Some results on inhomogeneous discriminants

Abstract

We study generalized Horn-Kapranov rational parametrizations of inhomogeneous sparse discriminants from both a theoretical and an algorithmic perspective. In particular, we focus on the computation of inhomogeneous discriminants related to integer matrices B as an implicitization problem with base points corresponding to a H-K parametrization ψ_{B}. We show that all these parametrizations are birational refining a previous result by Kapranov and prove some results on the corresponding implicit equations. We also propose a combinatorial algorithm to compute the degree of inhomogeneous discriminantal surfaces associated to uniform matrices.

If time permits, we will present some examples that show numerous difficulties for computing the (Hilbert-Samuel) multiplicities of these points. Joint work with Alicia Dickenstein.

Reference: http ://arxiv.org/abs/math/0610031

1 Motivation to study the problem

1.1 A-discriminants

- $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{Z}^{d-1}$ (n lattice points) $(n>d-1)$
- $F_{A}=\sum_{a \in A} x_{a} t^{a}$ (generic polynomial in $d-1$ variables $\left(t_{1}, \ldots, t_{d-1}\right)$ with exponents in A).
$[\mathrm{GKZ}]+($ certain hypothesis $) \Rightarrow$ exists an irred. poly $D_{A} \in \mathbb{Z}\left[x_{a}: a \in A\right]$ (unique up to sign) s.t.
$D_{A}(c)=0 \Longleftrightarrow \exists t=\left(t_{1}, \ldots, t_{d-1}\right) \in\left(\mathbb{C}^{*}\right)^{d-1}$ s.t. $F_{A}(c)(t)=\frac{\partial F_{A}(c)}{\partial t_{i}}(t)=0 \forall i$.
Definition 1.1 $D_{A}:=A$-discriminant (affine invariant of A).
Remark 1.2 Key properties:
- D_{A} is an affine invariant;
- certain homogeneity condition.

Next step: built a matrix (also called A) in $\mathbb{Z}^{d \times n}$ with columns $(1, a)$ (for all $a \in A$). Assume A is of maximal rank d.

Built $B \in \mathbb{Z}^{n \times(n-d)}$ with columns a \mathbb{Z} basis of $\operatorname{ker} A$.
(Idea: B expresses affine dependencies of the initial config. of pts.)
Definition 1.3 $B:=$ Gale dual of A
Remark 1.4 Properties of B :

1. B is of full rank $m=n-d=n-r k(A)$;
2. \sum rows of $B=(0, \ldots, 0)$ (because 1 st. row of A is $(1, \ldots, 1)$).
3. $g_{B}=(g c d$ of $m x l$ minors of $B)=1$.

Definition 1.5 Under conditions (1) and (2), B is called regular.

Remark 1.6 D_{A} is A-homogeneous, i.e. $\exists v \in \mathbb{Z}^{d}$ s.t. all monomials c^{ν} in $D_{A}=\sum_{\nu} d_{\nu} x^{\nu}$ satisfy $A \cdot \nu=v$. (i.e. quasi-homogenous relative to the weight defined by any vector in the row span of A).

Want: poly with A-homogeneity $=0$.
"Take our this homogeneities" $\Rightarrow \forall \nu_{0}$ s.t. $A \cdot \nu=v$:

$$
D_{A}(x)=x^{\nu_{0}} \sum_{\nu} d_{\nu} x^{\nu-\nu_{0}}
$$

where $d_{\nu} \in \mathbb{Z} \backslash\{0\}$ and $\nu-\nu_{0} \in \operatorname{ker}_{\mathbb{Z}}(A)=\langle\operatorname{cols} . B\rangle$.

- Write each $\nu-\nu_{0}$ as a \mathbb{Z} - linear combination of the columns $v^{(1)}, \ldots, v^{(m)}$ of B. Call $y_{i}=v^{(i)}$ (new indeterminates).
- $\Rightarrow \exists$ Laurent polynomial $\Delta_{B}(y)$ in m variables such that up to a monomial $\left(x^{\nu_{0}}\right), \Delta_{B}\left(x^{v^{(1)}}, \ldots, x^{v^{(m)}}\right)$ equals $D_{A}(x)$.

Remark 1.7 Δ_{B} has the same number of monomials and the same coefficients as D_{A}.

GOAL: Compute Δ_{B} and describe de hypersurface $\left(\Delta_{B}=0\right) \subset \mathbb{C}^{m}(\Rightarrow$ get $\left.D_{A}!!!!\right)$.

1.2 Horn-Kapranov rational parametrization

- Nice way of constructing the hypersurface $\left(\Delta_{B}=0\right)$.
- Need only some prop. of B.

Setting: $C \in \mathbb{Z}^{n \times m}$ of mxl rank $m(m \geq n)$ s.t. \sum rows of $C=0$ (i.e. C regular), and has no zero rows.

- Call $C_{1}, \ldots, C_{n} \in \mathbb{Z}^{m}$ rows of C and define:

$$
\begin{equation*}
l_{k}\left(u_{1}, \ldots, u_{m}\right):=\left\langle C_{k},\left(u_{1}, \ldots, u_{m}\right)\right\rangle \quad \forall k=1, \ldots, n . \tag{1}
\end{equation*}
$$

- Construct rational map:

$$
\psi_{C}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m} \quad\left(u_{1}, \ldots, u_{m}\right) \mapsto\left(y_{1}, \ldots, y_{m}\right)
$$

where

$$
\begin{equation*}
y_{k}=\prod_{i=1}^{n} l_{i}\left(u_{1}, \ldots, u_{m}\right)^{c_{i, k}} \quad \forall k=1, \ldots, m . \tag{2}
\end{equation*}
$$

and set $S_{C}=\overline{\overline{i m} \psi_{C}} \subset \mathbb{C}^{m}$.
Remark $1.8 C$ regular $\Rightarrow y_{k}$ have degree 0 .

- Better presentation: define

$$
f_{0}=\prod_{i=1}^{n} l_{i}^{-\min \left\{0, c_{i, k}: k=1, \ldots, m\right\}}
$$

(i.e. the least common denominator of all the y_{k} 's) and write

$$
\begin{equation*}
y_{k}=\frac{f_{k}}{f_{0}}, \quad k=1, \ldots m \tag{3}
\end{equation*}
$$

Remark 1.9 By Remark 1.8, $\operatorname{deg} f_{0}=\ldots=\operatorname{deg} f_{m}=d_{C}$ (can be read from matrix C)

$$
\begin{equation*}
d_{C}=-\sum_{i=1}^{n} \min \left\{0, c_{i, k}: k=1, \ldots, m\right\} . \tag{4}
\end{equation*}
$$

(i.e. pick most negative entry in each row and change sign)

Corollary 1.10 Can define

$$
\begin{equation*}
\psi_{C}: \mathbb{P}^{m-1} \longrightarrow \mathbb{P}^{m} \tag{5}
\end{equation*}
$$

where $\psi_{C}=\left(f_{0}: f_{1}: \cdots: f_{m}\right)$ is defined outside the base point locus $\mathcal{Z}=$ $V\left(f_{0}, \ldots, f_{m}\right)$.

Definition $1.11 S_{C}:=$ proj. variety defined by $\psi_{C}\left(\subset \mathbb{P}^{m}\right)$.
Question $1.12 \quad$ - Describe \mathcal{Z} in terms of matrix C.

- When does S_{C} be a hypersurface? In this case: $S_{C}=\left(\Delta_{C}=0\right)$!!!

Example 1.13

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \quad \Rightarrow \quad B=\left(\begin{array}{rr}
1 & 2 \\
-2 & -3 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

i.e. the discriminant $D_{A}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ of the generic polynomial $F_{A}=x_{0}+$ $x_{1} t+x_{2} t^{2}+x_{3} t^{3}$ equals

$$
D_{A}(x)=-27 x_{3}^{2} x_{0}^{2}+18 x_{3} x_{0} x_{2} x_{1}+x_{2}^{2} x_{1}^{2}-4 x_{2}^{3} x_{0}-4 x_{3} x_{1}^{3} .
$$

Note that $g_{B}=1$, so that the columns of B are a basis of the integer kernel of A. Calling $l_{0}(u, v):=u+2 v, l_{1}(u, v):=-2 u-3 v, l_{2}(u, v):=u$ and $l_{3}(u, v):=v$, the parametrization ψ_{B} equals

$$
\begin{cases}y_{1} & :=\frac{l_{0} l_{2}}{l_{1}^{2}} \\ y_{2} & :=\frac{l_{0}^{2} l_{3}}{l_{1}^{3}}\end{cases}
$$

Its closed image is the hypersurface $S_{B}=\left\{\Delta_{B}=0\right\}$, where

$$
\begin{gathered}
\Delta_{B}\left(y_{1}, y_{2}\right)=-4 y_{2}-27 y_{2}^{2}+y_{1}^{2}+18 y_{2} y_{1}-4 y_{1}^{3} \\
\Delta_{B}\left(y_{1}, y_{2}\right)=D_{A}\left(1,1, y_{1}, y_{2}\right) .
\end{gathered}
$$

Conversely, up to a monomial D_{A} equals $\Delta_{B}\left(x_{0} x_{2} / x_{1}^{2}, x_{0}^{2} x_{3} / x_{1}^{3}\right)$.

2 Base point locus

Remark 2.1 l_{k} give hyperplane arrangement in $\mathbb{C}^{m}\left(\right.$ and $\left.\mathbb{P}^{m-1}\right)$.
Definition $2.2 \bullet \mathcal{F}:=$ flat in this arrangement $=V\left(l_{i_{1}}, \ldots, l_{i_{r}}\right)$ (linear space).

- $\mathcal{L}(\mathcal{F}):=\left\{\right.$ all linear forms l_{j} vanishing on $\left.\mathcal{F}\right\}$, i.e. all linear forms $l_{j} \in$ $\mathbb{Q}\left\langle l_{i_{1}}, \ldots, l_{i_{r}}\right\rangle$.
- Basic flat $:=\mathcal{F}$ s.t. all of f_{0}, \ldots, f_{m} vanish on \mathcal{F}.

Remark 2.3 f_{k} vanishes on $\mathcal{F} \Longleftrightarrow$ if it contains a linear factor from $\mathcal{L}(\mathcal{F})$.
Lemma 2.4 The base point locus \mathcal{Z} equals the union of all basic flats.
Remark 2.5 (KEY) Eliminate all common factors from f_{0}, \ldots, f_{m} (eventually modifying certain rows from $C) \Rightarrow$ can assume $\operatorname{codim}(\mathcal{Z}) \geq 2$.

Corollary 2.6 If $m=3, \mathcal{Z}$ is finite.
(However: complicated structure!!)
If $m>3$ in general $\operatorname{dim}(\mathcal{Z})>0$ (some components)

Definition 2.7 If $\operatorname{codim}\left(S_{C}\right)=1$, call C non-defective.
Lemma 2.8 Let $C \in \mathbb{Z}^{n \times m}$ be a regular matrix of rank $r<m$. Then $\operatorname{codim}\left(S_{C}\right)>$ $m-r$, so C is defective.

Proof. All y_{i} are homog rational fnc of fixed rows l_{1}, \ldots, l_{r} of deg. $0 \Rightarrow$ rat. fnc. of $r-1$ variables $l_{1} / l_{r}, \ldots, l_{r-1} / l_{r} . \Rightarrow \operatorname{codim}\left(S_{C}\right) \geq m-(r-1)$.

Remark 2.9 Converse is not true. Pick $n=2 n^{\prime}$ and $C:=\left(\frac{M}{-M}\right)$ where $M \in \mathbb{Z}^{n^{\prime} \times m}$ has rank $m \leq n^{\prime}$. In this case ψ_{C} is const. map.

Remark $2.10 \exists$ algorithms from checking defectiveness.

1. Compute generic rank of Jacobian matrix $J\left(\psi_{C}\right)$:

$$
r k\left(J\left(\psi_{C}\right)(u)\right)=m-1 \text { for gen. } u \Longleftrightarrow C \text { non-defective }
$$

2. Tropical approach in [3].

3 Birrationality of ψ_{C}

Key-definition: Gauss map of a hypersurface $S \subset G$ (G algebraic group).
Definition 3.1 Our case: $G=\left(\mathbb{C}^{*}\right)^{m}$ and $S=(\Delta=0)$. Then the (logarithmic) Gauss map is

$$
\begin{equation*}
\gamma(y)=\left(y_{1} \frac{\partial \Delta}{\partial y_{1}}(y): \ldots: y_{m} \frac{\partial \Delta}{\partial y_{m}}(y)\right) \tag{6}
\end{equation*}
$$

mapping a regular (smooth) point $y \in S$ to a projective point in \mathbb{P}^{m-1}.
Assumption: $S^{*}=S \cap\left(\mathbb{C}^{*}\right)^{m} \neq \emptyset$.
Remark 3.2 (Geometric interpretation)
$\gamma_{S} \longleftrightarrow \operatorname{looking}$ at image of $\log (y)=\log (y)=\left(\log \left(y_{1}\right), \ldots, \log \left(y_{m}\right)\right)$ for $y \in S^{*}$ and consider Gauss map of $\log \left(S^{*}\right)$.

Theorem 3.3 (K; _ , D.) Let $S \subset \mathbb{C}^{m}$ be an algebraic irreducible hypersurface.

The Gauss map $\gamma_{S}: S \rightarrow \mathbb{P}^{m-1}$ is birational if and only if there exist a non-defective and regular integer matrix $C \in \mathbb{Z}^{n \times m}$ of full rank, and a constant $\lambda \in\left(\mathbb{C}^{*}\right)^{m}$ such that $S=\lambda \cdot S_{C}$, i.e. S is a torus translate by λ of a generalized inhomogeneous discriminant hypersurface.

Moreover, in this case, $\lambda \cdot \psi_{C}$ is birational and the logarithmic Gauss map γ_{S} is its inverse.

Comment 3.4 - Our contribution: removing the incorrect hypothesis about the $g c d g_{C}=1$. Explanation for this "mistake": Remark 4.4.

- Proofs: exactly the same as Kapranov's original ones. "If" direction: condition $g_{C}=1$ is superfluous. "Only if" direction: the last statement is false.
- Key tools for $(\Leftarrow): J\left(\log \left(\lambda \psi_{C}\right)\right)$ is symmetric. $J\left(\log \left(\lambda \psi_{C}\right)\right)=J\left(\lambda \psi_{C}\right) \cdot D$ $D=$ diag. matrix with multipl. inverse of coordinates of $\lambda \psi_{C}$ as entries. $r k J\left(\lambda \psi_{C}\right)=m-1$ (C non defective). Use implicit partial differentiation of $\Delta\left(\lambda \psi_{C}\right)=0 \quad(S=(\Delta=0))$.

Proof.[Proof of the "if" part in Theorem 3.3] Let C be a regular non-defective $n \times m$ integer matrix, a point $\lambda \in\left(\mathbb{C}^{*}\right)^{m}$ in the torus, and consider the map $\psi_{C}^{\prime}:=\lambda \psi_{C}$. We need to show that the logarithmic Gauss map is its birational inverse. Denote by Δ an irreducible equation of its closed image. The principal observation is that the Jacobian matrix of $\log \left(\psi_{C}^{\prime}\right)$ is symmetric since

$$
\frac{\partial}{\partial u_{k}} \log \left(\left(\psi_{C}^{\prime}\right)_{j}\right)=\sum_{i=1}^{n} \frac{c_{i, k} c_{i, j}}{l_{i}(u)} .
$$

Moveover, a straightforward computation shows that for any point u in the preimage of the torus, the Jacobian matrices $J\left(\psi_{C}^{\prime}\right)$ and $J\left(\log \left(\psi_{C}^{\prime}\right)\right)$ have the same rank since $J\left(\log \left(\psi_{C}^{\prime}\right)\right)=J\left(\psi_{C}^{\prime}\right) \cdot D$, where D is the diagonal matrix with diagonal entries the multiplicative inverses of the coordinates of ψ_{C}^{\prime}. This rank is equal to $m-1$ by our hyphotesis that C is non-defective. Now, on one side, implicit partial differentiation of the equality $\Delta\left(\psi_{C}^{\prime}(u)\right)=0$ implies that the vector $\gamma_{C}(y)$ lies in the kernel of the transposed Jacobian matrix $J\left(\log \left(\psi_{C}^{\prime}\right)\right)^{t}$ for any y in the image of ψ_{C}^{\prime}. On the other side, since the coordinates of ψ_{C}^{\prime} are homogeneous forms of degree 0, it follows from Euler's formula applied to the coordinates of $\left.\log \left(\psi_{C}^{\prime}\right)\right)$ that any point u in the preimage of the torus lies in the kernel of $J\left(\log \left(\psi_{C}^{\prime}\right)(u)\right.$. Then, u is proportional to $\gamma_{C}\left(\psi_{C}^{\prime}(u)\right)$, when this vector is non zero.

4 Monomial changes of coordinates and factorizations

GOAL: Analyze choice of C s.t. $A \cdot C=0$ and relate different Δ_{C} 's obtained.

4.1 Some definitions

Setting: $C \in \mathbb{Z}^{n \times m}$ regular and non-defective ($\Rightarrow \mathrm{mxl} \mathrm{rk}$, equiv $g_{C} \neq 0$).
Reduction: Replace all row vectors in C lying in the same one-dim flat \mathcal{F} by their sum, without essentially changing the coordinates of the parametrization ψ_{C} except for constants (if the sum gives the zero vector, we keep the constants but we don't keep a zero row).

Warning: We may have changed $g_{C}!!\Rightarrow$ work with general $g_{C}(\neq 0)$. Convention: B has $g_{B}=1$.

Setting: Matrices $C_{1}, C_{2} \in \mathbb{Z}^{n \times m}$ s.t. Cols $\left(C_{1}\right) \mathbb{Z}$-span Cols $\left(C_{2}\right)$. Equiv. $\exists M \in \mathbb{Z}^{m \times m}$ s.t. $C_{1}=C_{2} \cdot M$.

Remark 4.1 Suppose $g_{C_{2}}=1$ (ie. $\mathbb{Z} C_{2}$ satturated lattice of $\mathbb{Z} C_{1}$). The lattice ideal $I(\mathbb{Z} C)=\left\langle x^{u}-x^{v}: u, v \in \mathbb{N}^{n}, u-v \in \mathbb{Z} C\right\rangle$ (in n variables) is radical with $\left|g_{C}\right|$ primary components, which correspond to torus translates of the toric variety defined by the lattice ideal $I(\mathbb{Z} B)$ [4]. We will see in Theorem 4.7 how this is reflected in the precise relation between the irreducible m-variate polynomials Δ_{B} and Δ_{C}.

Definition 4.2 - Linear map $\Lambda_{M}: \mathbb{P}^{m-1} \rightarrow \mathbb{P}^{m-1} \Lambda_{M}(u)=M \cdot u^{t}$.

- Denote $\operatorname{Col}(M)=\left\{M^{(1)}, \ldots, M^{(m)}\right\}$. Define the (multiplicative) monomial map $\alpha_{M}:\left(\mathbb{C}^{*}\right)^{m} \rightarrow\left(\mathbb{C}^{*}\right)^{m}$:

$$
\begin{equation*}
\alpha_{M}(y)=\left(\prod_{i=1}^{m} y_{i}^{M_{i, 1}}, \ldots, \prod_{i=1}^{m} y_{i}^{M_{i, m}}\right)=\left(y^{M^{(1)}}, \ldots, y^{M^{(m)}}\right) . \tag{7}
\end{equation*}
$$

(Note: $\alpha_{M_{1} \cdot M_{2}}=\alpha_{M_{2}} \circ \alpha_{M_{1}}$ and α_{M} is a $|\operatorname{det} M|-1$ mapping.)
Lemma 4.3 (C,C) (in [1])

Remark 4.4 Assume $g_{C_{2}}=1$, and call $C=C_{1}, B=C_{2}$. Then, $|\operatorname{det}(M)|=$ g_{C}. Suppose that we didn't know Thm 3.3 but instead we suspected (or proved) that ψ_{B} is birational. From the equality $\psi_{C}=\alpha_{M} \circ \psi_{B} \circ \Lambda_{M}$, where Λ_{M} is birational and α_{M} is a g_{C} to 1 mapping, one is tempted to deduce that ψ_{C} is also a g_{C} to 1 mapping. But indeed, we have already proved that it is birational.

Explanation:
Lemma 4.5 Supp. $C_{1}=C_{2} \cdot M$ and C_{1}, C_{2} are non-defective regular integer matrices. Then

$$
\tilde{\alpha}_{M}=\left.\alpha_{M}\right|_{\left(\Delta_{C_{2}}=0\right)}:\left(\Delta_{C_{2}}=0\right) \rightarrow\left(\Delta_{C_{1}}=0\right)
$$

is a birational map.
Proof. (Sketch) Restrict α_{M} to image of $\psi_{C_{2}}$ and use density and Lemma 4.3. Thm $3.3 \Rightarrow \tilde{\alpha}_{M}$ birational.

4.2 Factorization Theorem

Convention: $\Delta_{C_{i}} \in \mathbb{Z}\left[y_{1}, \ldots, y_{m}\right]$ with cont 1 , defined up to sign.
(Reason: H-K param. is given by rational forms with rational coeff.)
Recall: α_{M} is a $|\operatorname{det} M|-1$ mult. map.

Definition 4.6

$$
\begin{equation*}
G_{M}:=\operatorname{ker} \alpha_{M}=\left\{\varepsilon \in\left(\mathbb{C}^{*}\right)^{m}: \alpha_{M}(\varepsilon)=(1, \ldots, 1)\right\} \tag{8}
\end{equation*}
$$

group with induced coordinatewise mult.
Theorem 4.7 [- , D] (Factorization Thm)
Let C_{1}, C_{2} are non-defective $n \times m$ regular integer matrices such that $C_{1}=$ $C_{2} \cdot M$. There exists v in the lattice $\mathbb{Z} M$ (gen by cols of M) (or equiv., s.t. $\varepsilon^{v}=1$ for all $\varepsilon \in G_{M}$) such that

$$
\begin{equation*}
\Delta_{C_{1}} \circ \alpha_{M}(y)=y^{v} \prod_{\varepsilon \in G_{M}} \Delta_{C_{2}}(\varepsilon \cdot y) . \tag{9}
\end{equation*}
$$

Proof.(Sketch)

1. Density and properness arguments:

$$
\left(\Delta_{C_{1}} \circ \alpha_{M}(y)=0\right) \cap\left(\mathbb{C}^{*}\right)^{m}=\bigcup_{\varepsilon \in G_{m}}\left(\Delta_{C_{2}}(\varepsilon \cdot y)=0\right) \cap\left(\mathbb{C}^{*}\right)^{m}
$$

2. $\Delta_{C_{2}}(\varepsilon \cdot y) \mid \Delta_{C_{1}} \circ \alpha_{M}(y)$ for all $\varepsilon \in G_{M}$ as Laurent poly: clear by irred of (LHS).
3. Factors $\Delta_{C_{2}}(\varepsilon \cdot y)$ are pairwise coprime: $\tilde{\alpha}_{M}$ is birational.
4. Nullstellensatz \Rightarrow

$$
\begin{equation*}
\Delta_{C_{1}} \circ \alpha_{M}(y)=q y^{v} \prod_{\varepsilon \in G_{M}} \Delta_{C_{2}}(\varepsilon \cdot y)^{n_{\varepsilon}}, \quad q \in \mathbb{C}^{*} \tag{*}
\end{equation*}
$$

5. Show all n_{ε} are equal $(:=N)$: substitute $y \mapsto \delta \cdot y$ for $\delta \in G_{M}$ and use unique factorization.
6. $v \in \mathbb{Z} M \Longleftrightarrow \varepsilon^{v}=1$ for all $\varepsilon \in G_{M}$ (conseq of prev item):use Smith Normal Form of M.
7. $N=1$: Supp $N>1$. Diff eq $\left(^{*}\right)+\tilde{\alpha}_{M}$ birat. $\Rightarrow J\left(\Delta_{C_{1}}\right)(y)=0$ on $\left(\Delta_{C_{1}}=0\right)$, Contr! $\left(\Delta_{C_{1}}\right.$ irred. $)$
8. $q=1$: use content 1 arguments (i.e. both sides are integer poly and cont 1). Reduce to case of $M=\operatorname{diag}(1, \ldots, p, \ldots, 1), p$ prime and use Field extension + Arithmetic arguments.

Corollary 4.8

- How to eliminate α_{M} ? Replace: $y \rightarrow \alpha_{\operatorname{Adj}(M)}(y) \Rightarrow$ obtained $\Delta_{C_{1}}\left(y_{1}^{g}, \ldots, y_{n}^{g}\right)$ ($g=\operatorname{det} M$).
- Replace B by B^{\prime} given by reduced basis of $\mathbb{Z} B$ (LLL-algorithm):

$$
\Delta_{B}(y)=y^{v} \Delta_{B^{\prime}}\left(\alpha_{M^{-1}}(y)\right),
$$

Advantage: coeff of $\psi_{B^{\prime}}$ are smaller \Rightarrow obtain $\Delta_{B^{\prime}}$ via elimination techniques (standard basis of $\left\langle y_{i} f_{0}-f_{i}, f_{0} t-1: i=1, \ldots, m\right\rangle$ to eliminate variables u 's, t).

5 The degree of Δ_{C} and the computation of local multiplicities in $m=3$ case

Assume: $C \in \mathbb{Z}^{n \times m}$ regular, non-defective matrix with no zero rows. AND: finite number of base points.

Well-known formula:
Proposition 5.1 (Intersection formula, [5])

$$
\begin{equation*}
d_{C}^{2}=\underbrace{\operatorname{deg}\left(\psi_{C}\right)}_{=1!!!} \operatorname{deg}\left(S_{C}\right)+\sum_{\mathcal{F} \text { basic }} e_{\mathcal{F}}, \tag{10}
\end{equation*}
$$

where $e_{\mathcal{F}}$ denotes the Hilbert-Samuel multiplicity of $p_{\mathcal{F}}[7,8,9]$.
Problem: Computing $e_{\mathcal{F}}$ is hard.
Some steps forward:

- Probabilistic algorithm (reduce to local complete intersections)
- Monomial case (ex. all mxl minors $\neq 0) \rightarrow$ combinatorial algorithm [11].

Reduction: $m=3$. Easy generalization for any m.
Definition $5.2 p=p_{\mathcal{F}} \in \mathcal{Z}$, pick Noeth. local ring $A_{p}:=\mathcal{O}_{\mathbb{P}^{2}, p}$ and the localized base point locus ideal $I_{p}:=\left\langle f_{0}, f_{1}, f_{2}, f_{3}\right\rangle A_{p}$.

Define Samuel function A_{p} w.r.t. I_{p} as:

$$
\chi_{A_{p}}^{I_{p}}(r)=l\left(A_{p} / I_{p}^{r+1}\right)=\operatorname{dim}_{\mathbb{C}}\left(A_{p} / I_{p}^{r+1}\right) \quad \text { for all } r \in \mathbb{N},
$$

$\left(l(-)=\right.$ length as A_{p}-module).
Fact: This function is pseudo-polynomial, i.e. $\exists P S_{A_{p}}^{I_{p}}(X)$ in $\mathbb{Q}[X]$ (which takes integer values over \mathbb{Z}) such that we have $P S_{A_{p}}^{I_{p}}(r)=\chi_{A_{p}}^{I_{p}}(r)$ for $r \gg 0$.
Remark 5.3 $\operatorname{deg} P S_{A_{p}}^{I_{p}}(X)=2$ and Lead Coeff $=e / 2!$ with $e \in \mathbb{N}_{0}$.
Definition $5.4 e_{\mathcal{F}}:=e\left(=2!\cdot \operatorname{LC}\left(P S_{A_{p}}^{I_{p}}(X)\right)\right)$.

5.1 Probabilistic approach

Proposition 5.5 If $p=p_{\mathcal{F}}$ determines a loc. complete intersection (i.e. I_{P} admits 2 generators after picking an affine patch), then $e_{\mathcal{F}}=\operatorname{dim} A_{p} / I_{p}$.
(Algorithm: pick standard basis of I_{p} w.r.t. local order \prec. And count $\#$ of monomials not in $\left.\operatorname{in}_{\prec}\left(I_{p}\right)\right)$.

Recall: $I_{p}=\left\langle f_{0}, \ldots, f_{3}\right\rangle A_{p}$

- Pick 2 generic \mathbb{C}-lin. comb of the 4 generators:

$$
J_{p}:=<v_{0}^{0} f_{0}+v_{1}^{0} f_{1}+v_{2}^{0} f_{2}+v_{3}^{0} f_{3}, v_{0}^{1} f_{0}+v_{1}^{1} f_{1}+v_{2}^{1} f_{2}+v_{3}^{1} f_{3}>
$$

- J_{p} is generically a complete intersection inside I_{p} and a reduction ideal of I_{p} (i.e. same Hilb-Samuel fnc.)
- $\Rightarrow e_{\mathcal{F}}:=\operatorname{dim}_{\mathbb{C}}\left(A_{p} / J_{p}\right)$ with probability 1.

Corollary $5.6 e_{\mathcal{F}} \geq \operatorname{dim}_{\mathbb{C}}\left(A_{p} / I_{p}\right)$ (since $\left.J_{p} \subset I_{p}\right)$, so:

$$
\operatorname{deg}\left(\Delta_{C}\right) \leq d_{C}^{2}-\sum_{\mathcal{F} \text { basic }} \operatorname{dim}_{\mathbb{C}}\left(A_{p_{\mathcal{F}}} / I_{p_{\mathcal{F}}}\right)
$$

5.2 Monomial case

Suppose $p=(1: 0: 0)$ is a base point (after translation) and that I_{p} is monomial.
Algorithm 5.7 Computation of Hilbert-Samuel Multiplicities for the monomial case and $m=3$.

- Set $x_{0}=1$ and let \tilde{I}_{p} be the specialization of the ideal I_{p}.
- Compute the convex hull \mathcal{C} of the exponents of the bivariate monomials in \tilde{I}_{p}.
- Then: $e_{p}=2!\cdot \operatorname{Vol}\left(\mathbb{N}_{0}^{2} \backslash \mathcal{C}\right)$ equals the normalized volume of the complement \mathcal{K} of \mathcal{C} in the first orthant.

Example 5.8 I_{p} monomial AND complete intersection: $I_{p}=\left\langle x_{1}^{m_{1}}, x_{2}^{m_{2}}\right\rangle$, so $e_{p}=m_{1} m_{2}$, as asserted in both situations.

Remark 5.9 Algorithm DOES NOT work for general ideals: e(in々 $\left.\left(I_{0}\right)\right) \neq$ $e\left(I_{0}\right)$. Moreover ([11]):

$$
e\left(I_{0}\right) \leq e\left(i n_{\prec}\left(I_{0}\right)\right) \leq 2!e\left(I_{0}\right)
$$

Comment $5.10 \quad$ - p is zero of exactly 2 rows \Rightarrow monomial case.

- Some cases: reduce to monomial case via change of coordinates
- This doesn't solve the whole problem (\exists examples where no change of coordinates works)
- Base points can be really nasty \rightarrow no clear computational method for general case. Explicit computations in the paper.

References

[1] R. Curran. Toric ideals and discriminants in codimensions greater than two. Doctoral dissertation. University of Massachusetts, Amherst, 2005.
[2] D. Delfino, A. Taylor, W. V. Vasconcelos, N. Weininger and R.H. Villarreal. Monomials ideals and the computation of multiplicities, in: Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj and S. Wiegandl, Eds.), Lectures Notes in Pure and Applied Math. 231, Marcel Dekker, New York, 2002, 87-107.
[3] A. Dickenstein, E. M. Feichtner and B. Sturmfels. Tropical Discriminants. math.AG/0510126.
[4] D. Eisenbud and B. Sturmfels, Binomial ideals. Duke Math. J. 84 (1996), no. 1, 1-45.
[5] W. Fulton. Intersection Theory. Springer-Verlag, New York, 1984.
[6] I. M. Gel'fand, M. Kapranov and A. V. Zelevinsky . Discriminants, Resultants and Multidimensional Determinants. Birkhauser, Boston-BaselBerlin, 1994.
[7] H. Matsumura. Commutative Ring Theory. Cambridge studies in advanced mathematics, 8. Cambridge University Press, 1989.
[8] W. Bruns and J. Herzog. Cohen-Macaulay rings. Cambridge studies in advanced mathematics, 39. Cambridge University Press, 1993.
[9] D. Cox. What is the multiplicity of a base point?. Slides from the expository talk given at XIV CLA, La Falda, Argentina, 2001. Available at http://www.amherst.edu/~dacox/.
[10] M. Kapranov. A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Mathematische Annalen, 290, 1991, 277-285.
[11] D. Delfino, A. Taylor, W. V. Vasconcelos, N. Weininger and R.H. Villarreal. Monomials ideals and the computation of multiplicities. Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj and S. Wiegandl, Eds.), Lectures Notes in Pure and Applied Math. 231, Marcel Dekker, New York, 2002, 87-107.

