀ i ≥ k. Indeed an
infinite descending sequence ni would be infinitely descending on at least one
component.

Proposition 3.2 Let k0 ∈ ZM be fixed. Any infinite set A in NM − k0

contains a strictly increasing (infinite) sequence.

Proof. The set A is unbounded, thus there must exist at least one component
i ≤ M so that the set {mi : m ∈ A} is also unbounded; say i = 1. We can
then choose a sequence S = {mn}n∈N so that (mn)1 is strictly increasing. If
the set {(mn)j : m ∈ A; j > 1} is bounded, then there is a subsequence S′ of
S so that (m2, ...,mn)n′ is a constant vector. Then S′ is a strictly increasing
sequence. Otherwise, one component, say (mn′)2 is unbounded, and we can
choose a subsequence S′′ so that (m1,m2)n′′ is increasing. The argument
continues in this fashion until in at most M steps an increasing sequence is
constructed.
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Corollary 3.3 Any infinite set of multi-indices in NM contains at least two
comparable elements.

Corollary 3.4 Let A be a nonempty set of multi-indices in NM −k0. There
exists a unique and finite minimizer set MA such that none of its elements
are comparable and for any a′ ∈ A there is an a ∈MA such that a ≤ a′.

Proof. Consider the set C of all maximal totally ordered subsets of A (every
chain is contained in a maximal chain; also, in view of countability, Zorn’s
lemma is not needed). Let MA be the set of the least elements of these
chains, i.e. MA = {min c : c ∈ C}. Then MA is finite. Indeed, otherwise,
by Corollary 3.4 at least two elements in MA such that a′1 < a′2. But this
contradicts the maximality of the chain whose least element was a′2. It is clear
that if M′

A is a minimizer then M′
A ⊃ MA. Conversely if m ∈ M′

A \MA

then m ≮ a, ∀a ∈MA contradicting the definition of MA.

3.0d First step in formalizing transseries. Abstract series

If G is a commutative group with an order relation, we call it an abelian
ordered group if the order relation is compatible with the group operation,
i.e., a ≤ A and b ≤ B =⇒ ab ≤ AB (e.g. R or ZM with addition). Let
G be an abelian ordered group and let µ : ZM 7→ G be a decreasing group
morphism, i.e.,

(1) µ0 = 1.
(2) µk1+k2 = µk1µk2 .
(3) k1 > k2 =⇒ µk1 < µk2 .

Then µ(Z) is the subgroup finitely generated by µej
; j = 1, ...,M where ej is

the unit vector in the direction j in ZM , and since ej > 0 it follows that

µej < 1, j = 1, ...,M

In view of our final goal, a simple example to keep in mind is the mul-
tiplicative group of monomials G1, generated by the functions x−1/2, x−1/3

and e−x, for large positive x. The order relation on G1 is µ1 < µ2 if |µ1(x)| <
|µ2(x)| for all large x. When M = 3 we choose µ(k) = x−k1/2−k2/3e−k3x.
After Remark 3.21 we mainly focus on the case where G is totally ordered.

Remark 3.5 The relation µk1 = µk2 induces an equivalence relation on Zr;
we denote it by ≡.

For instance in G1, since 1/2 and 1/3 are not rationally independent, there
exist distinct k′,k so that k′ ∈ N3 : µk′ = µk.

Remark 3.6 Clearly any choice of µi with µi < 1 for i = 1, ...,M defines
an order preserving morphism via

µ(k) =
M∏
i=1

µki
i := µk (3.7)
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Ordered morphisms preserve well-ordering:

Proposition 3.8 Let P ⊂ ZM be well ordered (an important example for us
is P = NM − k0) and µ an order preserving morphism. Then µ(P ) is well
ordered.

Proof. Assuming the contrary, let J = {kn}n∈N be such that µJ := {µ(kn)}n∈N
is an infinite strictly ascending chain in µ(P ). Then the index set J is clearly
infinite, and then, by Proposition 3.2 it has a strictly increasing subsequence
J ′. Then µJ′ is a descending subsequence of µJ , which is a contradiction.

Corollary 3.9 The following sets are finite:

1. {k′ ∈ NM − k0 : µk′ = µk} (for fixed µk).
2. {k,k′ ∈ NM − k0 : k + k′ = k′′} (for fixed k′′)
3. {k ∈ NM − k0 : |k| :=

∑M
i=1 ki < C} (for fixed C).

Proof. By Proposition 3.2, if the set in 1. was infinite, there would exist a
strictly increasing subsequence of k′, for which then {µk′} would be strictly
decreasing, contradiction. The second part follows if we take µk = k and the
proof of the last part is similar.

Definition 3.10 Let k0 ∈ ZM . We let Ãk0(µ1, ..., µM ) = Ãk0 be the space
of formal series in µ1, ..., µM , where µj < 1, (i.e. the space of real or complex
functions on µ(NM − k0) with usual addition and convolution (3.16). ) and
we define Ã = ∪k0∈ZÃk0 .

Definition 3.11 The sum

S̃c =
∑
k≥k0

ckµk

is in collected form if, by definition, ck 6= 0 =⇒ k = max{k′ : k′ ≡ k},
where the maximum is with respect to the lexicographic order. (In other words
the coefficients are collected and assigned to the earliest µ in its equivalence
class.)

Remark 3.12 By Proposition 3.14 every nonzero sum can be written in col-
lected form.

Definition 3.13 Remark gives natural equivalence relation on Ã, namely
S̃1 ≡ S̃2 if the collected form of S̃1 − S̃2 is the zero series.

Proposition 3.14 Ã is an algebra with respect to componentwise multipli-
cation by scalars, componentwise addition, and the inner multiplication

S̃S̃′ =
∑
k≥k0

∑
k′≥k′0

ckck′µ
k+k′ =

∑
k′′≥k0+k′0

µk′′ck′′ (3.15)

where
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ck′′ =
∑

k≥k0,k′≥k0

k+k′=k′′

ckck′ (3.16)

The same is true for Ã(µ1, ..., µM )/ ≡. Ãk0 is an algebra if k0 ≥ 0.

Proof. Straightforward.

3.0e Pointwise-discrete topology on Ã (the asymptotic topology)

This topology is introduced in the following way:

Definition 3.17 The sequence S̃(n) in Ãk0 converges in the asymptotic
topology if for any k, c(n)

k becomes constant (with respect to n) eventually.
This induces a natural topology on Ãk0/ ≡.

This topology is metrizable. We choose the translation-invariant distance

d(S̃(1), S̃(2)) := d(S̃(1) − S̃(2), 0)

where
d(S̃, 0) := d(S̃) = sup

k≥k0;ck 6=0
e−|k|

(the condition ck 6= 0 in the definition of the distance is important for our
purpose; as usual, |k| =

∑M
i=1 ki.)

Notes 3.18

1. We make the convention sup ∅ = 0.
2. The triangle inequality, follows from the fact that if S̃1, S̃2 ∈ Ãk0 then

{k : c[1]k + c
[2]
k 6= 0} ⊂ {k : c[1]k 6= 0} ∪ {k : c[2]k 6= 0} (3.19)

3. With this choice of distance we clearly have

d(µk1µk2) = d(µk1+k2) = d(µk1)d(µk2) (3.20)

4. It is however not true in general that µk1 < µk2 implies d(µk1) < d(µk2).
For instance in the example G1 given at the beginning of §3.0d e−xxn/2 <
x−n/2 for any n ∈ N but d(e−xxn/2) = en−1 and d(x−n/2) = e−n. The
absence of some ”desired” properties of d reflects the fact that d is a
homeomorphism between (G, ·) and (R+, ·) and (G, ·, <) is (usually) not
archimedian. See also Proposition 3.25 below and Note 3.39.

Remark 3.21 It is easy to check that for any in S̃ ∈ Ã we have

S̃ =
∑
k≥k0

ckµk = lim
M→∞

∑
k≥k0;|k|≤M

ckµk
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From this point on, we assume G is a totally ordered abelian group. Let
S̃ ∈ Ã.

Remark 3.22 A subgroup of G generated by n elements µ1 < 1, ..., µn < 1 is
totally ordered and well ordered, and thus can be indexed by a set of ordinals
Ω, in such a way that ω1 < ω2 implies µω1 > µω2 . A sum

S̃ =
∑

ω∈ΩS̃

cωµω (3.23)

where we agree to omit from ΩS̃ all ordinals for which cω = 0 is called the
asymptotic form of S̃.

Definition 3.24 Dominant term, magnitude. Assume S̃ =
∑

k≥k0
ckµk ∈

Ak0 is presented in collected form. The set µk : ck 6= 0 is then totally ordered
and must have a maximal element µk1 , by Proposition 3.8. of S̃. We say that

• ck1µ
k1 =: dom(S̃) is the dominant term of S̃ and

• µk1 =: mag(S̃) is the (dominant) magnitude of S̃

(equivalently, mag(S̃) = µmin ΩS̃
). We allow for mag(S̃) to be zero, iff S̃ = 0.

Proposition 3.25 (i) We have S̃[n] → 0 ⇒ mag S̃[n] → 0 and thus the
magnitude is a continuous. Also, if |k2| ≥ 0, then

d(µk1µk2) = d(µk1+k2) ≤ d(µk1)d(µk2) (3.26)

(The condition |k2| ≥ 0 is needed, by Note 3.18.)
(ii) Addition is continuous in the asymptotic topology. Multiplication is

continuous from Ãk0 × Ãk1 → Ãk0+k1 . A Cauchy sequence in Ãk0 is clearly
convergent, and in this sense Ãk0 is a complete topological space.

Note that multiplication by scalars is not continuous.

Proof. (i) follows immediately from the definition of the topology and of
mag(·). Continuity of addition follows from the triangle inequality, cf. (3.19).
For the product note that S̃[m] → 0 implies d(S̃[m]) ≤ ε < 1 for m > mε

which entails that ε ≥ sup{d(µk
[m]) : c[m]

k 6= 0 for some k,m > mε}, and
continuity follows from (i) (3.26).

The following property is an immediate consequence of Corollary 3.13:

Remark 3.27 For any nonzero S̃ we can write

Remark 3.28 If mag(S1) > mag(S2) then mag(S1 + S2) = mag(S1) and
if S =

∑
j = 1∞S[j] converges then mag(S) ≤ magS[j] for some j.

S̃ = ck1 mag(S̃)(1 +
∑

c′k′µ
k′) = dom(S̃)(1 + S̃1)
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Product form.

Proposition 3.29 Any S̃ ∈ Ã can be written in the form

c mag(S̃)

(
1 +

∑
k>0

ckµk

)
(3.30)

i.e.,
c mag(S̃)(1 + S̃1) (3.31)

where S̃1 ∈ Ãk0 for some k0 > 0 (cf. also Remark 3.27) and mag(S̃1) < 1.

Proof. We have, by Remark 3.27,

S̃ = c mag(S̃)

1 +
∑
k≥k0

c′kµ
k1
1 · · ·µkM

M mag(S̃)−1

 (3.32)

where all the elements in the last sum are less than one.
Let A be the set of multi-indices in the sum in (3.32) for which some

ki < 0 and let A′ be its minimizer in the sense of Corollary 3.4, a finite set.
We now consider the extended set of generators

{µi : i ≤M ′} := {νmag(S̃)−1 : ν = µi with i ≤M or ν = µk with k ∈ A′}

We clearly have µi < 1. By the definition of A′, for any term in the sum in
(3.32) either k > 0 or else k = k′+k′′ with k′ ∈ A′ and k′′ ≥ 0. In both cases
we have ckµk = ck′µk′ with k′ ∈ ZM ′

and k′ > 0. Thus S̃ can be rewritten
in the form

c mag(S̃)

(
1 +

∑
k>0

ckµk

)
(k ∈ NM ′

)

where the assumptions of the Proposition are satisfied.

Remark 3.33 The set {mag(S̃) : S̃ ∈ Ãk0} is bounded (above) by a magni-
tude µ0 = µ(Ãk0) ∈ Ãk0 .

Proof. This follows from Proposition 3.8.

The proposition below discusses the closure of Ãk0 under restricted infinite
sums.

Proposition 3.34 Let j0,k0, l0 ∈ ZM with k0 + l0 = j0 and consider the
sequence in Ãk0

S̃(m) =
∑
k≥k0

c
(m)
k µk



82 3. Rigorous construction of transseries

and a fixed T ∈ Ãl0 ,

T =
∑
k≥l0

c′kµk

Then trans-composition

T (S̃) :=
∑
k≥l0

c′kµk · S̃(k)

obtained by replacing each µk in T by the product µk · S̃(k) is well defined in
Ãj0 as the limit of truncates

T [k′](S̃) =
∑

l0≤k;|k|≤M

c′kµk · S̃(k) (3.35)

Proof. The proof now follows from Note 3.18 by checking that

d(µkS̃(k)) ≤ d(µk+k0) = d(µk)d(µk0)

Note 3.36 (Restricted composition) Let S̃1, ..., S̃M ∈ A and assume

mag(S̃i) = νi < 1

Let S̃i = ciνi(1 + T̃i) where, using Proposition 3.29 we can assume that

T̃i =
∑
k>0

ck;iµ
k (3.37)

We enlarge Ak0 so that ν1, ...νM ∈ Ak0 . If

S̃ =
∑
k≥k0

ckµk (3.38)

then we define

S̃ ◦ S̃ =
∑
k≥k0

ckνk
M∏
i=1

(1 + T̃i)ki

Note 3.39 The condition that mag(S̃)(m) decreases strictly in m does not
suffice for

∑
m≥0 cmS̃

(m) to be well defined. Indeed, the terms x−m + e−x =:
S̃(m) have strictly decreasing magnitudes and yet d(S̃(m)) = e−1 6→ 0 so∑

m S̃(m) does not converge; moreover, the formal expression
∑

m≥0(x
−m +

e−x) seems meaningless anyway.
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3.0f Contractive operators on Ãk0(µ1, ..., µM)

Definition 3.40 Let J be a linear operator from Ãk0 or from one of its
subspaces, to Ãk0 ,

JS̃ = J
∑
k≥k0

ckµk =
∑
k≥k0

ckJµk (3.41)

Then J is called asymptotically contractive on Ãk0 if for some c < 1 we have

d(Jµj) ≤ c d(µj) (3.42)

Equivalently,
Jµj =

∑
p>0

cj;pµj+p

We note that by (3.42) and Proposition 3.34, J is well defined.

Definition 3.43 The linear or nonlinear operator J is (asymptotically) con-
tractive in the set A ⊂ Ak0 if J : A 7→ A and the following condition holds.
There is a c < 1 such that for any f1 and f2 in A

d(J(f1)− J(f2)) ≤ c d(f1 − f2) (3.44)

Remark 3.45 The sum of asymptotically contractive operators is contrac-
tive; the composition of contractive operators, whenever defined, is contrac-
tive.

Proposition 3.46 (i) If J is linear and contractive on Ãk0 then for any
S̃0 ∈ Ãk0 the fixed point equation S̃ = JS̃+S̃0 has a unique solution S̃ ∈ Ãk0 .

(ii) In general, if A ⊂ Ak0 is closed and J : A 7→ A is a (linear or
nonlinear) contractive operator on A, then S̃ = J(S̃) has a unique solution
is A.

Proof. For existence, we note the convergence of the recurrence fn+1 = J(fn):

d(fn+1 − fn) = d(J(fn)− J(fn−1)) ≤ c d(fn − fn−1) ≤ const cn

For uniqueness, if S̃1 and S̃2 are solutions we have d(J(S̃1− S̃2)) = d(S̃1− S̃2)
which implies S̃1 = S̃2.

Corollary 3.47 Let S̃ ∈ A0 be arbitrary and S̃n =
∑

k>0 ck;nµk ∈ A0 for
n ∈ N. Then the operator defined by

J(y) = S̃ +
∑
n≥2

S̃n−2y
n

is contractive in the set {y : mag(y) < 1}.
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Proof. We have

J(y + δ)− J(y) = δ
∑
n≥2

S̃n−2

n−1∑
j=1

yjδn−j


3.0g The field of finitely generated formal series

Let G be a totally ordered abelian group. We now define the algebra:

≈
S=

⋃
k0∈ZM

µ1<1,...,µM <1

M∈N

Ãk0(µ1, ..., µM ) (3.48)

modulo the obvious inclusions, and with the induced topology (convergence

in
≈
S means convergence in one of the Ãk0(µ1, ..., µM )).

Proposition 3.49
≈
S is a field.

Proof. The only property that needs verification is the existence of a recip-
rocal for any nonzero S̃. Using Proposition 3.29 we only need to consider the
case when

S̃ = 1 +
∑
k>0

ckµ
k

Since multiplication by t is manifestly contractive (see § 3.0f ), S̃−1 is the
solution (unique by Proposition 3.46) of

S̃−1 = 1− tS̃−1

Closure under infinite sums.

Corollary 3.50 (i) Let k0 > 0 and S̃ ∈ Ãk0 and {cn}n∈N ∈ C be any
sequence. Then

∞∑
n=0

cnS̃
n ∈ Ãk0

(ii) More generally, if S̃01, ..., S̃0M are of the form S̃0 and {ck}k∈NM is a
multi-sequence of constants, then

∑
k≥0 ckS̃

k
0 =

∑
k≥0 ckS̃

k1
01 · · · S̃

kM

0M is well
defined.

Proof. See Note 3.36.

Formal series with real coefficients. Order relation. Let
≈
SR the subfield

consisting in S̃ ∈
≈
SR which have real coefficients. We say that

≈
SR3 S̃ > 0 if

dom(S̃)/mag(S̃) > 0. Then every nonzero S̃ ∈
≈
SR is either positive or else

−S̃ is positive. This induces a total order relation on
≈
SR, by writing S̃1 > S̃2

if S̃1 − S̃2 > 0.
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3.1 Transseries

In constructing a space of transseries , one aims at constructing a differential
field containing x−1, which is closed under a “all” important operations. A
smaller closure usually imparts better properties of composing elements.

The construction presented differs in many technical respects from the
one of Écalle, and the transseries space is smaller than his.

Still some of the construction steps and the structure of the final object
are similar enough to Écalle’s, to justify using the terminology and same
notations.

3.1a Notations

• —small transmonomial.
• —large transmonomial.
• —any transmonomial, large or small.
• —small transseries .
• —large transseries .
• —any transseries , small or large.

3.2 Inductive construction of logarithm-free transseries

3.2a Level 0: power series

Let x ∈ R+ be a large variable and let G be the multiplicative group (xσ, ·, �
), σ ∈ R, with the order relation xσ1 � xσ2 if xσ1 = o(xσ2) as x→∞, i.e., if
σ1 < σ2.

It is easy to see that G is totally ordered with respect to �.

The space of level zero log-free transseries is by definition T̃ [0] =
≈
S (G).

By Proposition 3.49, T̃ [0] is a field.
If T̃ ∈ T̃ [0], then T̃ = iff T̃ = xσ for some σ 6= 0, T̃ = if σ > 0 and

T̃ = if σ < 0.
The general element of T̃ [0] is a level zero transseries , [0] or in

short. We have

=
∑
k≥k0

ck
k (3.51)

There are two order relations: < and � on T̃ ∈ T̃ [0].

• We have 1 � 2 iff mag( 1) � mag( 2) (note it is only the mag-
nitude and not constant in front of it, positive or negative, that matters);

• > 0 if 6= 0 and the real number dom( )/mag( ) is positive.
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Definition 3.52 A transseries is small, i.e. = iff in (3.51) we have
ck = 0 whenever k 6� 1. Correspondingly, transseries is large, i.e. =

iff in (3.51) we have ck = 0 whenever k 6� 1. We note that =
iff mag( ) � 1 (there is an asymmetry: the condition mag( ) � 1 does
not imply = , since it does not prevent the presence of small terms in

). Any transseries can then be written uniquely as

=
∑
k≥k0

ck
k =

∑
k≥k0; k>1

ck
k + const+

∑
k≥k0; k<1

ck
k

= + const+ := L( ) + C( ) + s( ) (3.53)

3.2b Level 1: Exponential power series

The set G[1] of transmonomials of exponentiality one consists by definition in
the formal expressions

[1] = [0] exp( [0]), where [0] and [0] ∈ T̃ [0]

where we allow for [0] = 0 and set exp(0) = 1.
Multiplication is defined by

[0]
1 exp( [0]

1 ) [0]
2 exp( [0]

2 ) = ( [0]
1

[0]
2 ) exp( [0]

1 + [0]
2 )

and we see that (G[1], ·) is a commutative group, .
The order relations are introduced in the following way. First, we say that

[1] = [0] exp( [0]) � 1 means

( [0] > 0) or ( [0] = 0 and [0] � 1) (3.54)

In particular, by construction, if [0] > 0 then exp( [0]) exceeds any
monomial of level zero [0].

It is easy to see that

[1]
1 � 1 and [1]

2 imply [1]
1

[1]
2 � 1 (3.55)

We can thus define � in G[1] by

[1]
1 � [1]

2 if [1]
1 /

[1]
2 � 1 (3.56)

It can be easily checked that (G[1], ·,�) is a totally ordered abelian group.
The abelian ordered group of zero level monomials, (G[0], ·,�), is naturally
identified with the set of transmonomials for which [0] = 0.
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Definition 3.57 The space T̃ [1] of level one transseries is by definition
≈
S

(G[1]).

By Proposition 3.49, T̃ [1] is a field. By construction, the space T̃ [0] is embed-
ded in T̃ [1]. Formula (3.51) is the general expression of a level one transseries,
where now is a transmonomial of level one.

The second order relation, >, is defined by

> 0 means dom( )/mag( ) > 0 (3.58)

3.2c Induction step: level n transseries

Assuming the transseries of level ≤ n− 1 are constructed, transseries of level
n together with the order relation, are constructed exactly as in § 3.2b ,
replacing [0] by [n − 1] and [1] by [n]. The group G[1] of transmonomials of
order at most n consists in expressions of the form

[n] = xσ exp( [n−1]) (3.59)

where [n−1] is either zero or a large transseries of level n − 1 with the
multiplication:

xσ1 exp( [n−1]
1 )xσ2 exp( [n−1]

2 ) = xσ1+σ2 exp( [n−1]
1 + [n−1]

2 ) (3.60)

The order relation is given by

xσ1 exp( [n−1]
1 ) � xσ2 exp( [n−1]

2 ) ⇐⇒ (3.61)(
[n−1]
1 >

[n−1]
2

)
or
(

[n−1]
1 = [n−1]

2 and σ1 > σ2

)
(3.62)

[n] =
∑
k≥k0

ck( [n])k (3.63)

As in § 3.2b , T̃ [n−1] is naturally embedded in T̃ [n].

3.2d General log-free transseries ,
≈
T

This is the space of arbitrary level transseries , the inductive limit of the
finite level spaces of transseries :

≈
T =

∞⋃
n=0

T̃ [n]

Clearly
≈
T is a field. The order relation is the one inherited from T̃ [n]. The

topology is also that of an inductive limit, namely a sequence converges iff it
converges in T̃ [n] for some n.
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3.2e Further properties of transseries

Definition. The level l( ) of is n if ∈ T̃ [n] and 6∈ T̃ [n−1].

Proposition 3.64 If n = l( 1) > l( 2) then 1 � 2.

Proof. We may clearly take n ≥ 1. Since (by definition) � 1 we must
have, in particular, dom( ) = cxσ exp( −) with − ≥ 0. By induction,
and the assumption l( 1) = n we must have −

1 > 0 and l( −
1 ) = n−1.

The proposition follows since, by again by the induction step, −
1 � −

2 .

Corollary 3.65 If is of level no less than 1, then either is large, and
then � xα, ∀α ∈ R or else is small, and then � x−α, ∀α ∈ R.

Remark 3.66 We can define generating monomials of 0 6= ∈ T̃ [n] a
minimal subgroup G = G( ) of G[n] with the following properties:

• ∈
≈
S (G);

• xσ
1 exp( 1) ∈ G implies xσ

1 ∈ G and, if 1 6= 0, then G ⊃ G( 1).

By induction we see that G( ) is finitely generated for any ∈ T [n].

3.2f Closure of
≈
T under restricted composition and

differentiation

Composition was discussed in general in Note 3.36. In the context of transseries,
we take into account the fact that everything is ultimately generated from
one variable, x; this leads to a refinement of composition, see §3.2h .

Proposition 3.67
≈
T and T [n]; n ∈ N are differential fields.

Proof. Differentiation D = d
dx is introduced inductively on

≈
T , as term by

term differentiation, in the following way. Differentiation in T̃ [0] is defined
as:

D =
∑
k≥k0

ckD k (3.68)

where, as mentioned in §3.2a we have = x−σ for some σ ∈ R+ and, in
a natural way, we set Dx−σ = −σx−σ−1. This makes D ∈ T̃ [0], and the
generating transmonomials of D are those of together with x−1.

We assume by induction that differentiation D : T̃ [n−1] 7→ T̃ [n−1] has
been defined for all transseries of level at most n− 1. (In particular, D is
finitely generated.) We define
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D
(

[n]
)

= D
(
xσ exp( [n−1])

)
= σxσ−1 exp( [n−1])

+ xσD [n−1] exp( [n−1]) (3.69)

A level n transseries is

=
∑
k≥k0

ck
k =

∑
k≥k0

ck

M∏
j=1

kj

j (3.70)

and we write in a natural way

D [n] =
∑
k≥k0

ck

M∑
m=1

km
km−1
m D m

M∏
m6=j=1

kj

j

=
M∑

m=1

−1
m

∑
k≥k0

ckkm
km−1
m D m

M∏
m6=j=1

kj

j (3.71)

and the result follows from the induction hypothesis, since∑
k≥k0

ckkm
kD m

m
=
D m

m

∑
k≥k0

ckkm
k ∈ T̃ [n] (3.72)

Corollary 3.73 If G is the group (finitely) generated by all generators in
any of the levels of , then D is generated by the transmonomials of
G together possibly with x−1. If 6= Const. then l( ) = l( ′).

Proof. Immediate induction; cf. also the beginning of the proof of Proposition
3.67.

The properties of differentiation are the usual ones:

Proposition 3.74 D(fg) = gDf+fDg, Dconst = 0 and D(f◦g) = Dg(Df◦
g) (for composition, see § 3.2h ).

Proof. The proof is straightforward induction.

In the space of transseries, differentiation which is henceforth denoted by
′′′′′, is also compatible with the order relation (a property which is of course
not true in general function spaces).

Proposition 3.75 For any i, i = 1, 2 and i, i = 1, 2 we have

1. 1 � 2 ⇔ ′
1 � ′

2

2. > 0 ⇒ ′ > 0
3. 1 � 2 ⇔ ′

1 � ′
2

4. ′
1 � ′

1
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Proof. We first prove by induction 1. and 2. The other properties are shown
very similarly. They hold for level zero transseries . Assume they are true for
transseries of level ≤ n − 1; we first show that for [n] = xσe , a large
transmonomial of level n, we have ( [n])′ � 1 and ( [n])′ > 0. Indeed this
follows immediately from the induction hypothesis and Remark 3.28 since
l( ) < n and

( [n])′ = [n]( ′ + σx−1)

Positivity follows immediately from the fact that ′ > 0 and � 1 �
x−1. Now if [n]

1 � [n]
2 then [n] := [n]

1 /
[n]
2 � 1 and, by differentiation,

it follows from the previous conclusion that

( [n]
1 )′ >

[n]
1
[n]
2

( [n]
1 )′ � ( [n]

1 )′

and thus, again by Remark 3.28 we have both ( [n]
1 )′ > 0 and

[n]
1 � [n]

2 ⇒ ( [n]
1 )′ � ( [n]

2 )′

Corollary 3.76 We have D = 0 ⇐⇒ = Const.

Proof. We have to show that if = + 6= 0 then ′ 6= 0. If
6= 0 then (for instance) + � x−1 = and then ′ + ′ �

x−2 6= 0. If instead = 0 then (1/ ) = 1 + 1 + c and we see
that ( 1 + 1)′ = 0 which, by the above, implies 1 = 0 which gives
1/ = 1, a contradiction.

Proposition 3.77 Assume = or = . Then:
(i) If l( mag( )) ≥ 1 then l( mag( −1 ′)) < l( mag( )).
(ii) dom( ′) = dom( )′(1 + ).

Proof. Straightforward induction.

3.2g Transseries with complex coefficients

Complex transseries TC are constructed in a similar way as real transseries,
replacing everywhere 1 > 2 by < 1 > < 2. Thus there is only one
order relation in TC, �. Difficulties arise when exponentiating transseries
whose dominant term is imaginary. Operations with complex transseries are
then limited. We will only use complex transseries in contexts that will pre-
vent these difficulties.
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3.2h Restricted composition

The right composition 1 ◦ 2 is defined on
≈
T , if mag( 2) � 1 and

dom( 2) > 0. The definition is inductive.
We first define the power and the exponential of a transseries . Assume

powers and exponentials have been defined for all transseries of level ≤ n−1.
Let = c mag( )(1 + ) ∈ T̃ [n] be any transseries such that c > 0,
cf. Proposition 3.29. By the definition of mag(·) and (3.63), mag( ) is a
transmonomial, mag( ) = [n−1] exp( [n−1]). We let

σ = cσ
(

[n−1]
)σ

exp(σ [n−1])(1 + )σ

= cσ
(

[n−1]
)σ

exp(σ [n−1])(1 + )σ

= cσ
(

[n−1]
)σ

exp(σ [n−1])
∞∑

k=0

(
n

σ

)
n (3.78)

where
(
n
σ

)
are the generalized binomial coefficients, the infinite sum is well

defined, by Corollary 3.50, and thus σ is well defined as well. Then, if
σ ∈ (R+)M and if [0] =

∑
k≥k0

ckx
−σ·k is a level zero transseries , we

write

[0] ◦ =
∑
k≥k0

ck( −1)σ·k

which is well defined by Corollary 3.50 (ii) and Proposition 3.29. We note
that, under our assumptions for , [0] ◦ > 0 is positive iff [0] > 0

Similarly, we write cf. Definition 3.52

exp( ) = e +C+ = Ae

∞∑
k=0

n

n!
= C ′ [n+1] [n] (3.79)

well defined by the definition of a transmonomial, Corollary 3.50 (ii) and
Proposition 3.29. Now the definition of general composition is straightforward
induction. We assume that composition is defined at all ≤ n − 1 levels, and
that in addition [n−1] ◦ > 0 if [n−1] > 0. Then, with L,S denoting
the large part and small part respectively of a transseries,we have
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[n] ◦ =
∑
k≥k0

ck( [n] ◦ )k

=
∑
k≥k0

ck( [n−1] ◦ )k exp(− [n−1] ◦ )

=
∑
k≥k0

ck( [n−1] ◦ )k
[
exp(−L( [n−1] ◦ )C exp(−S( [n−1] ◦ )

]
=
∑
k≥k0

c′k( [n−1] ◦ )k [n] exp(−S( [n−1] ◦ ) (3.80)

and the last sum exists by the induction hypothesis and Proposition 3.34.

Proposition 3.81 (restricted logarithm) If is a small transseries of
level n, then there exists a unique transseries e, of level n such that

e e = 1 +

Proof. Uniqueness is immediate. For existence, note that the equation below
is contractive in the space of small transseries with the same generators as

:

e = −
∞∑

k=2

k
e

k!

Corollary 3.82 If is a large transseries of level n then there exists a
transseries e = e + c+ e where e has level n such that

◦ exp(x) = e e

Proof. We have, by the previous Proposition,

= xσe 1(1 + ) ⇒ (ex) = eσx+ 1(e
x)+ e(ex) (3.83)

A first result about integration.

Proposition 3.84 Let T be a log-free transseries and τ = T ◦ exp(x). Then
the equation ′ = τ has a unique solution = 0 +C+ . We choose
the antiderivative P by Pτ = 0 + 0.

Proof. Uniqueness follows Corollary 3.76. By linearity of differentiation, it is
enough to show the result when T , and thus τ is a nonzero transmonomial.
The case l(T ) = 1 is immediate; we then assume τ = = eσx+ 1(e

x), the
other case being similar. We look for Pτ in the form gτ . Then g satisfies the
equation

g =
τ

τ ′
− g′τ

τ ′
(3.85)

We have τ/τ ′ = e−ex ′
1(e

x)−σ = e . We look for g in the form g = e g

with g � τ . Since 1/τ ′ � 1, τ/τ ′ is of this form. Furthermore, g � τ implies
g � 1(ex) thus ′

g � ( 1(ex))′ which implies g′/g � τ ′/τ or
g′τ/τ ′ � g and (3.85) is contractive in this space.
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3.3 General transseries

We define

Ln(x) = log log ... log(x)︸ ︷︷ ︸
n times

(3.86)

En(x) = exp exp ... exp(x)︸ ︷︷ ︸
n times

(3.87)

(3.88)

with the convention E0(x) = L0(x) = x.
We write exp(lnx) = x and then any log-free transseries can be written as

(x) = ◦ En(Ln(x)). This defines right composition with Ln in this
trivial case, as 1 ◦ Ln(x)) = ( ◦ En) ◦ Ln(x) := (x).

More generally, we define T , the space of general transseries , as a set of
formal compositions

T = { ◦ Ln : ∈
≈
T }

with the algebraic operations (symbolized below by ?) inherited from
≈
T by

( 1 ◦ Ln) ? ( 2 ◦ Ln+k) = [( 1 ◦ Ek) ? 2] ◦ Ln+k (3.89)

and using (3.89), differentiation is defined by

D( ◦ Ln) =

[
(
n−1∏
k=0

Lk)−1

]
(D ) ◦ Ln

Proposition 3.90 T is an ordered differential field, closed under restricted
composition.

Proof. The proof is straightforward, by substitution from the results in § 3.2.

We will denote generically the elements of T with the same symbols that

we used for
≈
T .

Proposition 3.91 T is closed under integration.

Proof. The idea behind the construction of D−1 is the following: we first find
an invertible operator J which is to leading order D−1; then the equation for
the correction will be contractive. Let =

∑
k≥k0

k ◦ Ln. To unify the
treatment, it is convenient to use the identity∫

x

(s)ds =
∫

Ln+2(x)

( ◦ En+2) (t)
∏

j≤n+1

Ej(t)dt =
∫

Ln+2(x)
1(t)dt
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where the last integrand, 1(t) = 2(et) with 2 a log-free transseries.
The result now follows from Proposition 3.84.

In the following we also use the notation D = ′ and we write P for the
antiderivative D−1 constructed above.

Definition 3.92 (Level and depth) By construction, for any element

of T there is a minimal m ≥ 0 such that ◦ Em ∈
≈
T ; assume the level of

◦ Em in
≈
T is n. We then say that has level n−m and depth m.

Note 3.93 P is an antiderivative without constant terms, i.e,

P = +

Proof. This follows from Proposition 3.84

Proposition 3.94 We have

P( 1 + 2) = P 1 + P 2

(P )′ = ; P ′ = (0)
P( 1

′
2) = 1 2 − P( ′

1 2)

1 � 2 =⇒ P 1 � P 2

> 0 =⇒ P > 0 (3.95)

where

=
∑
k≥k0

ck
k =⇒ (0) =

∑
k≥k0;k6=0

ck
k

Proof. All the properties are straightforward; preservation of inequalities uses
Proposition 3.75.

Remark 3.96 Let 0 ∈ T . The operators defined by

J1( ) = P(e−x(Const.+ 0) (x)) (3.97)

J2( ) = e±xxσP(x−2x−σe∓x(Const.+ 0) (x)) (3.98)

are contractive on T .

Proof. For (3.97) it is enough to show contractivity of P(e−x·). This is a
straightforward calculation similar to the proof of Proposition 3.91. We have

for some n (x) =
∑

k≥k0

k(Ln(x)) where j ∈
≈
T .
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Pe−x( ◦ Ln) = P

e−En+2
∏

1≤j≤n+2

Ej exp( ◦ E2)

 ◦ Ln+2

=

[
e−En+2

∏
1≤j≤n+2Ej exp( ◦ E2)

−E′n+2 +
∑

0≤j≤n+1E
′
j + ′ ◦ E′2

(1 + )

]
◦ Ln+2

�
∏

1≤j≤n+2

Ej exp( ◦ E2) (3.99)

The proof of (ii) is similar.

3.4 Differential equations

3.4a Examples: simple differential systems in T

The theory of differential equations in T is similar to the corresponding theory
for functions.
Example 1. The general solution of the differential equation

f ′ + f = 1/x (3.100)

in T (for x→ +∞) is (x;C) =
∑∞

k=0 k!x
−k + Ce−x = (x; 0) + Ce−x.

Indeed, the fact that (x;C) is a solution follows immediately from the
definition of the operations in T . To show uniqueness, assume 1 satisfies
(3.100). Then 2 = 1 − (x; 0) is a solution of D + = 0. Then

2 = ex satisfies D 2 = 0 i.e., 2 = Const.
The particular solution (x; 0) is the unique solution of the equation

f = 1/x − Df which is manifestly contractive in the space of level zero
transseries (cf. § 3.0f ). However this same equation is not contractive for
transseries of positive level, (because e.g. Dex = ex) as expected, since the
solution is not unique in T

Second order linear equations.

Note 3.101 If an equation of the form

y′′ + p(x)y′ + q(x) = 0

has one nonzero solution in T , then the space of solutions is two-dimensional.
(There are equations with no nonzero solutions in T , e.g. y′′ = −y; in prac-
tice, complex trransseries are used to deal with these cases.)

Proof. Assume y1 is a solution; we let f = y/y1. Then y1f ′′+(2y′1+py1)f
′ = 0

from which the claim follows easily.
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Example 2. The Airy equation

y′′ = xy (3.102)

In T̃ [0] there is only the null series solution (since the equation y = y′′/x is
contractive there). We then look for solutions in the form eW W is large, of
level at least zero; the large part should contain some (positive) power of x
(otherwise the order of the large part can be lowered by substitution). The
equation becomes

W ′′ +W ′2 = x

Note 3.103 In a WKB-type substitution y = eW where l(W ) ≥ 0 and W �
xσ with σ > 0 we have W ′′ �W ′2.

Proof. By assumption, W = + C + where � xp for some p > 0;
we have, applying Proposition 3.75,

′ � xp−1 ⇒ 1
′ � x1−p ⇒

′′

′2
� x−p � 1 2

By Note 3.103 we denote W ′ = f and write

f = ±
√
x
√

1− f ′/x = ±
√
x
(
1− 1

2
f ′

x
− 1

8
f ′2

x2

)
(3.104)

It is easy to check that (3.104) is contractive in the space T̃ [0]. We get

W± = ±2
3
x

3
2 − 1

4
lnx+ ±

where

± = ± 5
48
x−

3
2 +

5
64x3

· · ·

which gives

y± = x−
1
4 e±

2
3 x

3
2 (1 + ±)

where now

± = ± 5
48
x−

3
2 ± 295

2304
x−

9
2 · · ·

Note 3.101 shows that the space of solutions of (3.102) in T is generated by
y±.

Simple nonlinear equations. Consider the first order differential equation:

f ′ = J1(f) = F0(x−1)− f − β

x
f − g(x−1, f) (3.105)

where
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F0(x−1) =
∑
k≥2

F0k

xk

g(x−1, f) =
∑

k≥0; l≥1

gklx
−kyl (3.106)

where g01 = g11 = 0.
We see that J1 is well defined if f = ∈ T (cf. Proposition 3.34), and it is
under this assumption that we study J1.1

(1). Solutions of (3.106) in T̃ [0]. The equation

f = J2(f) = −f ′ + F0(x−1)− β

x
f − g(x−1, f) (3.107)

is contractive in T̃ [0] (this follows immediately from §3.0f ). Thus there exists
in T̃ [0] a unique solution f̃0. Since (3.107) is also contractive in the subspace
of T̃ [0] of series of the form

∑∞
k=2

ck

xk we have

f̃0 =
∞∑

k=2

ck
xk

(3.108)

Note. The iteration fn+1 = J1fn, f1 = x−1 is convergent in T and, if
fi =

∑i
k=2 c

[i]
k x

−k then c
[i]
k = ck for k ≤ i, and this is a practically very

convenient way to calculate the coefficients ci.
(2) Let now δ = f − f̃0. Then

δ′ = −δ − β

x
δ − g(x−1, f̃0 + δ) + g(x−1, f̃0 + δ)

= −δ − β

x
δ +

∑
k≥0; l≥1

cklx
−kδl (3.109)

with

c01 = c11 = 0 (3.110)

or

δ′

δ
= −1− β

x
−
∑
k≥2

ck1

xk
+

∑
k≥0; l≥1

ck;l+1x
−kδl (3.111)

Since by assumption δ � 1 we have
1 Except when there are only finitely many nonzero terms in the sum in (3.106),

J1 is not in T if f � 1 (mag(fn) would be unbounded).
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ln δ = C − x+ β lnx+
∑
k≥1

ck+1;1

kxk
+ x (x)

and thus δ � exp(−cx) for any c < 1 so that

ln δ = C − x+ β lnx+
∑
k≥1

ck+1;1

kxk
+ exp(−cx) (x)

whence, by composition with exp we get

δ = Cxβe−x
∑
k≥1

dk+1;1

kxk
+ exp(−cx) (x)

Equation (3.111) implies

δ = C ′xβe−xỹ0 exp

∫ ∑
k≥0; l≥1

ck;l+1x
−kδl

 ;

ỹ0 =
∑
k≥0

dk+1;1

kxk


(3.112)

and (3.112) is contractive by Remark 3.45 and Remark 3.96. In particular,
for every C there is a unique δ(x;C) satisfying (3.112).

Remark 3.113 We have

δ =
∞∑

k=1

Ckxβke−kxf̃k(x) (3.114)

where f̃k ∈ T̃ [0] and

f̃k(x) =
∞∑

j=0

fk;j

xj

Proof. This is a straightforward consequence of (3.112).

Formal linearization. Let z = Cxβe−x. We have C(x, δ) = x−βex
∑

k≥1 δ
kg̃k(x).

A direct calculation shows that C ′ = Cx + Cδδ
′ = 0. The transformation

(x 7→ x; y 7→ C(x, y − f0)) formally linearizes (3.105).

3.5 Higher dimensional systems of ODEs

The analysis in the previous section generalizes rather straightforwardly to
analytic differential systems in Cn.
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3.6 Transseries solutions at irregular singularities

Consider the differential system

y′ = f(x−1,y) y ∈ Cn (3.115)

We look at solutions y such that y(x) → 0 as x→∞ along some direction
d = {x ∈ C : arg(x) = φ}. The following conditions are assumed
(a1) The function f is analytic at (0, 0).
(a2) Nonresonance: the eigenvalues λi of the linearization

Λ̂ := −
(
∂fi

∂yj
(0, 0)

)
i,j=1,2,...n

(3.116)

are linearly independent over Z (in particular nonzero) and such that arg λi

are different from each other (i.e., the Stokes lines are distinct; we will require
somewhat less restrictive conditions, see § 3.1).

The system (3.115) can then be brought to the form

y′ = −Λ̂y +
1
x
Ây + g(x−1,y) (3.117)

where Λ̂ = diag{λi}, Â = diag{αi} are constant matrices, g(x−1,y) =
O(x−2,y2), (x→∞,y → 0). (Note: with respect to [?] we have Â = −B̂, f0
was incorporated in g and we omitted the normalization making <(αi) > 0).
This is straightforward algebra [?] whose details we omit (see however § 3.2
where all this is exemplified in the two-dimensional case).

The general solution of (3.117) in TC is an n1 ≤ n parameter transseries.
Let d be a ray in C and

ỹ(x) =
∑
k≥0

Cke−λ·kxxα·ks̃k(x) =
∑
k≥0

Cke−λ·kxxm0·kỹk(x) (3.118)

Then ỹ is a transseries on d iff Ci = 0 for all i so that e−λix 6→ 0 as x→∞
in d.

Remark 3.119 (i) If g(x−1,y) ≡ 0 the (now linear) system (3.117) has the
general solution

y = e−xΛ̂CxÂ

(ii) More generally, if g(x−1,y) = G(x−1) is a transseries, then the gen-
eral solution of (3.117) is

y = e−xΛ̂xÂC + e−xΛ̂xÂP
(
exΛ̂x−Âg

)
(3.120)
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Proof. In both cases the system is diagonal and the result follows immediately
from the case when n = 1, which we now assume. (i) follows from §??. With
C = 0, (3.120) is a solution of (3.117), so (ii) reduces to (i).

Proposition 3.121 The general solution of (3.117) in TC with the restric-
tion y � 1 is of the form (3.118).

Proof. If y is a solution of (3.117) then we have, by Remark 3.119

y = e−xΛ̂xÂC + e−xΛ̂xÂP
(
exΛ̂x−Âg(x−1,y)

)
(3.122)

for some C. Since y � 1 we have g(x−1,y) � 1 and thus

P
(
exΛ̂x−Âg(x−1,y)

)
� exΛ̂x−Â

Again since y � 1, we then have Ci = 0 for all i for which e−λix 6� 1.
Note. With the condition y � 1, eq. (3.122) has a unique solution.

Indeed, the difference of two solutions y1 − y2 satisfies the equation

y1 − y2 = e−xΛ̂xÂP
(
exΛ̂x−Â

[
g(x−1,y1)− g(x−1,y2)

])
(3.123)

Since g(x−1,y) = O(x−2,y2) we have

g(x−1,y1)− g(x−1,y2) = O(x−2δ, |y||δ|)

which by Proposition 3.94 implies δ = o(δ), i.e., δ = 0.
Using Remark 3.96 it is easy to check that (3.123) is an asymptotically

contractive equation, in the space of y which are � x−2 thus it has a solution
y[0] with this property. Since the previous note shows the solution of (3.117)
with y � 1 is unique, we have y = y[0]. Formula (3.118) is obtained by
straightforward iteration of (3.123).

Normalization example: the Panlevé equation PI (1.85) when z →
+∞. Finding a normalized form of the equation is done through simple
changes of variables. These in turn are derived from the the transseries solu-
tion (we allow for complex ones) of the equation that we compute next. The
change of variables is one that make all arguments of the exponentials linear
in x and the dominance of the transseries solutions o(x−M ) for an appropriate
M .

Formal solutions are derived in a straightforward way. In T̃ [0] (cf. §3.2) it
is easy to check that the dominance Axp of any nontrivial series must have
p < 1. Then, in T̃ [0] we have g′′ � g2 and solutions can be found from the
contractive equations

g = ±6−1/2i
√
z − g′′ (3.124)

By contractivity, the two choices of sign give raise to solutions, they are
distinct, and again by contractivity and the previous discussion, there are
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exactly two solutions in T̃ [0]. We look at the + choice only, the other case
being very similar. The power series solution can be generated by iterating
(3.124), which yields

g̃0 = 6−1/2iz1/2 +
1

48z2
− 47i

4608z9/2
+ · · · (3.125)

It is easy to check there are no large solutions of PI with dominance of level
higher than zero. We thus look for other solutions in the form g̃0 + δ where
δ must be small, and of level at least one, i.e. δ = e−W with <(W ) > 0. The
equation for δ is

δ′′ −
(

2i
√

6
√
z +

1
4z2

+ · · ·
)
δ = 6δ2 (3.126)

in which, taking δ = e−W and noting that W ′2 � W ′′, one solves for W ′

with the information <(W ) > 0 and integrate once. The equation for W ,

W = C − P

[√
2i
√

6z1/2 +
1

4z2
+ · · ·+W ′′ + 6e−W

]
(3.127)

is contractive for any C. This gives which, upon iteration gives

W = −4
5
61/4(1 + i)z5/4 +

63/4(1− i)
120

z−5/4 + · · ·

− (1 + i)63/4eC

2i
z−1/4 exp

(
−4

5
61/4(1 + i)z5/4

)
(1 + · · · ) + · · · (3.128)

To normalize the transseries, the natural variable is z5/4. Returning to (1.85)
we take

x =
(−24z)5/4

30
, y =

√
−z

6
y1(x) (3.129)

and obtain
y′′1 −

1
2
y2
1 +

1
2

+
1
x
y′ − 4

25x2
y1 = 0

where, as a last step we make a transformation that ensures that the leading
behavior of the unknown function is o(x−2) namely h = y1 − 1 + 4

25x2 which
yields

h′′ +
1
x
h′ − h =

1
2
h2 +

392
625x4

(3.130)

Written as a system, (3.130) satisfies the desired assumptions. A simple way
to derive the normal form is to note that the first two terms on the rhs of
(3.130) contribute to g and the last one to F0. The left hand side has solutions
of the form h = C1x

−1/2e−x + C2x
−1/2e−x. To get a diagonal Λ we choose

combinations of h and h′ which have only one exponential present. These are
u = h+ h′ and v = h− h′ respectively. In terms of u and v we have
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(
u
v

)′
=
(

1 0
0 −1

)(
u
v

)
+

1
2x

(
−1 1
1 −1

)(
u
v

)
+O

(
1
x2
, x−1/2(|u|+ |v|)

)
= Λ

(
u
v

)
+

1
2x
B1

(
u
v

)
+O

(
1
x2
, x−1/2(|u|+ |v|)

)
(3.131)

To obtain a system whose x−1 term is also diagonal we take(
y1
y2

)
=
(
I +

1
x
N

)(
u
v

)
(3.132)

and note that, if

N =
(
a b
c d

)
then

NΛ− ΛN =
(

0 −2b
2c 0

)
(3.133)

and thus we choose b = 1/2, c = −1/2 to get

y′ =
(

1 0
0 −1

)
y − 1

2x

(
1 0
0 1

)
y +O

(
y2,yx−2

)
(3.134)


