
Some results on inhomogeneous discriminants

Abstract

We study generalized Horn-Kapranov rational parametrizations of in-
homogeneous sparse discriminants from both a theoretical and an algorith-
mic perspective. In particular, we focus on the computation of inhomo-
geneous discriminants related to integer matrices B as an implicitization
problem with base points corresponding to a H-K parametrization ψB .
We show that all these parametrizations are birational refining a previous
result by Kapranov and prove some results on the corresponding implicit
equations. We also propose a combinatorial algorithm to compute the
degree of inhomogeneous discriminantal surfaces associated to uniform
matrices.

If time permits, we will present some examples that show numerous dif-
ficulties for computing the (Hilbert-Samuel) multiplicities of these points.
Joint work with Alicia Dickenstein.

Reference: http : //arxiv.org/abs/math/0610031

1 Motivation to study the problem

1.1 A-discriminants

• A = {a1, . . . , an} ⊂ Zd−1 (n lattice points) (n > d− 1)

• FA =
∑
a∈A xat

a (generic polynomial in d−1 variables (t1, . . . , td−1) with
exponents in A).

[GKZ] + (certain hypothesis) ⇒ exists an irred. poly DA ∈ Z[xa : a ∈ A]
(unique up to sign) s.t.

DA(c) = 0 ⇐⇒ ∃t = (t1, . . . , td−1) ∈ (C∗)d−1 s.t. FA(c)(t) =
∂FA(c)
∂ti

(t) = 0 ∀ i.

Definition 1.1 DA := A-discriminant (affine invariant of A).

Remark 1.2 Key properties:

• DA is an affine invariant;

• certain homogeneity condition.
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Next step: built a matrix (also called A) in Zd×n with columns (1, a) (for
all a ∈ A). Assume A is of maximal rank d.

Built B ∈ Zn×(n−d) with columns a Z basis of kerA.
(Idea: B expresses affine dependencies of the initial config. of pts.)

Definition 1.3 B := Gale dual of A

Remark 1.4 Properties of B:

1. B is of full rank m = n− d = n− rk(A);

2.
∑

rows of B = (0, . . . , 0) (because 1st. row of A is (1, . . . , 1)).

3. gB = (gcd of mxl minors of B) = 1.

Definition 1.5 Under conditions (1) and (2), B is called regular.

Remark 1.6 DA is A-homogeneous, i.e. ∃ v ∈ Zd s.t. all monomials cν in
DA =

∑
ν dν x

ν satisfy A · ν = v. (i.e. quasi-homogenous relative to the weight
defined by any vector in the row span of A).

Want: poly with A-homogeneity = 0.
“Take our this homogeneities” ⇒ ∀ ν0 s.t. A · ν = v:

DA(x) = xν0
∑
ν

dν x
ν−ν0 ,

where dν ∈ Z r {0} and ν − ν0 ∈ kerZ(A) = 〈cols.B〉.

• Write each ν− ν0 as a Z- linear combination of the columns v(1), . . . , v(m)

of B. Call yi = v(i) (new indeterminates).

• ⇒ ∃ Laurent polynomial ∆B(y) in m variables such that up to a monomial
(xν0), ∆B(xv

(1)
, . . . , xv

(m)
) equals DA(x).

Remark 1.7 ∆B has the same number of monomials and the same coefficients
as DA.

GOAL: Compute ∆B and describe de hypersurface (∆B = 0) ⊂ Cm (⇒ get
DA!!!!).

1.2 Horn-Kapranov rational parametrization

• Nice way of constructing the hypersurface (∆B = 0).

• Need only some prop. of B.

Setting: C ∈ Zn×m of mxl rank m (m ≥ n) s.t.
∑

rows of C = 0 (i.e. C
regular), and has no zero rows.
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• Call C1, . . . , Cn ∈ Zm rows of C and define:

lk(u1, . . . , um) := 〈Ck , (u1, . . . , um)〉 ∀ k = 1, . . . , n. (1)

• Construct rational map:

ψC : Cm 99K Cm (u1, . . . , um) 7→ (y1, . . . , ym) ,

where

yk =
n∏
i=1

li(u1, . . . , um)ci,k ∀k = 1, . . . ,m. (2)

and set SC = imψC ⊂ Cm.

Remark 1.8 C regular ⇒ yk have degree 0.

• Better presentation: define

f0 =
n∏
i=1

l
−min{0, ci,k : k=1,...,m}
i

(i.e. the least common denominator of all the yk’s) and write

yk =
fk
f0
, k = 1, . . .m. (3)

Remark 1.9 By Remark 1.8, deg f0 = . . . = deg fm = dC (can be read from
matrix C)

dC = −
n∑
i=1

min{0, ci,k : k = 1, . . . ,m}. (4)

(i.e. pick most negative entry in each row and change sign)

Corollary 1.10 Can define

ψC : Pm−1 99K Pm, (5)

where ψC = (f0 : f1 : · · · : fm) is defined outside the base point locus Z =
V (f0, . . . , fm).

Definition 1.11 SC := proj. variety defined by ψC (⊂ Pm).

Question 1.12 • Describe Z in terms of matrix C.

• When does SC be a hypersurface? In this case: SC = (∆C = 0)!!!
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Example 1.13

A =
(

1 1 1 1
0 1 2 3

)
⇒ B =


1 2
−2 −3

1 0
0 1


i.e. the discriminant DA(x0, x1, x2, x3) of the generic polynomial FA = x0 +
x1t+ x2t

2 + x3t
3 equals

DA(x) = −27x2
3x

2
0 + 18x3x0x2x1 + x2

2x
2
1 − 4x3

2x0 − 4x3x
3
1.

Note that gB = 1, so that the columns of B are a basis of the integer kernel of A.
Calling l0(u, v) := u+ 2v , l1(u, v) := −2u− 3v , l2(u, v) := u and l3(u, v) := v,
the parametrization ψB equals{

y1 := l0l2
l21

y2 := l20l3
l31

Its closed image is the hypersurface SB = {∆B = 0}, where

∆B(y1, y2) = −4y2 − 27y2
2 + y2

1 + 18y2y1 − 4y3
1 ,

∆B(y1, y2) = DA(1, 1, y1, y2).

Conversely, up to a monomial DA equals ∆B(x0x2/x
2
1, x

2
0x3/x

3
1).

2 Base point locus

Remark 2.1 lk give hyperplane arrangement in Cm (and Pm−1).

Definition 2.2 • F := flat in this arrangement = V (li1 , . . . , lir ) (linear
space).

• L(F) := {all linear forms lj vanishing on F}, i.e. all linear forms lj ∈
Q〈li1 , . . . , lir 〉.

• Basic flat := F s.t. all of f0, . . . , fm vanish on F .

Remark 2.3 fk vanishes on F ⇐⇒ if it contains a linear factor from L(F).

Lemma 2.4 The base point locus Z equals the union of all basic flats.

Remark 2.5 (KEY) Eliminate all common factors from f0, . . . , fm (eventu-
ally modifying certain rows from C) ⇒ can assume codim(Z) ≥ 2.

Corollary 2.6 If m = 3, Z is finite.
(However: complicated structure!!)

If m > 3 in general dim(Z) > 0 (some components)
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Definition 2.7 If codim(SC) = 1, call C non-defective.

Lemma 2.8 Let C ∈ Zn×m be a regular matrix of rank r < m. Then codim(SC) >
m− r, so C is defective.

Proof. All yi are homog rational fnc of fixed rows l1, . . . , lr of deg. 0 ⇒ rat.
fnc. of r − 1 variables l1/lr, . . . , lr−1/lr. ⇒ codim(SC) ≥ m− (r − 1). �

Remark 2.9 Converse is not true. Pick n = 2n′ and C :=
(

M
−M

)
where

M ∈ Zn′×m has rank m ≤ n′. In this case ψC is const. map.

Remark 2.10 ∃ algorithms from checking defectiveness.

1. Compute generic rank of Jacobian matrix J(ψC):

rk(J(ψC)(u)) = m− 1 for gen.u ⇐⇒ C non-defective

2. Tropical approach in [3].

3 Birrationality of ψC

Key-definition: Gauss map of a hypersurface S ⊂ G (G algebraic group).

Definition 3.1 Our case: G = (C∗)m and S = (∆ = 0). Then the (logarith-
mic) Gauss map is

γ(y) = (y1
∂∆
∂y1

(y) : . . . : ym
∂∆
∂ym

(y)) , (6)

mapping a regular (smooth) point y ∈ S to a projective point in Pm−1.

Assumption: S∗ = S ∩ (C∗)m 6= ∅.

Remark 3.2 (Geometric interpretation)
γS ←→ looking at image of log(y) = log(y) = (log(y1), . . . , log(ym)) for y ∈ S∗
and consider Gauss map of log(S∗).

Theorem 3.3 (K; , D.) Let S ⊂ Cm be an algebraic irreducible hypersur-
face.

The Gauss map γS : S 99K Pm−1 is birational if and only if there exist a
non-defective and regular integer matrix C ∈ Zn×m of full rank, and a constant
λ ∈ (C∗)m such that S = λ ·SC , i.e. S is a torus translate by λ of a generalized
inhomogeneous discriminant hypersurface.

Moreover, in this case, λ · ψC is birational and the logarithmic Gauss map
γS is its inverse.

Comment 3.4 • Our contribution: removing the incorrect hypothesis
about the gcd gC = 1. Explanation for this “mistake”: Remark 4.4.
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• Proofs: exactly the same as Kapranov’s original ones. “If” direction:
condition gC = 1 is superfluous. “Only if” direction: the last statement
is false.

• Key tools for (⇐): J(log(λψC)) is symmetric. J(log(λψC)) = J(λψC)·D
D =diag. matrix with multipl. inverse of coordinates of λψC as entries.
rkJ(λψC) = m− 1 (C non defective). Use implicit partial differentiation
of ∆(λψC) = 0 (S = (∆ = 0)).

Proof.[Proof of the “if” part in Theorem 3.3] Let C be a regular non-defective
n × m integer matrix, a point λ ∈ (C∗)m in the torus, and consider the map
ψ′C := λψC . We need to show that the logarithmic Gauss map is its birational
inverse. Denote by ∆ an irreducible equation of its closed image. The principal
observation is that the Jacobian matrix of log(ψ′C) is symmetric since

∂

∂uk
log((ψ′C)j) =

n∑
i=1

ci,k ci,j
li(u)

.

Moveover, a straightforward computation shows that for any point u in the
preimage of the torus, the Jacobian matrices J(ψ′C) and J(log(ψ′C)) have the
same rank since J(log(ψ′C)) = J(ψ′C) ·D, where D is the diagonal matrix with
diagonal entries the multiplicative inverses of the coordinates of ψ′C . This rank
is equal to m− 1 by our hyphotesis that C is non-defective. Now, on one side,
implicit partial differentiation of the equality ∆(ψ′C(u)) = 0 implies that the
vector γC(y) lies in the kernel of the transposed Jacobian matrix J(log(ψ′C))t

for any y in the image of ψ′C . On the other side, since the coordinates of ψ′C
are homogeneous forms of degree 0, it follows from Euler’s formula applied to
the coordinates of log(ψ′C)) that any point u in the preimage of the torus lies
in the kernel of J(log(ψ′C)(u). Then, u is proportional to γC(ψ′C(u)), when this
vector is non zero. �

4 Monomial changes of coordinates and factor-
izations

GOAL: Analyze choice of C s.t. A · C = 0 and relate different ∆C ’s obtained.

4.1 Some definitions

Setting: C ∈ Zn×m regular and non-defective (⇒ mxl rk, equiv gC 6= 0).
Reduction: Replace all row vectors in C lying in the same one-dim flat F by

their sum, without essentially changing the coordinates of the parametrization
ψC except for constants (if the sum gives the zero vector, we keep the constants
but we don’t keep a zero row).

Warning: We may have changed gC !! ⇒ work with general gC(6= 0). Con-
vention: B has gB = 1.

6



Setting: Matrices C1, C2 ∈ Zn×m s.t. Cols (C1) Z-span Cols (C2). Equiv.
∃M ∈ Zm×m s.t. C1 = C2 ·M .

Remark 4.1 Suppose gC2 = 1 (ie. ZC2 satturated lattice of ZC1). The lattice
ideal I(ZC) = 〈xu − xv : u, v ∈ Nn, u− v ∈ ZC〉 (in n variables) is radical with
|gC | primary components, which correspond to torus translates of the toric va-
riety defined by the lattice ideal I(ZB) [4]. We will see in Theorem 4.7 how this
is reflected in the precise relation between the irreducible m-variate polynomials
∆B and ∆C .

Definition 4.2 • Linear map ΛM : Pm−1 → Pm−1 ΛM (u) = M · ut.

• Denote Col(M) = {M (1), . . . ,M (m)}. Define the (multiplicative) mono-
mial map αM : (C∗)m → (C∗)m:

αM (y) = (
m∏
i=1

y
Mi,1
i , . . . ,

m∏
i=1

y
Mi,m

i ) = (yM
(1)
, . . . , yM

(m)
) . (7)

(Note: αM1·M2 = αM2 ◦ αM1 and αM is a |detM | − 1 mapping.)

Lemma 4.3 (C,C) (in [1])

Pm−1

≡ψC1

���
�
�

ΛM // Pm−1

ψC2

���
�
�

(C∗)m (C∗)mαM

oo

Remark 4.4 Assume gC2 = 1, and call C = C1, B = C2. Then, |det(M)| =
gC . Suppose that we didn’t know Thm 3.3 but instead we suspected (or proved)
that ψB is birational. From the equality ψC = αM ◦ ψB ◦ ΛM , where ΛM is
birational and αM is a gC to 1 mapping, one is tempted to deduce that ψC is
also a gC to 1 mapping. But indeed, we have already proved that it is birational.

Explanation:

Lemma 4.5 Supp. C1 = C2 ·M and C1, C2 are non-defective regular integer
matrices. Then

α̃M = αM |(∆C2=0)
: (∆C2 = 0) 99K (∆C1 = 0),

is a birational map.

Proof. (Sketch) Restrict αM to image of ψC2 and use density and Lemma 4.3.
Thm 3.3 ⇒ α̃M birational. �
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4.2 Factorization Theorem

Convention: ∆Ci
∈ Z[y1, . . . , ym] with cont 1, defined up to sign.

(Reason: H-K param. is given by rational forms with rational coeff.)

Recall: αM is a |detM | − 1 mult. map.

Definition 4.6

GM := kerαM = {ε ∈ (C∗)m : αM (ε) = (1, . . . , 1)} (8)

group with induced coordinatewise mult.

Theorem 4.7 [ , D] (Factorization Thm)
Let C1, C2 are non-defective n×m regular integer matrices such that C1 =

C2 ·M . There exists v in the lattice ZM (gen by cols of M) (or equiv., s.t.
εv = 1 for all ε ∈ GM ) such that

∆C1 ◦ αM (y) = yv
∏
ε∈GM

∆C2(ε · y) . (9)

Proof.(Sketch)

1. Density and properness arguments:

(∆C1 ◦ αM (y) = 0) ∩ (C∗)m =
⋃

ε∈Gm

(∆C2(ε · y) = 0) ∩ (C∗)m.

2. ∆C2(ε · y) | ∆C1 ◦αM (y) for all ε ∈ GM as Laurent poly: clear by irred of
(LHS).

3. Factors ∆C2(ε · y) are pairwise coprime: α̃M is birational.

4. Nullstellensatz ⇒

∆C1 ◦ αM (y) = qyv
∏
ε∈GM

∆C2(ε · y)
nε , q ∈ C∗. (*)

5. Show all nε are equal (:= N): substitute y 7→ δ · y for δ ∈ GM and use
unique factorization.

6. v ∈ ZM ⇐⇒ εv = 1 for all ε ∈ GM (conseq of prev item):use Smith
Normal Form of M .

7. N = 1: Supp N > 1. Diff eq (*) + α̃M birat. ⇒ J(∆C1)(y) = 0 on
(∆C1 = 0), Contr! (∆C1 irred.)

8. q = 1: use content 1 arguments (i.e. both sides are integer poly and cont
1). Reduce to case of M = diag(1, . . . , p, . . . , 1), p prime and use Field
extension + Arithmetic arguments.

8



�

Corollary 4.8

• How to eliminate αM? Replace: y → αAdj(M)(y)⇒ obtained ∆C1(y
g
1 , . . . , y

g
n)

(g = detM).

• Replace B by B′ given by reduced basis of ZB (LLL-algorithm):

∆B(y) = yv∆B′(αM−1(y)) ,

Advantage: coeff of ψB′ are smaller ⇒ obtain ∆B′ via elimination tech-
niques (standard basis of 〈yif0 − fi, f0t − 1 : i = 1, . . . ,m〉 to eliminate
variables u’s, t).

5 The degree of ∆C and the computation of local
multiplicities in m = 3 case

Assume: C ∈ Zn×m regular, non-defective matrix with no zero rows. AND:
finite number of base points.

Well-known formula:

Proposition 5.1 (Intersection formula, [5])

d2
C = deg(ψC)︸ ︷︷ ︸

=1!!!

deg(SC) +
∑

F basic

eF , (10)

where eF denotes the Hilbert-Samuel multiplicity of pF [7, 8, 9].

Problem: Computing eF is hard.
Some steps forward:

• Probabilistic algorithm (reduce to local complete intersections)

• Monomial case (ex. all mxl minors 6= 0) → combinatorial algorithm [11].

Reduction: m = 3. Easy generalization for any m.

Definition 5.2 p = pF ∈ Z, pick Noeth. local ring Ap := OP2,p and the
localized base point locus ideal Ip := 〈f0, f1, f2, f3〉Ap.

Define Samuel function Ap w.r.t. Ip as:

χ
Ip

Ap
(r) = l(Ap/Ir+1

p ) = dimC(Ap/Ir+1
p ) for all r ∈ N ,

(l( ) = length as Ap-module).

Fact: This function is pseudo-polynomial, i.e. ∃PS Ip

Ap
(X) in Q[X] (which takes

integer values over Z) such that we have PS Ip

Ap
(r) = χ

Ip

Ap
(r) for r � 0.

Remark 5.3 degPS Ip

Ap
(X) = 2 and Lead Coeff = e/2! with e ∈ N0.

Definition 5.4 eF := e (= 2! · LC(PS Ip

Ap
(X))).
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5.1 Probabilistic approach

Proposition 5.5 If p = pF determines a loc. complete intersection (i.e. IP
admits 2 generators after picking an affine patch), then eF = dimAp/Ip.

(Algorithm: pick standard basis of Ip w.r.t. local order ≺. And count # of
monomials not in in≺(Ip)).

Recall: Ip = 〈f0, . . . , f3〉Ap
• Pick 2 generic C-lin. comb of the 4 generators:

Jp :=< v0
0f0 + v0

1f1 + v0
2f2 + v0

3f3 , v
1
0f0 + v1

1f1 + v1
2f2 + v1

3f3 > ,

• Jp is generically a complete intersection inside Ip and a reduction ideal of
Ip (i.e. same Hilb-Samuel fnc.)

• ⇒ eF := dimC(Ap/Jp) with probability 1.

Corollary 5.6 eF ≥ dimC (Ap/Ip) (since Jp ⊂ Ip), so:

deg(∆C) ≤ d2
C −

∑
F basic

dimC(ApF /IpF ).

5.2 Monomial case

Suppose p = (1 : 0 : 0) is a base point (after translation) and that Ip is monomial.

Algorithm 5.7 Computation of Hilbert-Samuel Multiplicities for the monomial
case and m = 3.

• Set x0 = 1 and let Ĩp be the specialization of the ideal Ip.

• Compute the convex hull C of the exponents of the bivariate monomials in
Ĩp.

• Then: ep = 2!·V ol(N2
0rC) equals the normalized volume of the complement

K of C in the first orthant.

Example 5.8 Ip monomial AND complete intersection: Ip = 〈xm1
1 , xm2

2 〉, so
ep = m1m2, as asserted in both situations.

Remark 5.9 Algorithm DOES NOT work for general ideals: e(in≺(I0)) 6=
e(I0). Moreover ([11]):

e(I0) ≤ e(in≺(I0)) ≤ 2! e(I0).

Comment 5.10 • p is zero of exactly 2 rows ⇒ monomial case.

• Some cases: reduce to monomial case via change of coordinates

• This doesn’t solve the whole problem ( ∃ examples where no change of
coordinates works)

• Base points can be really nasty → no clear computational method for gen-
eral case. Explicit computations in the paper.
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