Some results on inhomogeneous discriminants

Abstract

We study generalized Horn-Kapranov rational parametrizations of in-
homogeneous sparse discriminants from both a theoretical and an algorith-
mic perspective. In particular, we focus on the computation of inhomo-
geneous discriminants related to integer matrices B as an implicitization
problem with base points corresponding to a H-K parametrization ¥'p.
We show that all these parametrizations are birational refining a previous
result by Kapranov and prove some results on the corresponding implicit
equations. We also propose a combinatorial algorithm to compute the
degree of inhomogeneous discriminantal surfaces associated to uniform
matrices.

If time permits, we will present some examples that show numerous dif-
ficulties for computing the (Hilbert-Samuel) multiplicities of these points.
Joint work with Alicia Dickenstein.

Reference: http : //arziv.org/abs/math/0610031

1 Motivation to study the problem

1.1 A-discriminants
e A={ay,...,a,} C Z4 " (n lattice points) (n > d — 1)
o Fy =73 ,caZat® (generic polynomial in d — 1 variables (t1,...,ts_1) with

exponents in A).

[GKZ] + (certain hypothesis) = exists an irred. poly Dy € Z[z, : a € A]
(unique up to sign) s.t.
OF 4(c)

Da(e) =0 <= 3t= (b, tam) € (C) st Fa(Q)(t) = 2= (8) =0 Vi,

Definition 1.1 D4 := A-discriminant (affine invariant of A).
Remark 1.2 Key properties:
e D4 is an affine invariant;

e certain homogeneity condition.



73" with columns (1,a) (for

Next step: built a matrix (also called A) in
all a € A). Assume A is of maximal rank d.
Built B € Z"*("~9) with columns a Z basis of ker A.

(Idea: B expresses affine dependencies of the initial config. of pts.)

Definition 1.3 B := Gale dual of A

Remark 1.4 Properties of B:
1. B is of full rank m =n —d=n —rk(A);
2. > rows of B=(0,...,0) (because 1st. row of A is (1,...,1)).
3. g = (ged of mal minors of B) = 1.

Definition 1.5 Under conditions (1) and (2), B is called regular.

Remark 1.6 D, is A-homogeneous, i.e. 3v € Z s.t. all monomials ¢” in
Dy =73, d,a" satisfy A-v = v. (i.e. quasi-homogenous relative to the weight
defined by any vector in the row span of A).

Want: poly with A-homogeneity = 0.
“Take our this homogeneities” = Vg s.t. A-v =wv:

Dy(x) = z™° Zdl,x'j*”“,

where d, € Z ~ {0} and v — vy € kerz(A) = (cols.B).

e Write each v — 1 as a Z- linear combination of the columns v(*), ... v("™)
of B. Call y; = v (new indeterminates).

e = J Laurent polynomial Ag(y) in m variables such that up to a monomial
(x¥), AB(x”(l), e ,x”(m)) equals Dy ().

Remark 1.7 Apg has the same number of monomials and the same coefficients
as Dy.

GOAL: Compute Ap and describe de hypersurface (Ag = 0) C C™ (= get
DM,
1.2 Horn-Kapranov rational parametrization

e Nice way of constructing the hypersurface (Ap = 0).

e Need only some prop. of B.

Setting: C € Z"*™ of mxl rank m (m > n) s.t. > rows of C = 0 (i.e. C
regular), and has no zero rows.



e Call Cy,...,C, € Z™ rows of C' and define:

le(ug, .. um) = (Ck, (U1,...,um)) Yk=1,...,n. (1)

e Construct rational map:

¢C:Cm___)cm (u1,...,um)'_)(y17"'7ym)7

where
n

Y = Hli(ula"'vum)CLk Vk = 17 y 1. (2)

i=1

and set S¢ = imYc C C™.
Remark 1.8 C regular = yi have degree 0.

e Better presentation: define
I | - { k= }
in{0, c; i : 1,....m
f ZZ min{0, ¢;, yeees
i=1

(i.e. the least common denominator of all the y;’s) and write

yk:&7 k=1,...m. (3)
Jo
Remark 1.9 By Remark 1.8, deg fo = ... = deg fi, = d¢ (can be read from
matriz C)
de = —z:min{(),cwg ck=1,...,m}. (4)

i=1

(i.e. pick most negative entry in each row and change sign)
Corollary 1.10 Can define
Yo P o5 P (5)

where Yo = (fo : f1 i+ fm) is defined outside the base point locus Z =
V(foy- s fm)-

Definition 1.11 S¢ := proj. variety defined by e (C P™).
Question 1.12 e Describe Z in terms of matriz C.

o When does Sc be a hypersurface? In this case: Sc = (Ac = 0)!!!



Example 1.13
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i.e. the discriminant D4(xq,x1,x2,x3) of the generic polynomial Faq = z¢ +
21t + xot? + 23t3 equals

Da(z) = —2723al + 182320200 + v32} — 4xd3w0 — da32s.

Note that gg = 1, so that the columns of B are a basis of the integer kernel of A.
Calling lg(u,v) :=u+ 2v , I3 (u,v) == —2u —3v , la(u,v) := u and I3(u,v) := v,
the parametrization ¥ g equals
n = %
IHE
Y2 B

1

Its closed image is the hypersurface Sg = {Ap = 0}, where
Ap(y1,y2) = —4ys — 27y5 + yi + 18y2y1 — 447,

Ag(y1,y2) = Da(1,1,91,y2).

Conversely, up to a monomial D4 equals Ap(zoze/x3, 23x3/23).

2 Base point locus
Remark 2.1 I;, give hyperplane arrangement in C™ (and P™1).

Definition 2.2 o F := flat in this arrangement = V(l;,...,1;.) (linear
space).

o L(F) := {all linear forms l; vanishing on F}, i.e. all linear forms l; €

Q(liyy -yl
e Basic flat := F s.t. all of fo,..., fim vanish on F.
Remark 2.3 fi vanishes on F <= if it contains a linear factor from L(F).
Lemma 2.4 The base point locus Z equals the union of all basic flats.

Remark 2.5 (KEY) Eliminate all common factors from fo,..., fm (eventu-
ally modifying certain rows from C) = can assume codim(Z) > 2.

Corollary 2.6 If m =3, Z is finite.
(However: complicated structure!!)
If m > 3 in general dim(Z) > 0 (some components)



Definition 2.7 If codim(S¢) = 1, call C' non-defective.

Lemma 2.8 Let C € Z™*™ be a regular matriz of rankr < m. Then codim(S¢c) >
m —r, so C is defective.

Proof. All y; are homog rational fnc of fixed rows Iy, ...,[. of deg. 0 = rat.
fnc. of r — 1 variables Iy /l,,...,l,_1/l,. = codim(Sc) > m — (r —1). O

M
Remark 2.9 Converse is not true. Pickn = 2n’ and C = (M) where
M € Z" %™ has rank m <n'. In this case ¢ is const. map.

Remark 2.10 3 algorithms from checking defectiveness.

1. Compute generic rank of Jacobian matriz J(c):

rk(J(Yo)(u)) = m — 1 for gen.u <= C non-defective

2. Tropical approach in [3].

3 Birrationality of ¢

Key-definition: Gauss map of a hypersurface S C G (G algebraic group).

Definition 3.1 Our case: G = (C*)™ and S = (A = 0). Then the (logarith-
mic) Gauss map is

() = m%w Lo ymgy—fnw)) 7 (6)

mapping a reqular (smooth) point y € S to a projective point in P™~1,
Assumption: S* = SN (C*)™ # ().

Remark 3.2 (Geometric interpretation)

~vs «— looking at image of log(y) = log(y) = (log(y1), - - - ,108(ym)) for y € S*
and consider Gauss map of log(S*).

Theorem 3.3 (K; _, D.) Let S C C™ be an algebraic irreducible hypersur-
face.

The Gauss map s : S --» P™~1 is birational if and only if there exist a
non-defective and reqular integer matriz C' € Z™*"™ of full rank, and a constant
A € (C*)™ such that S = X-S¢, i.e. S is a torus translate by A of a generalized
inhomogeneous discriminant hypersurface.

Moreover, in this case, \ - ¢ is birational and the logarithmic Gauss map
Ys 15 its inverse.

Comment 3.4 e Our contribution: removing the incorrect hypothesis
about the ged go = 1. Fxplanation for this “mistake”: Remark 4.4.



e Proofs: exactly the same as Kapranov’s original ones. “If” direction:
condition gc = 1 is superfluous. “Only if” direction: the last statement
is false.

o Key tools for (<): J(log(Mpc)) is symmetric. J(log(Mpe)) = J(A\pe)-D
D =diag. matrix with multipl. inverse of coordinates of Mo as entries.
rkJ(Mpe) =m — 1 (C non defective). Use implicit partial differentiation
of A(Ape) =0 (5= (A =0)).

Proof.[Proof of the “if” part in Theorem 3.3] Let C' be a regular non-defective
n X m integer matrix, a point A € (C*)™ in the torus, and consider the map
Y = M. We need to show that the logarithmic Gauss map is its birational
inverse. Denote by A an irreducible equation of its closed image. The principal
observation is that the Jacobian matrix of log(t(,) is symmetric since

0

I n Cik Cij
87%log((i/Jc)j) = ; lf(u)j'

Moveover, a straightforward computation shows that for any point u in the
preimage of the torus, the Jacobian matrices J(¢) and J(log(¢y,)) have the
same rank since J(log(¢y)) = J(¢) - D, where D is the diagonal matrix with
diagonal entries the multiplicative inverses of the coordinates of 1. This rank
is equal to m — 1 by our hyphotesis that C' is non-defective. Now, on one side,
implicit partial differentiation of the equality A(y¢(u)) = 0 implies that the
vector ¢ (y) lies in the kernel of the transposed Jacobian matrix J(log(y))"
for any y in the image of ¥,. On the other side, since the coordinates of ¢,
are homogeneous forms of degree 0, it follows from Euler’s formula applied to
the coordinates of log(1)) that any point u in the preimage of the torus lies
in the kernel of J(log(¢y)(w). Then, u is proportional to vo (95 (v)), when this
vector is non zero. O

4 Monomial changes of coordinates and factor-
izations

GOAL: Analyze choice of C s.t. A-C =0 and relate different Ag’s obtained.

4.1 Some definitions

Setting: C € Z"*™ regular and non-defective (= mxl rk, equiv g¢ # 0).
Reduction: Replace all row vectors in C' lying in the same one-dim flat F by
their sum, without essentially changing the coordinates of the parametrization
e except for constants (if the sum gives the zero vector, we keep the constants
but we don’t keep a zero row).
Warning: We may have changed g¢!! = work with general go(# 0). Con-
vention: B has gp = 1.



Setting: Matrices C1,Cy € Z™*™ s.t. Cols (C1) Z-span Cols (C3). Equiv.
IM e Zm*™ gt Ci=Cy- M.

Remark 4.1 Suppose gc, =1 (ie. ZCy satturated lattice of ZC1). The lattice
ideal I(ZC) = (x* — z¥ : u,v € N*,u —v € ZC) (in n variables) is radical with
lgc| primary components, which correspond to torus translates of the toric va-
riety defined by the lattice ideal I(ZB) [4]. We will see in Theorem 4.7 how this
is reflected in the precise relation between the irreducible m-variate polynomials

Ap and Ac.
Definition 4.2 e Linear map Ay : P71 — P71 Ap(u) = M - ul.
e Denote Col(M) = {M®, ..., M)}, Define the (multiplicative) mono-
mial map apy : (C)™ — (C*)™:

m m
M; M; m (1) (m)
ap(@) =Jw" ] =" ™) ()
i=1 =1

(Note: o, .m, = ap, © cng, and apy is a |det M| — 1 mapping.)

Lemma 4.3 (C,C) (in [1])

]P)m—l % ]P)m—l
| I
Peoy | = [ Ye,
\i \i
(€)' < (©)

Remark 4.4 Assume gc, = 1, and call C = C1,B = Cy. Then, |det(M)| =
go. Suppose that we didn’t know Thm 3.3 but instead we suspected (or proved)
that ¥p is birational. From the equality Vo = aps o ¥p o Ay, where Ay is
birational and apy is a go to 1 mapping, one is tempted to deduce that o is
also a go to 1 mapping. But indeed, we have already proved that it is birational.

Explanation:

Lemma 4.5 Supp. C7 = Cy - M and C1,Cy are non-defective reqular integer
matrices. Then

= O‘]VI\(AC2:0) : (A02 = 0) -2 (AC1 = 0)7
s a birational map.

Proof. (Sketch) Restrict aps to image of ¢, and use density and Lemma 4.3.
Thm 3.3 = a), birational. O



4.2 Factorization Theorem

Convention: A¢, € Z[y1, - .., Ym] with cont 1, defined up to sign.
(Reason: H-K param. is given by rational forms with rational coeff.)

Recall: «y; is a | det M| — 1 mult. map.

Definition 4.6
Gy =keray = {e € (C) : apm(e)=(1,...,1)} (8)
group with induced coordinatewise mult.

Theorem 4.7 [, D] (Factorization Thm,)

Let C1,Cy are non-defective n X m reqular integer matrices such that C; =
Cy - M. There exists v in the lattice ZM (gen by cols of M) (or equiv., s.t.
e¥ =1 for alle € Gpr) such that

Ac,oam(y) =y [ Acule-v)- 9)
e€eGm

Proof.(Sketch)

1. Density and properness arguments:

(Ac, can(y) =0)N(C)™ = |J (Ag,(e-y) =0)n(C)™
e€Gm

2. Acg,(e-y) | Ac, cam(y) for all € € Gy as Laurent poly: clear by irred of
(LHS).

3. Factors Ag, (e - y) are pairwise coprime: djy is birational.

4. Nullstellensatz =

Ac,oam(y) =qy’ [] Ac.(e-9)™, qeC, ()

ee€Gum

5. Show all n. are equal (:= N): substitute y — ¢ -y for § € Gp; and use
unique factorization.

6. v € ZM <= ¢&¥ =1 for all € € Gps (conseq of prev item):use Smith
Normal Form of M.

7. N =1: Supp N > 1. Diff eq (*) + an birat. = J(Ag,)(y) = 0 on
(Ac, =0), Contr! (Ag, irred.)

8. ¢ = 1: use content 1 arguments (i.e. both sides are integer poly and cont
1). Reduce to case of M = diag(1,...,p,...,1), p prime and use Field
extension 4+ Arithmetic arguments.



Corollary 4.8

o How to eliminate ans ? Replace: y — aagian)(y) = obtained Ac, (yi, ..., y9)
(g =det M).

e Replace B by B’ given by reduced basis of ZB (LLL-algorithm):
Ap(y) = y"Ap(an-1(y)) ,

Advantage: coeff of Yp are smaller = obtain Ap/ via elimination tech-
niques (standard basis of (yifo — fi, fot =1 : 4 =1,...,m) to eliminate
variables u’s, t).

5 The degree of Ay and the computation of local
multiplicities in m = 3 case
Assume: C € Z"*™ regular, non-defective matrix with no zero rows. AND:

finite number of base points.
Well-known formula:

Proposition 5.1 (Intersection formula, [5])
g = deg(yc) deg(Sc)+ > er, (10)
—1m F basic

where ey denotes the Hilbert-Samuel multiplicity of pr [7, 8, 9].

Problem: Computing er is hard.
Some steps forward:

e Probabilistic algorithm (reduce to local complete intersections)
e Monomial case (ex. all mx]l minors # 0) — combinatorial algorithm [11].
Reduction: m = 3. Easy generalization for any m.

Definition 5.2 p = pr € Z, pick Noeth. local ring A, = Op2,, and the
localized base point locus ideal I, := (fo, f1, f2, f3)Ap.
Define Samuel function A, w.r.t. I, as:

XA (r) = I(Ay/ ;) = dime (A, /") for allr €N,
(1(-) = length as Ap-module).
Fact: This function is pseudo-polynomial, i.e. 3 PSIL{: (X) in Q[X] (which takes
integer values over Z) such that we have PS;: (r) = X,pr (r) for r > 0.

Remark 5.3 deg PSf{: (X) =2 and Lead Coeff = e/2! with e € Ny.

Definition 5.4 ey :=e (= 2! LC(PS,"(X))).



5.1 Probabilistic approach

Proposition 5.5 If p = pr determines a loc. complete intersection (i.e. Ip
admits 2 generators after picking an affine patch), then ex = dim A, /I,,.

(Algorithm: pick standard basis of I, w.r.t. local order <. And count # of
monomials not in in(Ip)).

Recall: I, = (fo,..., f3)A4,
e Pick 2 generic C-lin. comb of the 4 generators:

Jp =< vpfo+ 0 fi+v3fo+vifs, vofo+oifitupfs+usfs >,
e J, is generically a complete intersection inside I, and a reduction ideal of
I, (i.e. same Hilb-Samuel fnc.)
e = ey :=dimc(A,/Jp) with probability 1.
Corollary 5.6 er > dimc (A,/1p) (since J, C I,), so:

deg(Ac) < dg — Y dime(Ay,/Ip,).
F basic

5.2 Monomial case

Suppose p = (1: 0: 0) is a base point (after translation) and that I, is monomial.

Algorithm 5.7 Computation of Hilbert-Samuel Multiplicities for the monomial
case and m = 3.

e Set xg =1 and let I, be the specialization of the ideal I,.

e Compute the convex hull C of the exponents of the bivariate monomials in
I

P

e Then: e, = 2!-Vol(N3\C) equals the normalized volume of the complement
K of C in the first orthant.

Example 5.8 I, monomial AND complete intersection: I, = (z7'*,z5"), so
e, = Mima, as asserted in both situations.

Remark 5.9 Algorithm DOES NOT work for general ideals: e(in<(Ip)) #
e(Ip). Moreover ([11]):

e(ly) < e(in<(Ip)) < 2'e(Ip).
Comment 5.10 e p is zero of exactly 2 rows = monomial case.
e Some cases: reduce to monomial case via change of coordinates

e This doesn’t solve the whole problem ( 3 examples where no change of
coordinates works)

e Base points can be really nasty — no clear computational method for gen-
eral case. Explicit computations in the paper.
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