Some results on inhomogeneous discriminants

Abstract

We study generalized Horn-Kapranov rational parametrizations of inhomogeneous sparse discriminants from both a theoretical and an algorithmic perspective. In particular, we focus on the computation of inhomogeneous discriminants related to integer matrices B as an implicitization problem with base points corresponding to a H-K parametrization ψ_B . We show that all these parametrizations are birational refining a previous result by Kapranov and prove some results on the corresponding implicit equations. We also propose a combinatorial algorithm to compute the degree of inhomogeneous discriminantal surfaces associated to uniform matrices.

If time permits, we will present some examples that show numerous difficulties for computing the (Hilbert-Samuel) multiplicities of these points. Joint work with Alicia Dickenstein.

Reference: http://arxiv.org/abs/math/0610031

1 Motivation to study the problem

1.1 A-discriminants

- $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^{d-1}$ (*n* lattice points) (n > d 1)
- $F_A = \sum_{a \in A} x_a t^a$ (generic polynomial in d-1 variables (t_1, \ldots, t_{d-1}) with exponents in A).

 $[GKZ] + (certain hypothesis) \Rightarrow exists an irred. poly <math>D_A \in \mathbb{Z}[x_a : a \in A]$ (unique up to sign) s.t.

$$D_A(c) = 0 \iff \exists t = (t_1, \dots, t_{d-1}) \in (\mathbb{C}^*)^{d-1} \ s.t. \ F_A(c)(t) = \frac{\partial F_A(c)}{\partial t_i}(t) = 0 \ \forall i.$$

Definition 1.1 $D_A := A$ -discriminant (affine invariant of A).

Remark 1.2 Key properties:

- D_A is an affine invariant;
- certain homogeneity condition.

Next step: built a matrix (also called A) in $\mathbb{Z}^{d \times n}$ with columns (1, a) (for all $a \in A$). Assume A is of maximal rank d.

Built $B \in \mathbb{Z}^{n \times (n-d)}$ with columns a \mathbb{Z} basis of ker A.

(Idea: B expresses affine dependencies of the initial config. of pts.)

Definition 1.3 $B := Gale \ dual \ of \ A$

Remark 1.4 Properties of B:

- 1. B is of full rank m = n d = n rk(A);
- 2. \sum rows of $B = (0, \ldots, 0)$ (because 1st. row of A is $(1, \ldots, 1)$).
- 3. $g_B = (gcd \ of \ mxl \ minors \ of \ B) = 1.$

Definition 1.5 Under conditions (1) and (2), B is called regular.

Remark 1.6 D_A is A-homogeneous, i.e. $\exists v \in \mathbb{Z}^d$ s.t. all monomials c^{ν} in $D_A = \sum_{\nu} d_{\nu} x^{\nu}$ satisfy $A \cdot \nu = v$. (i.e. quasi-homogenous relative to the weight defined by any vector in the row span of A).

Want: poly with A-homogeneity = 0. "Take our this homogeneities" $\Rightarrow \forall \nu_0 \text{ s.t. } A \cdot \nu = v$:

$$D_A(x) = x^{\nu_0} \sum_{\nu} d_{\nu} x^{\nu - \nu_0},$$

where $d_{\nu} \in \mathbb{Z} \setminus \{0\}$ and $\nu - \nu_0 \in \ker_{\mathbb{Z}}(A) = \langle \operatorname{cols} B \rangle$.

- Write each $\nu \nu_0$ as a \mathbb{Z} linear combination of the columns $v^{(1)}, \ldots, v^{(m)}$ of *B*. Call $y_i = v^{(i)}$ (new indeterminates).
- $\Rightarrow \exists$ Laurent polynomial $\Delta_B(y)$ in *m* variables such that up to a monomial $(x^{\nu_0}), \Delta_B(x^{v^{(1)}}, \ldots, x^{v^{(m)}})$ equals $D_A(x)$.

Remark 1.7 Δ_B has the same number of monomials and the same coefficients as D_A .

GOAL: Compute Δ_B and describe de hypersurface $(\Delta_B = 0) \subset \mathbb{C}^m$ (\Rightarrow get D_A !!!!).

1.2 Horn-Kapranov rational parametrization

- Nice way of constructing the hypersurface $(\Delta_B = 0)$.
- Need only *some* prop. of *B*.

Setting: $C \in \mathbb{Z}^{n \times m}$ of mxl rank $m \ (m \ge n)$ s.t. \sum rows of C = 0 (i.e. C regular), and has no *zero* rows.

• Call $C_1, \ldots, C_n \in \mathbb{Z}^m$ rows of C and define:

$$l_k(u_1,\ldots,u_m) := \langle C_k, (u_1,\ldots,u_m) \rangle \quad \forall k = 1,\ldots,n.$$
(1)

• Construct rational map:

$$\psi_C : \mathbb{C}^m \dashrightarrow \mathbb{C}^m \quad (u_1, \dots, u_m) \mapsto (y_1, \dots, y_m),$$

where

$$y_k = \prod_{i=1}^n l_i (u_1, \dots, u_m)^{c_{i,k}} \quad \forall k = 1, \dots, m.$$
 (2)

and set $S_C = \overline{im \psi_C} \subset \mathbb{C}^m$.

Remark 1.8 *C* regular \Rightarrow y_k have degree 0.

• Better presentation: define

$$f_0 = \prod_{i=1}^n l_i^{-\min\{0, c_{i,k}: k=1,...,m\}}$$

(i.e. the least common denominator of all the y_k 's) and write

$$y_k = \frac{f_k}{f_0}, \quad k = 1, \dots m.$$
 (3)

Remark 1.9 By Remark 1.8, deg $f_0 = \ldots = \text{deg } f_m = d_C$ (can be read from matrix C)

$$d_C = -\sum_{i=1}^{n} \min\{0, c_{i,k} : k = 1, \dots, m\}.$$
(4)

(i.e. pick most negative entry in each row and change sign)

Corollary 1.10 Can define

$$\psi_C: \mathbb{P}^{m-1} \dashrightarrow \mathbb{P}^m, \tag{5}$$

where $\psi_C = (f_0 : f_1 : \cdots : f_m)$ is defined **outside** the base point locus $\mathcal{Z} = V(f_0, \ldots, f_m)$.

Definition 1.11 $S_C := proj.$ variety defined by $\psi_C \ (\subset \mathbb{P}^m)$.

Question 1.12 • Describe Z in terms of matrix C.

• When does S_C be a hypersurface? In this case: $S_C = (\Delta_C = 0)!!!$

Example 1.13

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \quad \Rightarrow \quad B = \begin{pmatrix} 1 & 2 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

i.e. the discriminant $D_A(x_0, x_1, x_2, x_3)$ of the generic polynomial $F_A = x_0 + x_1t + x_2t^2 + x_3t^3$ equals

$$D_A(x) = -27x_3^2x_0^2 + 18x_3x_0x_2x_1 + x_2^2x_1^2 - 4x_2^3x_0 - 4x_3x_1^3.$$

Note that $g_B = 1$, so that the columns of B are a basis of the integer kernel of A. Calling $l_0(u, v) := u + 2v$, $l_1(u, v) := -2u - 3v$, $l_2(u, v) := u$ and $l_3(u, v) := v$, the parametrization ψ_B equals

$$\begin{cases} y_1 &:= \frac{l_0 l_2}{l_1^2} \\ y_2 &:= \frac{l_0^2 l_3}{l_1^3} \end{cases}$$

Its closed image is the hypersurface $S_B = \{\Delta_B = 0\}$, where

$$\Delta_B(y_1, y_2) = -4y_2 - 27y_2^2 + y_1^2 + 18y_2y_1 - 4y_1^3,$$

$$\Delta_B(y_1, y_2) = D_A(1, 1, y_1, y_2).$$

Conversely, up to a monomial D_A equals $\Delta_B(x_0x_2/x_1^2, x_0^2x_3/x_1^3)$.

2 Base point locus

Remark 2.1 l_k give hyperplane arrangement in \mathbb{C}^m (and \mathbb{P}^{m-1}).

- **Definition 2.2** $\mathcal{F} := flat in this arrangement = V(l_{i_1}, \ldots, l_{i_r})$ (linear space).
 - $\mathcal{L}(\mathcal{F}) := \{ all \ linear \ forms \ l_j \ vanishing \ on \ \mathcal{F} \}, \ i.e. \ all \ linear \ forms \ l_j \in \mathbb{Q}\langle l_{i_1}, \ldots, l_{i_r} \rangle.$
 - Basic flat := \mathcal{F} s.t. all of f_0, \ldots, f_m vanish on \mathcal{F} .

Remark 2.3 f_k vanishes on $\mathcal{F} \iff$ if it contains a linear factor from $\mathcal{L}(\mathcal{F})$.

Lemma 2.4 The base point locus Z equals the union of all basic flats.

Remark 2.5 (KEY) Eliminate all common factors from f_0, \ldots, f_m (eventually modifying certain rows from C) \Rightarrow can assume $codim(\mathcal{Z}) \geq 2$.

Corollary 2.6 If m = 3, \mathcal{Z} is finite. (However: complicated structure!!) If m > 3 in general dim $(\mathcal{Z}) > 0$ (some components) **Definition 2.7** If $codim(S_C) = 1$, call C non-defective.

Lemma 2.8 Let $C \in \mathbb{Z}^{n \times m}$ be a regular matrix of rank r < m. Then $\operatorname{codim}(S_C) > m - r$, so C is defective.

Proof. All y_i are homog rational fnc of fixed rows l_1, \ldots, l_r of deg. $0 \Rightarrow$ rat. fnc. of r-1 variables $l_1/l_r, \ldots, l_{r-1}/l_r$. $\Rightarrow codim(S_C) \ge m - (r-1)$.

Remark 2.9 Converse is not true. Pick n = 2n' and $C := \left(\frac{M}{-M}\right)$ where $M \in \mathbb{Z}^{n' \times m}$ has rank $m \leq n'$. In this case ψ_C is const. map.

Remark 2.10 \exists algorithms from checking defectiveness.

1. Compute generic rank of Jacobian matrix $J(\psi_C)$:

$$rk(J(\psi_C)(u)) = m - 1$$
 for gen. $u \iff C$ non-defective

2. Tropical approach in [3].

3 Birrationality of ψ_C

Key-definition: Gauss map of a hypersurface $S \subset G$ (G algebraic group).

Definition 3.1 Our case: $G = (\mathbb{C}^*)^m$ and $S = (\Delta = 0)$. Then the (logarithmic) Gauss map is

$$\gamma(y) = \left(y_1 \frac{\partial \Delta}{\partial y_1}(y) : \dots : y_m \frac{\partial \Delta}{\partial y_m}(y)\right), \qquad (6)$$

mapping a regular (smooth) point $y \in S$ to a projective point in \mathbb{P}^{m-1} .

Assumption: $S^* = S \cap (\mathbb{C}^*)^m \neq \emptyset$.

Remark 3.2 (Geometric interpretation) $\gamma_S \longleftrightarrow$ looking at image of $log(y) = log(y) = (log(y_1), \dots, log(y_m))$ for $y \in S^*$ and consider Gauss map of $log(S^*)$.

Theorem 3.3 (K; _ , **D.)** Let $S \subset \mathbb{C}^m$ be an algebraic irreducible hypersurface.

The Gauss map $\gamma_S : S \longrightarrow \mathbb{P}^{m-1}$ is birational if and only if there exist a non-defective and regular integer matrix $C \in \mathbb{Z}^{n \times m}$ of full rank, and a constant $\lambda \in (\mathbb{C}^*)^m$ such that $S = \lambda \cdot S_C$, i.e. S is a torus translate by λ of a generalized inhomogeneous discriminant hypersurface.

Moreover, in this case, $\lambda \cdot \psi_C$ is birational and the logarithmic Gauss map γ_S is its inverse.

Comment 3.4 • Our contribution: removing the incorrect hypothesis about the gcd $g_C = 1$. Explanation for this "mistake": Remark 4.4.

- Proofs: exactly the same as Kapranov's original ones. "If" direction: condition $g_C = 1$ is superfluous. "Only if" direction: the last statement is false.
- Key tools for (\Leftarrow) : $J(log(\lambda\psi_C))$ is symmetric. $J(log(\lambda\psi_C)) = J(\lambda\psi_C) \cdot D$ D = diag. matrix with multipl. inverse of coordinates of $\lambda\psi_C$ as entries. $rkJ(\lambda\psi_C) = m - 1$ (C non defective). Use implicit partial differentiation of $\Delta(\lambda\psi_C) = 0$ ($S = (\Delta = 0)$).

Proof. [Proof of the "if" part in Theorem 3.3] Let C be a regular non-defective $n \times m$ integer matrix, a point $\lambda \in (\mathbb{C}^*)^m$ in the torus, and consider the map $\psi'_C := \lambda \psi_C$. We need to show that the logarithmic Gauss map is its birational inverse. Denote by Δ an irreducible equation of its closed image. The principal observation is that the Jacobian matrix of $\log(\psi'_C)$ is symmetric since

$$\frac{\partial}{\partial u_k} \log((\psi'_C)_j) = \sum_{i=1}^n \frac{c_{i,k} \ c_{i,j}}{l_i(u)}.$$

Moveover, a straightforward computation shows that for any point u in the preimage of the torus, the Jacobian matrices $J(\psi'_C)$ and $J(\log(\psi'_C))$ have the same rank since $J(\log(\psi'_C)) = J(\psi'_C) \cdot D$, where D is the diagonal matrix with diagonal entries the multiplicative inverses of the coordinates of ψ'_C . This rank is equal to m-1 by our hyphotesis that C is non-defective. Now, on one side, implicit partial differentiation of the equality $\Delta(\psi'_C(u)) = 0$ implies that the vector $\gamma_C(y)$ lies in the kernel of the transposed Jacobian matrix $J(\log(\psi'_C))^t$ for any y in the image of ψ'_C . On the other side, since the coordinates of ψ'_C are homogeneous forms of degree 0, it follows from Euler's formula applied to the coordinates of $\log(\psi'_C)$ that any point u in the preimage of the torus lies in the kernel of $J(\log(\psi'_C)(u)$. Then, u is proportional to $\gamma_C(\psi'_C(u))$, when this vector is non zero.

4 Monomial changes of coordinates and factorizations

GOAL: Analyze choice of C s.t. $A \cdot C = 0$ and relate different Δ_C 's obtained.

4.1 Some definitions

Setting: $C \in \mathbb{Z}^{n \times m}$ regular and non-defective (\Rightarrow mxl rk, equiv $g_C \neq 0$).

Reduction: Replace all row vectors in C lying in the same one-dim flat \mathcal{F} by their sum, without essentially changing the coordinates of the parametrization ψ_C except for constants (if the sum gives the zero vector, we keep the constants but we don't keep a zero row).

Warning: We may have changed $g_C !! \Rightarrow$ work with general $g_C \neq 0$. Convention: *B* has $g_B = 1$.

Setting: Matrices $C_1, C_2 \in \mathbb{Z}^{n \times m}$ s.t. Cols (C_1) Z-span Cols (C_2) . Equiv. $\exists M \in \mathbb{Z}^{m \times m}$ s.t. $C_1 = C_2 \cdot M$.

Remark 4.1 Suppose $g_{C_2} = 1$ (ie. $\mathbb{Z}C_2$ saturated lattice of $\mathbb{Z}C_1$). The lattice ideal $I(\mathbb{Z}C) = \langle x^u - x^v : u, v \in \mathbb{N}^n, u - v \in \mathbb{Z}C \rangle$ (in n variables) is radical with $|g_C|$ primary components, which correspond to torus translates of the toric variety defined by the lattice ideal $I(\mathbb{Z}B)$ [4]. We will see in Theorem 4.7 how this is reflected in the precise relation between the irreducible m-variate polynomials Δ_B and Δ_C .

Definition 4.2 • Linear map $\Lambda_M : \mathbb{P}^{m-1} \to \mathbb{P}^{m-1} \Lambda_M(u) = M \cdot u^t$.

• Denote $Col(M) = \{M^{(1)}, \dots, M^{(m)}\}$. Define the (multiplicative) monomial map $\alpha_M : (\mathbb{C}^*)^m \to (\mathbb{C}^*)^m$:

$$\alpha_M(y) = (\prod_{i=1}^m y_i^{M_{i,1}}, \dots, \prod_{i=1}^m y_i^{M_{i,m}}) = (y^{M^{(1)}}, \dots, y^{M^{(m)}}).$$
(7)

(Note: $\alpha_{M_1 \cdot M_2} = \alpha_{M_2} \circ \alpha_{M_1}$ and α_M is a $|\det M| - 1$ mapping.)

Lemma 4.3 (C,C) (in [1])

Remark 4.4 Assume $g_{C_2} = 1$, and call $C = C_1, B = C_2$. Then, $|\det(M)| = g_C$. Suppose that we didn't know Thm 3.3 but instead we suspected (or proved) that ψ_B is birational. From the equality $\psi_C = \alpha_M \circ \psi_B \circ \Lambda_M$, where Λ_M is birational and α_M is a g_C to 1 mapping, one is tempted to deduce that ψ_C is also a g_C to 1 mapping. But indeed, we have already proved that it is birational.

Explanation:

Lemma 4.5 Supp. $C_1 = C_2 \cdot M$ and C_1, C_2 are non-defective regular integer matrices. Then

$$\tilde{\alpha}_M = \alpha_M|_{(\Delta_{C_2}=0)} : (\Delta_{C_2}=0) \dashrightarrow (\Delta_{C_1}=0),$$

 $is \ a \ birational \ map.$

Proof. (Sketch) Restrict α_M to image of ψ_{C_2} and use density and Lemma 4.3. Then $3.3 \Rightarrow \tilde{\alpha}_M$ birational.

4.2 Factorization Theorem

Convention: $\Delta_{C_i} \in \mathbb{Z}[y_1, \ldots, y_m]$ with cont 1, defined up to sign. (*Reason:* H-K param. is given by rational forms with <u>rational</u> coeff.)

Recall: α_M is a $|\det M| - 1$ mult. map.

Definition 4.6

$$G_M := \ker \alpha_M = \{ \varepsilon \in (\mathbb{C}^*)^m : \alpha_M(\varepsilon) = (1, \dots, 1) \}$$
(8)

group with induced coordinatewise mult.

Theorem 4.7 [-, D] (Factorization Thm)

Let C_1, C_2 are non-defective $n \times m$ regular integer matrices such that $C_1 = C_2 \cdot M$. There exists v in the lattice $\mathbb{Z}M$ (gen by cols of M) (or equiv., s.t. $\varepsilon^v = 1$ for all $\varepsilon \in G_M$) such that

$$\Delta_{C_1} \circ \alpha_M(y) = y^v \prod_{\varepsilon \in G_M} \Delta_{C_2}(\varepsilon \cdot y) .$$
(9)

Proof.(Sketch)

1. Density and properness arguments:

$$(\Delta_{C_1} \circ \alpha_M(y) = 0) \cap (\mathbb{C}^*)^m = \bigcup_{\varepsilon \in G_m} (\Delta_{C_2}(\varepsilon \cdot y) = 0) \cap (\mathbb{C}^*)^m.$$

- 2. $\Delta_{C_2}(\varepsilon \cdot y) \mid \Delta_{C_1} \circ \alpha_M(y)$ for all $\varepsilon \in G_M$ as Laurent poly: clear by irred of (LHS).
- 3. Factors $\Delta_{C_2}(\varepsilon \cdot y)$ are pairwise coprime: $\tilde{\alpha}_M$ is birational.
- 4. Nullstellensatz \Rightarrow

$$\Delta_{C_1} \circ \alpha_M(y) = q y^v \prod_{\varepsilon \in G_M} \Delta_{C_2}(\varepsilon \cdot y)^{n_{\varepsilon}}, \quad q \in \mathbb{C}^*.$$
(*)

- 5. Show all n_{ε} are equal (:= N): substitute $y \mapsto \delta \cdot y$ for $\delta \in G_M$ and use unique factorization.
- 6. $v \in \mathbb{Z}M \iff \varepsilon^v = 1$ for all $\varepsilon \in G_M$ (conseq of prev item):use Smith Normal Form of M.
- 7. N = 1: Supp N > 1. Diff eq (*) + $\tilde{\alpha}_M$ birat. $\Rightarrow J(\Delta_{C_1})(y) = 0$ on $(\Delta_{C_1} = 0)$, Contr! $(\Delta_{C_1} \text{ irred.})$
- 8. q = 1: use content 1 arguments (i.e. both sides are integer poly and cont 1). Reduce to case of $M = diag(1, \ldots, p, \ldots, 1)$, p prime and use Field extension + Arithmetic arguments.

Corollary 4.8

- How to eliminate α_M ? Replace: $y \to \alpha_{Adj(M)}(y) \Rightarrow obtained \Delta_{C_1}(y_1^g, \dots, y_n^g)$ (g = det M).
- Replace B by B' given by reduced basis of $\mathbb{Z}B$ (LLL-algorithm):

$$\Delta_B(y) = y^v \Delta_{B'}(\alpha_{M^{-1}}(y)) ,$$

Advantage: coeff of $\psi_{B'}$ are smaller \Rightarrow obtain $\Delta_{B'}$ via elimination techniques (standard basis of $\langle y_i f_0 - f_i, f_0 t - 1 : i = 1, ..., m \rangle$ to eliminate variables u's, t).

5 The degree of Δ_C and the computation of local multiplicities in m = 3 case

Assume: $C \in \mathbb{Z}^{n \times m}$ regular, non-defective matrix with no zero rows. AND: finite number of base points.

Well-known formula:

Proposition 5.1 (Intersection formula, [5])

$$d_C^2 = \underbrace{\deg(\psi_C)}_{=1!!!} \ \deg(S_C) + \sum_{\mathcal{F} \text{ basic}} e_{\mathcal{F}}, \tag{10}$$

where $e_{\mathcal{F}}$ denotes the Hilbert-Samuel multiplicity of $p_{\mathcal{F}}$ [7, 8, 9].

Problem: Computing $e_{\mathcal{F}}$ is hard.

Some steps forward:

• Probabilistic algorithm (reduce to local complete intersections)

• Monomial case (ex. all mxl minors $\neq 0$) \rightarrow combinatorial algorithm [11].

Reduction: m = 3. Easy generalization for any m.

Definition 5.2 $p = p_{\mathcal{F}} \in \mathcal{Z}$, pick Noeth. local ring $A_p := \mathcal{O}_{\mathbb{P}^2,p}$ and the localized base point locus ideal $I_p := \langle f_0, f_1, f_2, f_3 \rangle A_p$.

Define Samuel function A_p w.r.t. I_p as:

$$\chi_{A_p}^{I_p}(r) = l(A_p/I_p^{r+1}) = \dim_{\mathbb{C}}(A_p/I_p^{r+1}) \quad \text{for all } r \in \mathbb{N} ,$$

 $(l(_) = length as A_p-module).$

Fact: This function is *pseudo-polynomial*, i.e. $\exists PS_{A_p}^{I_p}(X)$ in $\mathbb{Q}[X]$ (which takes integer values over \mathbb{Z}) such that we have $PS_{A_p}^{I_p}(r) = \chi_{A_p}^{I_p}(r)$ for $r \gg 0$.

Remark 5.3 deg $PS_{A_p}^{I_p}(X) = 2$ and Lead Coeff = e/2! with $e \in \mathbb{N}_0$.

Definition 5.4 $e_{\mathcal{F}} := e \ (= 2! \cdot LC(PS_{A_p}^{I_p}(X))).$

5.1 Probabilistic approach

Proposition 5.5 If $p = p_{\mathcal{F}}$ determines a loc. complete intersection (i.e. I_P admits 2 generators after picking an affine patch), then $e_{\mathcal{F}} = \dim A_p/I_p$.

(Algorithm: pick standard basis of I_p w.r.t. local order \prec . And count # of monomials not in $in_{\prec}(I_p)$).

Recall: $I_p = \langle f_0, \ldots, f_3 \rangle A_p$

• Pick 2 generic C-lin. comb of the 4 generators:

$$J_p := \langle v_0^0 f_0 + v_1^0 f_1 + v_2^0 f_2 + v_3^0 f_3 , v_0^1 f_0 + v_1^1 f_1 + v_2^1 f_2 + v_3^1 f_3 \rangle,$$

- J_p is generically a complete intersection inside I_p and a *reduction ideal* of I_p (i.e. same Hilb-Samuel fnc.)
- $\Rightarrow e_{\mathcal{F}} := \dim_{\mathbb{C}}(A_p/J_p)$ with probability 1.

Corollary 5.6 $e_{\mathcal{F}} \geq \dim_{\mathbb{C}} (A_p/I_p)$ (since $J_p \subset I_p$), so:

$$deg(\Delta_C) \leq d_C^2 - \sum_{\mathcal{F} \text{ basic}} \dim_{\mathbb{C}}(A_{p_{\mathcal{F}}}/I_{p_{\mathcal{F}}}).$$

5.2 Monomial case

Suppose p = (1 : 0 : 0) is a base point (after translation) and that I_p is monomial. Algorithm 5.7 Computation of Hilbert-Samuel Multiplicities for the monomial case and m = 3.

- Set $x_0 = 1$ and let I_p be the specialization of the ideal I_p .
- Compute the convex hull $\mathcal C$ of the exponents of the bivariate monomials in \widetilde{I}_p .
- Then: e_p = 2!·Vol(N²₀ ⊂C) equals the normalized volume of the complement K of C in the first orthant.

Example 5.8 I_p monomial AND complete intersection: $I_p = \langle x_1^{m_1}, x_2^{m_2} \rangle$, so $e_p = m_1 m_2$, as asserted in both situations.

Remark 5.9 Algorithm DOES NOT work for general ideals: $e(in_{\prec}(I_0)) \neq e(I_0)$. Moreover ([11]):

$$e(I_0) \le e(in_{\prec}(I_0)) \le 2! e(I_0).$$

Comment 5.10 • p is zero of exactly 2 rows \Rightarrow monomial case.

- Some cases: reduce to monomial case via change of coordinates
- This doesn't solve the whole problem (∃ examples where no change of coordinates works)
- Base points can be really nasty → no clear computational method for general case. Explicit computations in the paper.

References

- [1] R. Curran. Toric ideals and discriminants in codimensions greater than two. Doctoral dissertation. University of Massachusetts, Amherst, 2005.
- [2] D. Delfino, A. Taylor, W. V. Vasconcelos, N. Weininger and R.H. Villarreal. Monomials ideals and the computation of multiplicities, in: Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj and S. Wiegandl, Eds.), Lectures Notes in Pure and Applied Math. 231, Marcel Dekker, New York, 2002, 87-107.
- [3] A. Dickenstein, E. M. Feichtner and B. Sturmfels. Tropical Discriminants. math.AG/0510126.
- [4] D. Eisenbud and B. Sturmfels, Binomial ideals. Duke Math. J. 84 (1996), no. 1, 1–45.
- [5] W. Fulton. Intersection Theory. Springer-Verlag, New York, 1984.
- [6] I. M. Gel'fand, M. Kapranov and A. V. Zelevinsky . Discriminants, Resultants and Multidimensional Determinants. Birkhauser, Boston–Basel– Berlin, 1994.
- [7] H. Matsumura. Commutative Ring Theory. Cambridge studies in advanced mathematics, 8. Cambridge University Press, 1989.
- [8] W. Bruns and J. Herzog. Cohen-Macaulay rings. Cambridge studies in advanced mathematics, 39. Cambridge University Press, 1993.
- [9] D. Cox. What is the multiplicity of a base point?. Slides from the expository talk given at XIV CLA, La Falda, Argentina, 2001. Available at http://www.amherst.edu/~dacox/.
- [10] M. Kapranov. A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Mathematische Annalen, 290, 1991, 277–285.
- [11] D. Delfino, A. Taylor, W. V. Vasconcelos, N. Weininger and R.H. Villarreal. Monomials ideals and the computation of multiplicities. Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj and S. Wiegandl, Eds.), Lectures Notes in Pure and Applied Math. 231, Marcel Dekker, New York, 2002, 87-107.