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Abstract

These are the lectures notes of the instructional conference “Local Systems in Algebraic Geometry”
held May 7-10, 2024 at Ohio State University (organized by Stefan Patrikis, Dave Anderson, Angelica
Cueto, and Jennifer Park). The conference featured two mini-courses of four lectures each given by
Daniel Litt (“Nonabelian cohomology and applications”) and Alexander Petrov (“The p-adic Riemann-
Hilbert correspondence”), and supplemented by background lectures given by PhD student and postdoc
participants. For n = 1 . . . 8, talk (i.e., section in this document) 2n − 1 is the background lecture for
talk 2n, which may also rely on some earlier talks.

The conference and subsequent mathematical retreat in which the students worked on the notes was
funded by an NSF Research Training Grant, DMS-2231565, and by Ohio State’s Mathematics Research
Institute.

For more information about the conference and retreat, see https://people.math.osu.edu/cueto.5/
RTG/rtg24/RTGConference24.html. For lecture videos from the conference, see https://www.youtube.

com/@OSU_RTG_AGNT.
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1 The classical Riemann-Hilbert correspondence. Speaker: Chris-
tian Klevdal. Notes by Yifei Zhang and Jake Huryn

Let X be a connected manifold, and let C be the constant sheaf on X attached to C. More concretely we
have

C(U) := {f : U → C|f locally constant}.

Definition 1.1. A local system on X is a sheaf of C vector spaces F such that F|U ≃ Cr for U in some
open cover of X. The category of local systems on X is denoted by LocC(X).

Example 1.2. • Let f : Y → X be a smooth proper submersion. By Ehresmann’s theorem, f is a
locally trivial fibration, so Rif∗C is a local system on X.

• Let ∆∗ ⊂ C be a punctured open disk. Let f : E → ∆∗ be the family of elliptic curves where the
fibre over q ∈ ∆∗ is Eq := C×/qZ (this is isomorphic to C/(Z + tZ) via the exponential map). Let
L := (R1f∗C)∨. We have Lq ≃ H1(Eq,C). This is generated by e1, e2 where e1 is a loop that lifts to
the loop around 0 in C× and e2 is a loop that lifts to a loop from 1 to q.

Let F be a local system on X, and let γ : [0, 1] → X be a path, then we have a canonical isomorphism
Fγ(0) ≃ Fγ(1) as both of them are naturally isomorphic to H0([0, 1], γ∗F). Using that a locally constant
sheaf on a simply connected space is constant, this induces a monodromy representation

π1(X,x)→ GL(Fx).

Example 1.3. For L as above, we get π1(∆
∗) ≃ Z → GL2(C). The generator γ acts on H1(Eq,C) by

sending e1 to e1 and e2 to e1 + e2

Theorem 1.4. The following is an equivalence of categories

LocC(X) Rep(π1(X,x))

F Fx

∼

Remark 1.5. LocC(X) is a purely topological invariant of X. The Riemann Hilbert correspondence will
relate this to a category that is defined by the analytic structure of X.

Now let X be a complex manifold.

Definition 1.6. A module with integrable connection (MIC) on X is a pair (E ,∇) where E is a coherent
sheaf with respect to OX , the sheaf of holomorphic functions, and

∇ : E → E ⊗ Ω1
X

satisfies the Leibniz rule: ∇(fs) = s ⊗ df + f∇(s) for f ∈ OX(U), s ∈ E(U), and the flatness condition:
∇2 : E → E ⊗ Ω2

X (given by ∇ composed with the induced map from E ⊗ ΩX to E ⊗ Ω2
X sending s ⊗ w to

∇(s) ∧ w + s⊗ dw) is 0.

Example 1.7. • Take X = C×, and let α ∈ C. Consider (OX ,∇α) with ∇αf = df − αdzz . This gives a
module with integrable connection.

• Let V ∈ LocC(X). Then (V ⊗C OX ,∇) with ∇ = 1⊗ d is an MIC because d2 = 0.

Let X ⊂ P1(C) be open, and let
d

dz
f⃗ = A(z)f⃗

be a rank-n homogeneous linear system of differential equations. Then there is an associated connection
(OnX ,∇) with ∇(f⃗) = df⃗ −A(z)f⃗dz. The solutions to this system of equations correspond to global sections
of (OnX)∇=0 := ker(∇).
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Remark 1.8. An equation like f (n) + an−1(z)f
(n−1) + · · ·+ a0(z) = 0 is encoded by the companion matrix

associated to the polynomial xn + an−1(z)x
n−1 + · · ·+ a0(z).

Theorem 1.9. We have an equivalence of categories

MICC(X) LocC(X)

(E ,∇) E∇=0,

∼

and the quasi-inverse is given by V 7→ (V ⊗C OX ,∇).

This is the analytic RH correspondence. Main point of the proof: Locally (E ,∇) looks like a solution
to a differential equation, so E∇=0 is a local solution by existence and uniqueness for ODEs (by [Kat70,
Proposition (8.8)], MICs are vector bundles).

Now let X be a smooth variety over C. Then the category MIC(X) is defined in the same way, doing
everything with the algebraically defined sheaves. We have

MIC(X) LocC(X)

MIC(Xan)

sol

Question 1.10 (what should have been Hilbert’s 21st problem). Is sol essentially surjective?
Case 1: X proper. In this case Serré’s GAGA says Coh(X) → Coh(Xan) is an equivalence of categories,
then so is MIC(X)→ MIC(Xan). (One has to be careful here: a connection is not OXan-linear but only C-
linear. One has to slightly reinterpret connections; see Daniel’s mathoverflow post [hl])
Case 2: X not proper. Fix j : X ↪→ X an open immersion with X smooth proper and X \ X = D a
strict normal crossing, which is guaranteed to exist by Hironaka’s resolution of singularity. This means
for any x ∈ X there is a neighborhood U ⊂ X of x and U → An étale with D|U ≃ V (t1 · · · tk)|U =
V (t1 · · · tk)×An U (this says D|U is the pullback of union of some coordinate hyperplane in An). We use the
sheaf of logarithmic differentials Ω1

X
(logD) ⊆ j∗Ω1

X given by Ω1
X
(logD) restricted to U as above being free

on {dt1t1 , · · · ,
dtk
tk
, dtk+1, · · · , dtn}

Definition 1.11. 1. An MIC on X with log poles along D is (E ,∇) with E ∈ Coh(X) and with ∇ : E →
E ⊗ Ω1

X
(log(D)) again satisfying the Leibniz condition and flatness condition.

2. The essential image of the restriction j∗ : MIC(X,D) → MIC(X) is MICreg(X), connection with
regular singularity at ∞.

Remark 1.12. In the definition of MIC, the existence of such ∇ forces E to be locally free by Katz, but in
this definition, such ∇ won’t guarantee E to be locally free anymore.

Fact 1.13. MICreg(X) does not depend on the the choice of X.

Example 1.14. • ∇α(f) = df − αdzz on C× has a regular singularity at ∞: if t = z−1, dt/t = −dz/z.

• Consider L on ∆∗ in the Example 1.2, (V,∇) the associated MIC. V is a free module that is globally
generated by e1 ⊗ 1, e1 ⊗ log(z) − e2 ⊗ 1. Then we let V be free of rank 2 on ∆ with ∇[f1, f2] =
d[f1, f2] + [f2dz/z, 0] which has log pole at 0. We have that (V,∇) is the restriction of (V,∇) just
defined.

Theorem 1.15. Analytification is an equivalence of categories

MICreg(X)→ MIC(Xan).
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Key points of the proof: Given (Ean,∇an) ∈ MIC(Xan), we want to extend it to MIC(X
an
, Dan) (which

is defined similarly as in the algebraic setting and can be shown to be equivalent to MIC(X,D) by GAGA)
such that

H0(X
an
, Ean)∇=0 ↠ H0(Xan, Ean)∇=0.

This is called Deligne’s canonical extension. Since the category MIC has internal Hom, and the actual Hom
set is the global flat section of the internal Hom, this gives the fullness. It is faithful since the analytification
functor is faithful.
For essential surjectivity: Let’s assume for simplicity dim(X) = 1. Then we only need to extend along
the punctured disk to the whole disk and glue. On ∆∗, we have the equivalence between MIC on ∆∗ and
representation of π1(∆

∗). Let’s say (Ean,∇an) corresponds to π1(∆∗) → GL(E) which sends the generator
γ to A. Choose B ∈ End(E) such that A = exp(2πiB). Take Ean to be a free module on ∆ with ∇
being v ⊗ df − f(B(v) ⊗ dz/z). Then the flat sections are qB · v where qB := exp(B log z). Check that the
monodromy representation of this on ∆∗ is the same as (Ean,∇an) : γ · qB = AqB . Now we can deanalytify.
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2 Nonabelian cohomology and applications, lecture 1. Speaker:
Daniel Litt. Notes by Luke Wiljanen.

2.1 Pre–History: Non-abelian cohomology and examples

Question 2.1. Let X/K be a variety. How does the topology of X reflect its geometry? ...its arithmetic?

• Abelian: Let X/K be smooth and proper.

– K = C: For H∗
Hodge(X), there is a Hodge structure and the Hodge conjecture.

– K finitely generated: For H∗
ℓ–adic(X), there is a Galois action and the Tate conjecture.

– K finitely generated: For H∗
dR(X), there is a conjugate filtration, Hodge filtration, and the Ogus

conjecture.

• Relative abelian: Let X → S be smooth and proper. One can associate an abelian invariant Riπ∗Λ.
There is an action of π1(S, s) on (Riπ∗Λ)s. One can ask questions about it, and there are various
conjectures.

• Non-abelian: For X, we have π1(X). Since this is a complicated object, we slightly abelianize and
look at its representations Rep(π1(X)). The idea is that questions we can ask in the abelian setting,
we can ask in this non-abelian setting, and vice versa.

• Relative non-abelian: For X → S smooth and proper and s ∈ S. There is an exact sequence

π1(Xs)→ π1(X)→ π1(S, s)→ 1,

and this induces an outer action π1(S, s)→ Out(π1(Xs)). We get an action of π1(S, s) on Rep(π1(Xs)).
We’ll study this non-abelian monodromy representation.

In this talk, we will consider X = P1
C \D and P1

S \Duniv → S = Confn(CP1) where Duniv is a divisor
whose fiber over x1 + · · ·+ xn is {x1, . . . , xn}.

2.2 Projective Line Removing Some Points

Consider CP1 \ {x1, . . . , xn}. Its fundamental group has a presentation

π1(CP1 \ {x1, . . . , xn}) ∼= ⟨γ1, . . . , γn | γ1 · · · γn = id⟩

where γi comes from a loop around xi. From this presentation we have an identification

Hom(π1(CP1 \D), GLr(C))
∼

∼=
{(A1, . . . , An) ∈ GLr(C)n |

∏n
i=1Ai = id}

simultaneous conjugation
.

Finding such matrices A1, . . . An which product to the identity is straight-forward since you can solve for
An in terms of A1, . . . , An−1. The problem becomes more interesting when we impose some constraints.

Question 2.2. Fix conjugacy classes C1, . . . Cn ⊆ GLr(C).

1. (Existence) Does there exist A1, . . . , An ∈ GLr(C) such that
∏n
i=1Ai = id and Ai ∈ Ci for all i?

(Deligne–Simpson Problem)

2. (Uniqueness) When is a solution unique up to simultaneous conjugation? (If so, (A1, . . . , An) is called
a “rigid tuple”, “rigid representation”, or “rigid local system”.) From [Kat96], a tuple (A1, . . . , An) ∈
GLr(C)n yields by middle convolution a tuple (A′

1, . . . , A
′
n) ∈ GLr′(C)n. Under a suitable specification

of parameters and a middle tensor product by rank 1 local systems, middle convolution maps rigid
tuples to rigid tuples and is such that r′ < r if r ≥ 2. Middle convolution is invertible. By reduction
to the case of rank 1, Katz is thus able to classify (irreducible) rigid local systems on the punctured
line.
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3. (Monodromy) The group π1(Conf
n(CP1) acts on Rep(π1(CP1 \ {x1, . . . xn})) by

σi : (A1, . . . , An) 7→ (A1, . . . , Ai−1, AiAi+1A
−1
i , Ai, Ai+2, . . . , An)

where π1(Conf
n(P1)) = ⟨σ1, . . . , σn−1⟩. We then get an induced action where we mod out by si-

multaneous conjugation on the right. What are the dynamics for this action? What are the finite
orbits?1

2.3 ODE (de Rham side)

There is a category of modules with integral connection

MIC(P1, D) =
{
(E ,∇ : E → E ⊗ Ω1

P1(logD)) flat bundles on P1 with regular singularities along D
}
.

Example 2.3. Suppose that ∞ /∈ D, and that B1, . . . Bn ∈ glr(C) are such that
∑
Bi = 0. Let E = OrP1 ,

and ∇ = d+
∑ Bi

z−xi
dz. This is a Fuchsian ODE.

Remark 2.4. The matrix Aj conjugate to the matrix exp(2πiBi).

Question 2.5. As you vary xi, how does one change Bi so that the monodromy representation stays the
same?

Answer 2.6 (Schlesinger 1912). The Bi have to satisfy a differential equation:{
∂Bi

∂xj
=

[Bi,Bj ]
xi−xj

i ̸= j∑
i
∂Bi

∂xj
= 0 for all j

Remark 2.7. Schlesinger wasn’t the first person to try to write this down. In 1905, Fuchs did the case
n = 4, Bi ∈ sl2. In this case, the equation is called the Panlevé VI equation.

There is a correspondence{
finite π1(Conf

n)-orbits on Rep(π1(CP1 \D))
}
←→ {algebraic solutions to Schlesinger equation}

Classification of algebraic solutions when n = |D| = 4, r = 2 (Hitchen, Dubrovin, Mazzocco, Boalch,
Kitaev, Lisovyy, Tykhyy):

• 4 continuous families,

• 1 countable infinite family, and

• 45 exceptional.

The computer aided proof relies on effective version of Manin–Mumford for tori.

Question 2.8. Can we classify finite π1(Conf
n(CP1))-orbits on 2-dimensional representations of

π1(CP1 \ {x1, . . . , xn})?

Answer 2.9. Almost.

Definition 2.10. We say (A1, . . . , An) ∈ SL2(C)n is interesting if

1. It has finite π1(Conf
n)-orbit.

2. The subgroup ⟨A1, . . . , An⟩ ⊆ SL2(C) is Zariski–dense.
1A complete classification of finite orbits appears in recent work of Bronstein and Maret: see https://arxiv.org/abs/2409.

04379.
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3. None of the Ai are ±id.

4. It doesn’t move in a continuous family of finite orbits (Corlette–Simpson).

Theorem 2.11 (Lam–Landesmann–Litt). Suppose that (A1, . . . , An) is interesting and that some Ai has
infinite order. Then, there exists α1, . . . , αn, λ ∈ C× such that (α1A1, . . . , αnAn) =MCλ(B1, . . . , Bn) where
MCλ is Katz’s middle convolution operator and where ⟨B1, . . . , Bn⟩ ⊆ GLn−2(C) is a finite complex reflection
group.

Definition 2.12. B ∈ GLr(C) is a pseudo-reflection if B has finite order and the rank of B − id is 1. A
finite complex reflection group (FCRG) is a finite subgroup of GLr(C) generated by pseudo-reflections.

Finite complex reflection groups were completely classified by Shephard and Todd. There is 1 infinite
family and 34 exceptional ones.

Corollary 2.13. Let (A1, . . . , An) be interesting with some Ai of infinite order. Then, n ≤ 6.

The upshot is that MCλ(B1, . . . , Bn) ⊆ R1π∗C where π : Y → P1 \ {x1, . . . , xn} is an explicit family of
curves.
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3 Étale fundamental groups and local systems. Speaker: Gleb
Terentiuk. Notes by Luke Wiljanen.

3.1 Étale fundamental groups

Goal 3.1. For a connected schemeX with a geometric point x ∈ X(K), construct a profinite group πét
1 (X,x).

Motivation 3.2. For X a reasonable topological space, there is a correspondence

{covering spaces over X} ↔ {π1(X,x)–sets}

Fact 3.3. Let F : G− Sets → Sets be the forgetful functor. There is a natural map G → Aut(F ) which is
an isomorphism.

Fact 3.4. Let F : Finite−G− Sets→ FiniteSets be the forgetful functor. Then,

Aut(F ) ≃ lim←−
N≤G

finite index
normal subgroup

G/N = Ĝ

where Ĝ is the profinite completion of G.

Let FÉtX be the category of finite étale X–schemes, and let Fx : FÉtX → FiniteSets be the functor
sending a finite étale X scheme Y → X to the finite set |Yx|, the underlying topological space of the fiber
product Yx = Y ×X SpecK.

Definition 3.5. The étale fundamental group of X relative to a geometric point x is

πét
1 (X,x) = Aut(Fx).

Remark 3.6. (1) If x, y ∈ X(K), then πét
1 (X,x) ≃ πét

1 (X, y).

(2) We have an equivalence of categories

FÉtX
∼−→
{
finite πét

1 (X,x)–sets
}
.

(3) Given f : X → Y and a geometric point x ∈ X(K), let y = f ◦ x ∈ Y (K). There is a natural map
πét
1 (X,x)→ πét

1 (Y, y).

Given a finite type scheme X over C, let Xan = X(C). Then, (Y → X) 7→ (Y an → Xan) gives an
equivalence between FÉtX and {finite covering spaces of Xan} by the Riemann existence theorem.

Corollary 3.7. With X as above, the natural map πtop1 (Xan, x)∧
∼−→ πét

1 (X,x) is an isomorphism.

Example 3.8. Let X = Spec(K) with a geometric point x given by K ↪→ K. Then, we have an isomorphism

πét
1 (X,x) ≃ Gal(K/K)

between the étale fundamental group of X and the absolute Galois group of K.

Example 3.9. Let F be a finitely generated field over Q. Consider Gm,F . Let Y → Gm,F be a finite étale

map. By composing with the inclusion Gm,F → P1
F
, we get a map Y → P1

F
. This map extends to a smooth

compactifaction Y → Y . We now look at the resulting map φ : Y → P1
F
. An argument using Riemann–

Hurwitz shows that gY = 0 and that there are exactly two points of ramification. Namely, with ramification
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points y1, . . . , ys above 0 and ramfication points z1, . . . , zr above ∞ of ramification degrees e1, . . . , es and
d1, . . . , dr, respectively, we have

2gȲ − 2 = −2n+
∑

(ei − 1) +
∑

(dj − 1) = −(r + s)

where n is the degree. Consequently, gȲ = 0. Hence, Y ∼= P1
F
. It follows that Y can be identified with

Gm,F , so that the map Y → Gm,F is the map x 7→ xn. The group of automorphisms of the nth power map

is identified with the group of nth roots of unity. So, Aut(Y |Gm,F ) ≃ µn(F ). So,

πét
1 (Gm,F ) ≃ lim←−µn(F ).

This comes with an action of GF = Gal(F/F ). We write Ẑ(1) for lim←−µn(F ) with this Galois action.

3.2 Local systems

Definition 3.10. A Qℓ-local system on X is a continuous homomorphism πét
1 (X,x)→ GLn(Qℓ).

Example 3.11. A main source of local systems comes from the following setting: Let X → S be smooth
and proper, and assume that ℓ is invertible on the base, i.e., ℓ ∈ O(S)×. Then, we have Qℓ-local systems
πét
1 (S, s)→ GL(Hi

ét(Xs,Qℓ)).
Theorem 3.12. Let F be a finitely generated field over Q, and let ρ : GF ((t)) → GLn(Qℓ). Then, ρ|GF ((t))

is

quasi-unipotent. That is, if σ topologically generates GF ((t))
∼= Ẑ, then ρ(σ)N − 1 is nilpotent for some N .

Proof. Since 1 + ℓ2Mn(Zℓ) ⊆ GLn(Qℓ) is open, there exists a finite extension K/F ((t)) such that

GK ⊆ ρ−1(1 + ℓ2Mn(Zℓ)).

Then, F ((t)) ⊆ Knr where Knr is the maximal unramified extension of K. Since Knr/F ((t)) is a finite
extension, some power of the topological generator σ ∈ GF ((t)) topologically generates GKnr

, i.e., there is
some n ∈ N such that σn topologically generates GKnr

.
Let Kℓ ⊆ K be the field obtained by adjoining all ℓ-power roots of a uniformizer to Knr. Then, GKℓ

is a
prime to ℓ profinite group, so ρ|GKℓ

is trivial. Thus, ρ factors through Gal(Kℓ/K). We have the short exact
sequence

1→ Gal(Kℓ/Knr)→ Gal(Kℓ/K)→ Gal(Knr/K)→ 1.

Let χ : Gal(Knr/K)→ Z×
ℓ be the ℓ-adic cyclotomic character.

For s ∈ Gal(Kℓ/Knr), we see that s and sχ(t) are conjugate for all t ∈ Gal(Knr/K). Then, write
X = log(ρ(s)). We have that X and χ(t)X = log(ρ(s)χ(t)) are conjugate. Since X and χ(t)X are conjugate,
they have the same characteristic polynomials. But, we describe a relationship between the characteristic
polynomials. Namely, if

∑n
i=0 ai(M)yn−i is the characteristic polynomial of a matrix M ∈ Mn(Qℓ), then

ai(X) = ai(χ(t)X) = χ(t)iai(X). Since F is finitely generated over Q, if i > 0, then there exists t such that
χ(t)i ̸= 1. Hence, ai(X) = 0 for i > 0. Thus, the characteristic polynomial of X is yn. Therefore, X is
nilpotent, and exp(X) = ρ(s) is unipotent.

Corollary 3.13. Let X → S = S \ {s′} be over C be smooth projective, where S is a smooth projective

curve. Let SpecC((t)) → S be around s′, i.e., look at OS,s′ → ÔS,s′ ∼= C[[t]], which gives SpecC[[t]] →
Spec(OS,s′) → S, and localize to get SpecC((t)) → S. As in Example 3.11, we get a homomorphism

πét
1 (S, s)→ GL(Hi

ét(Xs,Qℓ)). Then, GC((t)) → πét
1 (S, s)→ GL(Hi

ét(Xs,Qℓ)) is quasi-unipotent.

Proof. Find F finitely generated over Q and a smooth projective spreading out X→ S over F such that the
fiber product with Spec(C)→ Spec(F ) recovers X → S. Then, GC((t)) → GL(Hi

ét(Xs,Qℓ)) extends to

GF ((t)) → GL(Hi
ét(Xs,Qℓ)).

We have GC((t)) ≃ GF ((t)), and so the theorem implies GC((t)) → πét
1 (S, s) → GL(Hi

ét(Xs,Qℓ)) is quasi-
unipotent.
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4 The p-adic Riemann-Hilbert correspondence, lecture 1.
Speaker: Alexander Petrov. Notes by Mehmet Basaran.

Fix a prime p. Let S/C be a connected smooth variety, and let f : X → S be smooth and proper. Then
Rif∗Z form a local system on S(C), where i is an arbitrary nonnegative integer.

Let A be a commutative ring (most of the times one of Z, Zp, Qp, Qp). We define{
local systems L

of free A−modules
of rank n on S/C

}
/∼=

=
{
π1(S(C),s)

ρL−→GLn(A)
up to conjugation

}
.

Definition 4.1. A local system of A-modules L is of geometric origin, if there is a Zariski open U ↪→ S and

a smooth proper family f : X → U such that L|U(C) is a direct summand of Rif∗A.

Conjecture 4.2 (Litt, during the lecture). We may replace U by S in the above definition.

Question 4.3. How can we classify local systems of geometric origin?

Remark 4.4. For any Z-local system L on S(C) there is a proper fibration of complex manifolds f : Y →
S(C) such that L is a direct summand of R1f∗Z.

Definition 4.5. A Zp-local system L on S(C) is called arithmetic, if there exists a finitely generated over

Q field F ⊂ C, and a variety S0/F with S0×F C ≃ S, such that L extends to an étale local system L̃ on S0.
In a diagram: Here, the homomorphism ρL̃ needs to be continuous.

π1 (S(C), s) GLn (Zp)

πét1 (S, s)

1 πét1

(
S0,F

)
πét1 (S0, s) GF := Gal

(
F/F

)
1

ρL

≃

ρL̃

This definition can be formulated verbatim for Qp or Qp in place of Zp.

Remark 4.6. If a Qp-local system L is of geometric origin, it is arithmetic.

Example 4.7. Take S = A1
C\{0}. Then a Qp-local system L is arithmetic if and only if for the corresponding

representation ρL : π1 (S(C), s) → GLn
(
Qp
)
, the matrix ρL is quasi-unipotent, where γ is a generator of

π1 (S(C), s) = Z (cf. Theorem 3.12).

Conjecture 4.8 (relative Fontaine-Mazur). For every semi-simple Qp-local system L on S(C), L is arith-
metic if and only if L is of geometric origin.

Example 4.9. For S = A1
C \ {0} the conjecture is true: In this case, L being arithmetic implies that it has

finite monodromy (i.e. it is trivialized by a finite étale cover). If f : X → S is such a finite étale cover, then
L is a direct summand of f∗Qp, and thus of geometric origin.

Now we illustrate how Conjecture 4.8 can be viewed as a non-abelian analogue of the Tate conjecture.
We work with Qp-local systems on S0,F as in Definition 4.5. Then{

Qp-local systems of rank n on S0,F

}
= H1

ét

(
S0,F ,GLn

(
Qp
))
.
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There is an action of GF on the right-hand side. In this setting it holds that L is arithmetic if and only if
the class [L] in the right-hand side has finite orbit under GF . Now assume that S is smooth and proper.
Then there is a map

cl : Zi(S)⊗Qp → H2i
ét

(
S0,F ,Qp(i)

)
where Zi(S) consists of algebraic cycles of codimension i.

Conjecture 4.10 (Tate conjecture). The image of the above map is

im (cl) =
{
x ∈ H2i

ét

(
S0,F ,Qp(i)

)∣∣∣ x has finite orbit under GF

}
.

4.1 p-adic Hodge theory

Remark 4.11. If Conjecture 4.8 holds, then all semi-simple arithmetic L should underlie a VHS. In the
following we investigate where this VHS would come from.

Let X be a smooth proper variety over Qp. Then GQp acts on Hn
ét

(
XQp

,Qp
)
. There is a functor

DdR :
{

finite dimensional continuous
representations of GQp on a Qp-vector space

}
→
{

vector spaces V/Qp with a filtration

0=F bV⊂···⊂F iV⊂F i−1V⊂···⊂FaV=V

}
such that DdR

(
Hn
ét

(
XQp

,Qp
))

= Hn
dR (X/Qp) with filtration F •

Hodge, F
i
Hodge/F

i+1
Hodge = Hn−i (X,ΩiX).

4.2 p-adic Riemann-Hilbert correspondence

First we summarize the complex Riemann-Hilbert correspondence. Let Y/C be a smooth proper variety, and
let f : Z → Y be a smooth and proper family of varieties. Then there is a bijection

{C-local systems on Y (C)} ∼−→ {vector bundles with flat connection on Y }

such that
Rif∗C 7→

(
HidR (Z/Y ) ,∇GM

)
.

Now to introduce a p-adic Riemann-Hilbert correspondence, let S/Qp be a smooth variety. There is a functor

DdR : {étale Qp-local systems on S} ∼−→


vector bundles E/S with

a flat connection ∇ : E→E⊗Ω1
S on Y

and with a filtration
F b=0⊂···⊂F i⊂F i+1⊂···⊂Fa=E

such that F i/F i+1 is a vector bundle

and ∇(F i)⊂F i−1⊗Ω1
S


such that for f : X → S smooth proper, we get DdR (Rnf∗Qp) ≃

(
HidR (X/S) ,∇GM , F •

Hodge

)
.

Remark 4.12. This functor DdR cannot preserve ranks and be monoidal (meaning that DdR (L1 ⊗ L2) =
DdR (L1) ⊗ DdR (L2)). To see this, take S = Spec (K) with K = Qp (µp) for p > 2, and V = Qp(−1) =

χ−1
cycl = H2

ét

(
P1
Qp
,Qp

)
. Then

DdR(V ) = H2
dR

(
P1
K

)
= K

with filtration 0 = F 2 ⊂ F 1 = K. If DdR preserved ranks and was monoidal, then

DdR

(
χ
−1/2
cycl

)⊗2

= DdR(V ) =
(
K, 0 = F 2 ⊂ F 1 = K

)
.

This is impossible, since DdR

(
χ
−1/2
cycl

)
also needs to be a one dimensional vector space where the filtration

jumps at some point, and thus the filtration of DdR

(
χ
−1/2
cycl

)⊗2

would have to jump at an even index, but

the jump is at index 1.
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5 Variations of Hodge structure and Higgs bundles. Speaker: Yi-
long Zhang. Notes by Min Shi.

5.1 Content

1. Example: one parameter family of elliptic curves;

2. Hodge structures;

3. From variations of Hodge structures to Higgs bundle.

5.2 Motivation

Treat the compact, oriented surface with g = 1 as a complex torus C/Λ, where Λ = Z⟨e1, e2⟩. Choose a basis
{δ, γ} for H1(T,Z), so that H1(T,Z) = Zδ + Zγ. On the complex torus, there is a canonical holomorphic
1-form dz, with dz ∈ H1

dR(T )
⊗

R C ∼= (H1(T,Z)∨)
⊗

Z C.
One can integrate dz against δ and γ to get two complex numbers (periods)

∫
δ
dz,

∫
γ
dz, which depend

on e1, e2. However, what matters is not these two numbers, but rather their ratio, so we can regard[∫
δ
dz :

∫
γ
dz
]
∈ P1. Up to some choices, this gives a map from the isomorphism classes of elliptic curves

over C to A1(C), which is part of the reason that the moduli space of elliptic curves over C has P1(C) as the
set of complex points.

5.3 Hodge structures

Let X be a compact Kähler manifold (for instance, the complex points of a smooth projective variety).
Then Hn(X,Q) has a Hodge structure, i.e., Hn(X,C) = Hn(X,Q)

⊗
Q C admits a Hodge decomposition of

complex vector spaces

Hn(X,C) ∼= Hn,0(X)⊕Hn−1,1(X)⊕ · · · ⊕H0,n(X)

satisfying Hp,n−p(X) = Hn−p,p(X).

Equivalently, Hn(X,C) admits a filtration called the Hodge Filtration:

0 = Fn+1Hn ⊆ FnHn ⊆ Fn−1Hn ⊆ ... ⊆ F 1Hn ⊆ F 0Hn = Hn(X,C)

satisfying

1. F pHn ∩ Fn−p+1Hn = {0};

2. F pHn
⊕
Fn−p+1Hn = Hn(X,C).

To recover the Hodge decomposition, take Hp,n−p(X) = F pHn ∩ Fn−pHn.

Example 5.1. For T = complex torus, span(dz) = F 1H1(T,C) = H1,0(T ) ∼= C.

5.3.1 Where does the Hodge Filtration come from?

We have a resolution of CX by the holomorphic de Rham complex Ω•
X

CX → OX
d−−→ Ω1

X → Ω2
X → · · · → 0,

where ΩiX is placed in the i-th degree.
By the abstract de Rham theorem,

Hn
sing(X,C) ∼= Hn(X,CX) ∼= Hn(X,Ω•

X).
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Define F pΩjX := ΩjX if p ≤ j ≤ n, and F pΩjX := 0 otherwise. Then define the Hodge Filtration

F pHn(X,C) := Im(H(X,F pΩ•
X)

ϕ−→ H(X,Ω•
X))

.
By the ∂∂-lemma, the inclusion of the holomorphic de Rham complex into the complex of (real) smooth

differentials (Ω•
X , d) → (A•, d) is a quasi-isomorphism. Then the Hodge decomposition combined with

Dolbeault’s theorem implies the degeneration of the Hodge-to-de Rham (Fröhlicher) spectral sequence at the
E1-page. In particular, ϕ is injective, and

F pHn(X,C) = Hn(X,F pΩ•
X).

Also as a consequence of the degeneration at the E1-page,

F pHn(X,C)/F p+1Hn(X,C) ∼= Hn−p(X,ΩpX)

5.4 Real Variation of Hodge structures

Let B be a complex manifold and Vn a local system on B. A real variation of Hodge structures is a filtration
by holomorphic subbundles on Vn

⊗
CB
OB

Fk
Vn

⊗
CB

OB

 ⊆ Fk−1

Vn
⊗
CB

OB

 ⊆ ... ⊆ F1

Vn
⊗
CB

OB

 ⊆ F0

Vn
⊗
CB

OB

 = Vn
⊗
CB

OB .

satisfying

1. Fp ∩ Fn−p+1 = {0};

2. Fp
⊕

Fn−p+1 ∼= Vn
⊗

CB
OB

3. Griffiths transversality: there is a flat connection ∇ on Vn
⊗

CB
OB such that

∇ : Fp → Fp−1
⊗

Ω1
B .

To be more specific, suppose Vn = Rnf∗C, where f : X → B is a smooth family of compact Kähler
manifolds. By Ehresmann’s theorem, locally, X is diffeomorphic to X0×B. A picture is drawn below, where
X is the fiber over a point 0 in B, ∂

∂t is a tangent vector at 0 in B, and ∂
∂t̃

is a lift of the tangent vector ∂
∂t .

15



By Kodaira’s theory on deformation of complex structure, the 1st order deformation is governed by a
(0, 1) form in T 1,0(X0):

κ = Σα,βfαβ
∂

∂zα

⊗
dzβ .

Now Griffiths transversality means that for ω ∈ FpAnX/B on fiber direction with at least p dzi’s, the image

of ω under the Gauss-Manin connection is in Fp−1Hn(X0,C). In fact, locally, the map Hn−p(X,ΩpX) →
Hn−p+1(X,Ωp−1

X ) induced by ∇ can be written as ∇(α) = α ∪ κ.

5.4.1 What is a variation of Hodge structure?

Fix a complex vector space Hn(X,C). Then a variation of Hodge structures is a family of Hodge structures
on it that varies in a certain way and satisfies certain axioms.

Example 5.2. The Legendre family of elliptic curves is {y2 = x(x − 1)(x − t), t ∈ P1 − {0, 1,∞}}, whose
singularities are roughly described in Figure 1. Pick a basepoint t0 ∈ P1(C) − {0, 1,∞}. The holomorphic

1-forms are ωt =
[
dxt

yt

]
∈ H1(Xt,C), which spans F 1H1(Xt,C) ⊆ H1(Xt,C) ∼= H1(Xt0 ,C). After desingu-

larization, the minimal resolution can be depicted in Figure 2, with two rational curves meeting transversely
above each 0 and 1, and an I∗2 fiber (7 components, with three multiplicity-two fibers colored in red) above
∞.

The corresponding Picard-Fuchs equation is (for details, see [Lit13, section 1.4.2])

ω′′
t = − 1

4t(t− 1)
ωt +

2t− 1

t(t− 1)
ω′
t

By ODE theory, locally around 0, solutions take the form: f(t)log(t)+ g(t), where f and g are holomorphic.
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Figure 1: Legendre family

Figure 2: Kodaira-Néron model of Legendre family

The local monodromy operators on H1(Et0 ,Z) are T0 =

[
1 2
0 1

]
, T1 =

[
1 0
−2 1

]
At infinity, the mon-

odromy is =

[
1 −2
2 −3

]
, which is the inverse of the product T0T1.
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6 Nonabelian cohomology and applications, lecture 2. Speaker:
Daniel Litt. Notes by Jake Huryn.

6.1 Introduction

Let X be a smooth projective variety over C.

Conjecture 6.1 (Hodge). The image of the cycle-class map Zi(X)⊗Z Q→ H2i(X,Q(i)) is H2i(X,Q(i))∩
H0,0(X,C(i)).2

The “non-Abelian Hodge conjecture” is:

Conjecture 6.2 (Simpson). Any Q-local system on X underlying a polarizable Z-VHS is of geometric origin
in the sense of Definition 4.1.

One goal of the rest of the talk will be to explain the parallel between these two conjectures, which will
require us to fill in the missing entry in the following table of analogies.

Abelian non-Abelian
Hn(X,C) Hom(π1(X),GLr(C))/∼=
Hn

dR(X) MIC(X)/∼=⊕
p+q=nH

p,q(X) ???

Remark 6.3. Recall that the isomorphisms between objects in different rows of this table are highly tran-
scendental!

6.2 Higgs bundles

Continue to assume X is a smooth projective variety over C. (This permits us, by GAGA, to ignore the
difference between algebraic and holomorphic coherent modules on X.)

Definition 6.4. A Higgs bundle on X is a pair (E , θ), where E is a vector bundle on X and θ : E → E⊗OX
Ω1
X

(the Higgs field) is an OX -linear map such that θ2 = 0, i.e. the following composition vanishes:3

E θ−→ E ⊗OX
Ω1
X

θ⊗id−−−→ E ⊗OX
Ω1
X ⊗OX

Ω1
X ↠ E ⊗OX

Ω2
X

Remark 6.5. 1. It is necessary to note the difference between a Higgs field and an integrable connection;
the former is OX -linear, rather than C-linear, hence does not satisfy the Leibniz rule.

2. The OX -linear nature of the Higgs field allows C× to act on the category of Higgs bundles via t·(E , θ) :=
(E , tθ).

Example 6.6. 1. If E is any vector bundle on X, then (E , 0) is a Higgs bundle on X (but essentially
never a MIC!).

2. Suppose (E , F •,∇) is a C-VHS. Since ∇(F i(E)) ⊆ F i−1(E), we get a map gr(∇) : gr(E)→ gr(E)⊗OX

Ω1
X . The integrability of ∇ implies that (gr(E), gr(∇)) is a Higgs bundle.

Definition 6.7. Let E be a vector bundle bundle. The slope of E is µ(E) := degH(E)/rankOX
(E). (We fix

an ample divisor to define the degree function.) We say that a Higgs bundle (E , θ) is stable if for any proper
sub-Higgs bundle4 (E ′, θ), we have µ(E ′) < µ(E), and semistable if µ(E ′) ≤ µ(E).

2The (i) here is the Tate twist in Hodge cohomology; it subtracts i from both superscripts in the Hodge decomposition, so
that H2i(X,Q(i))∩H0,0(X,C(i)) = H2i(X,Q)∩Hi,i(X,C). This is done simply to ensure that the notation parallels the usual
formulation of the Tate conjecture.

3If Ω1
X is free on ω1, . . . , ωd, then θ = θ1ω1 + · · ·+ θdωd for some θi ∈ EndOX

(E), and the condition θ2 = 0 means that the
θi commute.

4Meaning E ′ is a vector bundle which is a proper subsheaf of E preserved by θ, i.e. θ(E ′) ⊆ E ′ ⊗OX
Ω1

X .
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Example 6.8. If E is a direct sum of line bundles, then µ(E) is the average degree of the line bundles, and
(E , 0) is semistable if and only if all of the line bundles have the same degree.

Higgs bundles are related to local systems via the following theorem, which was contributed to by
Narasimhan–Seshadri, Hitchin, Corlette, Donaldson, Simpson, . . . See [Sim91, §1] for citations and more
discussion of the following theorem and remark.

Theorem 6.9. There is a bijection between isomorphism classes of irreducible C-local systems on X and
isomorphism classes of stable Higgs bundles with vanishing Chern classes.5 This bijection satisfies (viewing
local systems as MICs on X via Riemann–Hilbert):

1. If (E ,∇) is a MIC whose monodromy representation is unitary (i.e. the closure of its image is compact),
the corresponding Higgs bundle is (E , 0). Conversely, any Higgs bundle with vanishing Higgs field arises
in this way.

2. If (E , F •,∇) is a C-VHS, the Higgs bundle corresponding to (E ,∇) is (gr(E), gr(∇)).

3. It is compatible with pullback and smooth proper pushforward.

This is the non-Abelian Hodge decomposition (the “???” in the “table of analogies” above).

Remark 6.10. 1. The proof of Theorem 6.9 passes through a category of “harmonic bundles” (somehow
analogous to the proof of the Hodge decomposition via harmonic forms).

2. A Higgs bundle (E , θ) arises (via Theorem 6.9) from a C-VHS if and only if (E , θ) ∼= (E , tθ) for each
t ∈ C×.

To summarize: letMB(X, r) be the moduli space of semisimple rank-r local systems on X, letMdR(X, r)
be the moduli space of semisimple rank-r MICs on X, and let MDol(X, r) be the moduli space of rank-r
polystable Higgs bundles on X with vanishing Chern classes (“polystable” meaning “direct sum of stable”).
Then we have the following isomorphisms:

MB(X, r)(C) ∼=MdR(X, r)(C) ∼=MDol(X, r)(C), (1)

and the final object has an action of C× whose fixed points correspond to C-VHSs. The first isomorphism
is in general only holomorphic, while the second is in general only real-analytic.

Example 6.11. We explain the isomorphisms (1) in the case dim(X) = r = 1. Let g be the genus of X.

1. (Representations). We haveMB(X, 1) ∼= H1(π1(X),C×) ∼= H1(X,C×) ∼= C×,2g. Using the exponential
exact sequence, this moduli space is (holomorphically) equivalent to H1(X,C)/H1(X,Z).

2. (MICs). By interpreting MICs as objects coming from Čech cohomology, we get an isomorphism

MdR(X, 1) ∼= H1(X,O×
X

dlog−−−→ Ω1
X) ∼= H1

dR(X)/H1(X,Z). If g ≥ 1, this space admits a nontrivial
algebraic map to the Abelian variety Pic0(X) via (L,∇) 7→ L; in fact, it is an H0(X,Ω1

X)-torsor over
Pic0(X). In particular, MdR(X, 1) cannot be algebraically isomorphic to MB(X, 1) if g ≥ 1, since
C×,2g admits no nontrivial algebraic map to Pic0(X).

3. (Higgs bundles). Since dim(X) = 1, the Higgs-field condition θ2 = 0 is meaningless, so a Higgs field
on a line bundle L over X is just an OX -linear map L → L ⊗OX

Ω1
X , which in turn is the same

as a global section of Ω1
X . Thus MDol(X, 1) ∼= Pic0(X) × H0(X,Ω1

X). The isomorphism between
this and MdR(X, 1) is just the Hodge decomposition of H1

dR(X). However, the H0(X,Ω1
X)-torsor

MdR(X, 1) → Pic0(X) is in general nontrivial, in which case MdR is not algebraically isomorphic to
MDol(X, 1).

5If X is a curve, the condition of vanishing Chern classes just means the vector bundle has degree 0.
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Finally, we return to the Hodge conjecture. Recall that an R-Hodge structure H is endowed with a
C×-action in which z acts on Hp,q via z−pz−q, so that H0,0 = HC×

. In view of Remark 6.10(2), we can
rephrase Simpson’s non-Abelian Hodge conjecture as:

Conjecture 6.12. Every element of MB(X, r)(Q) ∩ MDol(X, r)(C)C
×

which admits a Z-structure is of
geometric origin.

6.3 Geometry of the Dolbeault moduli space

A key observation for non-Abelian Hodge theory is that the Higgs field, being OX -linear, has a notion of
“characteristic polynomial”.6 (A reference for this section is [Sim91, §§1–2].)

Let (E , θ) be a Higgs bundle. From θ we get an action of the tangent sheaf TX , hence Sym∗(TX), on E
(the action of the tensor algebra factors through the symmetric algebra since θ2 = 0). Thus we may view E
as a sheaf on the relative spectrum Tot(Ω1

X) := SpecX(Sym∗(TX)).
Question: What is its support? (These will be the eigenvalues of θ, and the fibers the eigenspaces of θ.)
Let Ar :=

⊕r
i=1H

0(X,Symi(Ω1
X)). The Hitchin map h : MDol(X, r) → Ar sends (E , θ) to the “charac-

teristic polynomial of θ”, the element whose ith component is tr(
∧i

θ :
∧i E → ∧i E ⊗OX

Symi(ΩX)). This
map has some useful and remarkable properties:

Theorem 6.13. 1. Each fiber of h corresponds to (E , θ) supported on a fixed subscheme of Tot(Ω1
X) finite

flat over X, called the spectral variety.

2. Because (1) identifies each fiber of h with a moduli space of certain semistable sheaves on the spectral
variety, h is a proper map.

3. By (2), the limit limt→0 (E , tθ) always exists in MDol(X, r) and is C×-stable (but need not equal (E , 0),
as the latter might not be semistable).

Corollary 6.14. As a consequence of Theorem 6.13(3) and Remark 6.10(2), any semisimple C-local system
can be deformed to a C-VHS.

6.4 Rank-2 local systems

As an application of the theory, we have the following theorem of Simpson [Sim91, p. 340, Theorem 10]
(generalized to the quasiprojective case by Corlette–Simpson [CS08, Theorem 1]).

Theorem 6.15. Let X be a smooth projective variety over C, and let V be a C-local system on X whose
monodromy group is Zariski-dense in SL2(C). Then one of the following holds

1. There exists a map f : X → Y with Y a smooth Deligne–Mumford curve7 and a C-local system W on
Y such that V = f∗W.

2. V is rigid and of geometric origin.

Proof sketch. First of all, if V is rigid, Corollary 6.14 implies V is a direct summand of a C-VHS, and as
Daniel Litt’s Lecture 3 (§10) will discuss (from a very different perspective!), V is in fact a C-direct summand
of a Z-VHS. Now since V is of rank 2, there are at most two interesting pieces of the Hodge filtration, hence
V comes from a family of Abelian varieties [Sim92, Corollary 4.9] (by the equivalence of categories involving
Abelian varieties over C and certain Hodge structures).

6For understanding this section, it is extremely instructive to first try to answer the following questions: Consider a map
f : V → V ⊗CW of C-vector spaces satisfying f2 = 0 (as in the definition of a Higgs field). What is an eigenvalue, eigenvector, or
eigenspace of f? What is the trace, determinant, or characteristic polynomial of f? Viewing f as a linear map W∨ → EndC(V ),
we get a Sym∗(W∨)-module structure on V ; what is the support, and what are the fibers, of the corresponding coherent sheaf

Ṽ on Spec(Sym∗(W∨)) ∼= Adim(W )
C ?

7See [CS08, §§2–3] and [Sim91, p. 340], although the reader should ignore this technicality.
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Now suppose V is not rigid. We want to describe where the curve Y comes from (and how non-Abelian
Hodge theory gets involved). Let Spec(R) be the C-scheme whose set of A-points is Hom(π1(X),SL2(A))
(cf. Definition 9.1 below). Then the monodromy representation of V takes the form

π1(X)
ρ−→ SL2(R)→ SL2(C).

for some map R→ C. It suffices to show that ρ factors through the fundamental group of a DM curve. Note
that if t ∈ Spec(R)(C) is a closed point not lying in a fixed countable union of proper closed subvarieties
of Spec(R), then the composition ρt of ρ with the induced map SL2(R)→ SL2(C) will have kernel equal to
that of ρ and have Zariski-dense image. Thus it suffices to pick one such t and show that ρt factors through
a surjective map π1(X)→ π1(Y ) with Y a DM curve.

To describe what t to pick, observe that the image of Spec(R) in MB(X, r) is affine (being the quotient
of Spec(R) by the GL2-action; see Remark 9.3(4) below) and of positive dimension (since V is not rigid;
see loc. cit.). Moreover, we have a homeomorphism MB(X, r)(C) ∼= MDol(X, r)(C), and since h is proper,
the image of Spec(R)(C) in MDol(X, r)(C) cannot live in the fiber above 0. Thus we may pick t such that
the Higgs bundle (E , θ) corresponding to ρt via Theorem 6.9 satisfies h(E , θ) ̸= 0. Then det(θ) ̸= 0 in
H0(X,Sym2(Ω1

X)), and also tr(θ) = 0 since ρt has image contained in SL2(C). (The latter implication is not
obvious but follows from the proof of Theorem 6.9.)

Now let Z ⊆ Tot(Ω1
X) be the spectral variety of (E , θ). Since tr(θ) = 0, it is the space of square roots

of det(θ). Since det(θ) is locally a square, Z is finite and flat over X, and its desingularization Z̃ carries a

tautological 1-form ω, the “global square root” of det(θ). It induces a map8 Z̃ → Alb(Z̃) and a tautological

1-form on Alb(Z̃) which pulls back to ω. Let Alb(Z̃) ↠ A be the smallest quotient by an Abelian subvariety
such that ω is pulled back from A.

Claim: The image of Z̃ in A is a curve.
Granted this, one takes the quotient of Z̃ → A by a Z/2-action and then the Stein factorization to obtain

a map X̃ → Y with X̃ birational to X and Y a curve. Next, one shows that X̃ → Y factors through X → Y .
Finally, giving Y an appropriate structure of a DM curve yields the desired map. See [Sim91, p. 345–347]
and [CS08, Lemma 3.1] for details.

Finally, we outline the proof of the claim. Assume the image of Z̃ in A is not a curve. By a simple
argument, the zero-locus of ω maps to a finite set of points in A [Sim91, p. 343, Lemma 13], so the assumption
implies that, after a suitable birational modification, the zero-locus of ω has codimension ≥ 2 in X. By a
Lefschetz-type theorem, we may then find a projective curve C in X such that ω|C is nowhere vanishing and

the map π1(C)→ π1(X) is surjective. Now let C̃ → C be the connected (double or single) cover determined

by Z̃ → X. Since ω has a globally defined square root on C̃, the eigenspaces of (E , θ)|C̃ are globally defined,

i.e. (E , θ)|C̃ is a direct sum of two Higgs line bundles. But C̃ is a projective variety, so we may use Theorem
6.9(3) to conclude that ρt|C̃ is a direct sum of two local systems. So the image of ρt|C̃ is contained in a torus

in SL2(C) and is an index-two normal subgroup of the image of ρt (normal since C̃ → C is a Galois cover).
This contradicts Zariski density. See [Sim91, p. 344–345] for details.

Remark 6.16. 1. Jost–Zuo have proven a similar result for local systems of higher rank [JZ97, p. 497,
Theorem 3.1].

2. This whole story, at least in rank 2, has an analogue in the non-Archimedean world. In particular, one
can give a proof, which is different to what will be discussed in Daniel Litt’s Lecture 3 (§10), of the
integrality of rigid local systems from this “non-Archimedean Corlette–Simpson” point of view.

Lastly we state a result due to Landesman–Litt which connects back to Daniel Litt’s Lecture 1 (§2) and
whose proof uses techniques of non-Abelian Hodge Theory (in particular, Corollary 6.14 above). Recall that
given a smooth proper map X → S and s ∈ S, there is an action of π1(S, s) on the moduli space Rep(π1(Xs))
of representations of π1(Xs). In the following, we take X to be the moduli space Mg,n of genus-g curves
with n punctures and X → S to be the universal such curve.

8Recall that Alb(Z̃) denotes the Albanese variety, the Abelian variety given by the complex torus H0(Z̃,Ω1
Z̃
)∨/H1(Z̃,Z).
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Theorem 6.17 ([LL24]). If ρ : π1(Σg,n)→ GLr(C) is such that

1. r2 ≤ g and

2. the conjugacy class of ρ has finite π1(Mg,n)-orbit,

then ρ has finite image.
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7 p-adic Hodge theory. Speaker: Alice Lin. Notes by Stefan
Nikoloski.

7.1 The field C and Tate twists

Let K be a complete discretely valued field of characteristic 0 with a perfect characteristic p residue field.

Definition 7.1. C = Cp := K̂ , the p-adic completion of K.

Fact 7.2.

• C is algebraically closed.

• By continuity GK := Gal(K/K) acts on C, preserving the absolute value | · |.

Definition 7.3. We set Zp(1) := lim←−µpn . By a choice of a system of compatible p-th power roots of unity
we get an isomorphism

Zp(1) = lim←−µpn = (· · · µpn · · · µp2 µp)

Zp = lim←−Z/pn = (· · · Z/pn · · · Z/p2 Z/p)

x→xp

mod p

The p-adic cyclotomic character χ : ΓK → Z×
p is defined so that for all n and for all σ ∈ GK we have

σ(ζpn) = ζ
χ(σ)
pn . Hence, we can view Zp(1) as Zp with a GK-action by χ.

Definition 7.4. The r-th Tate twist for r ∈ Z is given by

Zp(r) :=

{
Zp(1)⊗r, r ≥ 0

Zp(−r)∨, r < 0

In general, for a Zp[GK ]-module M we define the r-th Tate twist of M , to be M(r) :=M ⊗Zp
Zp(r).

Theorem 7.5 ([Tat67, Theorem 1 and Theorem 2]).

(1) H0
cts(GK , C) = CGK = K and H1

cts(GK , C) is a 1-dimensional vector space over K.

(2) For r ̸= 0, H0
cts(GK , C(r)) = C(r)GK = 0 and H1

cts(GK , C(r)) = 0.

Remark 7.6. The statements about H1
cts are incorrect if we replace C with K.

7.2 Hodge–Tate decomposition

The p-adic Hodge–Tate theory is motivated by studying H1
ét(XK ,Qp) for smooth projective varieties X. In

particular, we can ask what these Galois representations can recover about the geometry of X?
We recall that if we have a smooth proper scheme Y over C then we have the classical Hodge decomposition

Hn
sing(Y (C),Q)⊗Q C =

⊕
j

Hn−j(Y,ΩjY )

In [Tat67], Tate showed that an analogous decomposition exists for H1
ét of an abelian variety over a p-adic

field with a good reduction. He also conjectured that such a decomposition exists beyond abelian varieties.
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Theorem 7.7 (Hodge–Tate decomposition, [Fal88, Chapter III, Theorem 4.1]). Let X be a smooth proper
K-scheme, n ≥ 0 (

Hn
ét(XK ,Qp)⊗Qp

⊕
j∈Z

C(j)

)GK

≃
⊕
j

Hn−j(X,ΩjX/K)

as graded K-vector spaces.

Remark 7.8. Alternatively, using the Serre–Tate Lemma ([BC, Lemma 2.3.1]) the statement of the theorem
can be rewritten as

Hn
ét(XK ,Qp)⊗Qp

C ≃
⊕
q

Hn−q(X,ΩqX/K)⊗K C(−q)

Remark 7.9. The theorem tells us that Hn
ét recovers the Hodge numbers.

We point out that as in the classical case where we only get the decomposition after tensoring with C,
the analogous thing happens in this case after tensoring with

⊕
j C(j). This is the first example of a period

ring.

Definition 7.10. The ring BHT :=
⊕

j C(j) is called the Hodge–Tate period ring.

7.2.1 Abelian variety example

Let A be an abelian variety and n = 1, then the Hodge–Tate decomposition becomes:

H1
ét(AK ,Qp)⊗Qp

C ≃ H1(A,OA)⊗K C ⊕H0(A,Ω1
A/K)⊗K C(−1)

We get a Galois equivariant map αA : H1(A,OA)⊗K C → H1
ét(AK ,Qp)⊗Qp C, which we can explicitly

construct.

7.3 Constructing αA

Suppose A/K has good reduction, i.e. it extends A/OK . We let OC = ÔK .

Definition 7.11. We define the OC-scheme A∞ = lim←−n(· · ·
[p]−→ A1 = AOC

[p]−→ A0 = AOC
) as a limit of

affine morphisms.

We let π : A∞ → A0 be the projection map coming from the limit. Then π will induces a map
π∗ : RΓ(AOC

,OAOC
) → RΓ(A∞,OA∞). We now observe that A[pn](C) act on An by translation and this

action is compatible with the transition maps. Hence, we get a Tp(A) = lim←−A[p
n]-action on A∞. Then, the

map π : A∞ → A0 is Tp(A)-equivariant, where the action on A0 is trivial, as all the p-torsion points will be
mapped to 0 in A0.

Remark 7.12. We need to work over OC , or at least over OK in order to make sure that the pn-torsion
points of A are defined over the underlying ring.

Tp(A) acts trivially on AOC
and the sheaf cohomology, so by functoriality we get a composition of maps

RΓ(AOC
,OAOC

)→ RΓcts(Tp(A), RΓ(AOC
,OAOC

))→ RΓcts(Tp(A), RΓ(A∞,OA∞))

Fact 7.13 ([Bha, Proposition 2.2.1]). The natural map OC → RΓ(A∞,OA∞) given by sending the constant
sections OC to H0(A∞,OA∞) is an isomorphism after p-adic completion.
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Using this fact, after p-adic completion we get a map

RΓ(AOC
,OAOC

)→ RΓcts(Tp(A),OC) = RΓcts(π
ét
1 (A),OC)→ RΓét(AC ,OC)

where the last map is induced by the map from the étale site to the finite étale site. Finally, taking H1 and
tensoring with C we get

αA : H1(A,OA)⊗K C → H1
ét(AC ,Qp)⊗Qp

C

7.4 Étale–de Rham comparison

We recall that for a smooth proper C-scheme Y of dimension d we have:

Hn
sing(Y (C),Q)⊗Q C ≃ Hn

dR(Y/C)

given by the Poincaré duality and the “period” pairing

Hn
dR(Y (C)/C)×H2d−n(Y (C),Q)⊗Q C −→ C, (ω,Z)→

∫
Z

ω

In general, these “periods”
∫
Z
ω are highly transcendental, which explains why we have to tensor with C to

get the identification.

Theorem 7.14 (p-adic de Rham comparison, [Fal89, Theorem 8.1]). For X a proper smooth K-scheme,
n ≥ 0 there is a canonical isomorphism

Hn
ét(XK ,Qp)⊗Qp BdR ≃ Hn

dR(X/K)⊗K BdR

compatible with the GK-action and filtration.

Remark 7.15. In general, de Rham cohomology isn’t equipped with a GK-action, while on the other side
the étale cohomology doesn’t come with a filtration. The role of BdR is to fill in the gaps of what is missing
on both sides of this isomorphism.

The ring BdR was constructed by Fontaine and he conjectured that such an isomorphism exists

Definition 7.16 ([Fon82, Chapter 2]). The de Rham period ring BdR has

(1) filtration such that the associated graded ring is BHT .

(2) GK-action such that BGK

dR = K.

Definition 7.17.

DdR :

{
finite dimensional

Qp − representations of GK

}
−→

{
filtered

K − vector spaces

}

V −−−−−−−−−−−−→ DdR(V ) := (V ⊗Qp BdR)
GK

With this definition in hand, we can rephrase the p-adic de Rham comparison as

DdR(H
n
ét(XK ,Qp)) ≃ H

n
dR(X/K)

as filtered K-vector spaces.
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7.5 Construction of B+
dR, BdR

Recall that OC = ÔK .

Definition 7.18. The tilt O♭C of OC is defined as

O♭C := lim←−
x→xp

OC =

{
(x(0), x(1), . . . ) ∈

∏
OC

∣∣∣∣ (x(n+1)
)p

= x(n)
}

It is isomorphic to lim←−
x→xp

OC/(p).

Fact 7.19. O♭C is perfect of characteristic p. It is a domain with a continuous GK-action.

Let Ainf := W (O♭C), the ring of Witt vectors of O♭C . We then define a map θ that makes the diagram
below commute. ∑

[xi]p
i

∑
x
(0)
i pi

Ainf =W (O♭C) OC

O♭C OC/(p)

x0 = (x
(0)
0 , x

(1)
1 , . . . ) x00 (mod p)

θ

mod p mod p

where [xi] are multiplicative lifts of xi ∈ O♭C .
We can now extend θ to θQ : Ainf [1/p] ↠ OC [1/p] = C. The kernel of θQ is principal and GK-stable.

Fact 7.20. B+
dR := (Ainf [1/p])̂(ker θQ) is a complete DVR with maximal ideal ker θQ and has a ΓK-action.

Definition 7.21. BdR := Frac(B+
dR). It has a Z-grading by powers of the maximal ideal of B+

dR and a
GK-action.
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8 The p-adic Riemann-Hilbert correspondence, lecture 2. Speaker:
Alexander Petrov. Notes by Yifei Zhang.

Recall the complex Riemann–Hilbert correspondence. Given a complex manifold X and a C-local system L,
we get RH(L) := (L⊗C OX , 1⊗ d) ∈ MIC(X). Now let U ⊆ X be open; what is RH(L)(U)? Let f : Ũ → U
be a universal cover; then

RH(L)(U) = RH(L)(Ũ)π1(U) = (Γ(Ũ , f∗L|U )⊗C O(Ũ))π1(U)

where the π1-action on Γ(Ũ , f∗L|U )⊗C O(Ũ) is diagonal.

Motivation 8.1. Notice that Γ(Ũ , f∗L|U ) is the representation of π1(U) associated to L|U and O(U) is
an ”interesting” ring with a π1(U)-action (as BdR is an ”interesting” ring with GK-action). Moreover,
RH(L)(U) is an O(Ũ)π1(U) = O(U)-module.

Now let K be a discretely valued p-adic field. We want to study the category C of étale Qp-local systems
on Spec(K) which is equivalent to the category of finite-dimensional continuous Qp-representations of GK .
As a first approximation to the Riemann-Hilbert functor in this setting following the motivation above, we
have

C FilVecf.d.K

V (V ⊗Qp BdR)
GK .

DdR

Think of BdR as a humongous representation and DdR(V ) = (V ⊗Qp
BdR)

GK ≃ HomGK
(V ∨, BdR) as

detecting how often V ∨ appears in it. Its filtration is F idR(V ) := (V ⊗Qp
F iBdR)

GK . However this DdR is
unsatisfactory because it kills many representations.

Example 8.2. Let χ : GK → Z×
p be the cyclotomic character, a ∈ Zp such that χa makes sense (for example

a can be any element of Zp whenever K has p-th (or 4-th if p = 2) roots of unity). Then

DdR(χ
a) =

{
K,F−a = K,F−a+1 = 0 a ∈ Z
0 a /∈ Z

Fact 8.3. dimKDdR(V ) ≤ dimQp(V ).

Definition 8.4. V is de Rham if dimKDdR(V ) = dimQp
(V ) (for example, étale cohomology is de Rham).

To “improve” DdR, consider K∞ = K(ζp∞). We want to define a functor

RH+ : C −→

{
finite free K∞[[t]]-modules M equipped with

∇:M→M⊗K∞[[t]] dtt s.t.
∇(am)=a∇(m)+m⊗da

for any a in K∞[[t]] and any m in M .

}

We can further compose RH+ with the inverting t functor{
finite free K∞[[t]]-modules M equipped with

∇:M→M⊗K∞[[t]] dtt s.t.
∇(am)=a∇(m)+m⊗da

}
−→

{
finite dimensional K∞((t))-vector spaces M equipped with

connection with regular singularity

}
to get RH+[1/t]. RH+ preserves rank and is a tensor functor that satisfies9

DdR(V )⊗K K∞ = RH+(V )[1/t]∇=0.

In this language, V is de Rham if and only if RH+(V )[1/t] is isomorphic to (K∞((t))dimV , d), i.e. is trivial
as a bundle with connection on the ”punctured disc”.10

9This immediately explain the dimensional inequality, as in the MIC case, dimension of flat sections is less than the rank of
the bundle.

10This means the module is generated by flat sections
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Recall that BdR has a separated exhaustive decreasing Z-indexed filtration whose i-th graded piece is
C(i). What if we try other things? In view of the ”universal cover” analogy, taking K and C as O(Ũ)
respectively, we have the following

Example 8.5. • (V ⊗Qp K)GK =
⋃
L/K finite Galois(V ⊗Qp L)

GK =
⋃
L V

GL ⊗Qp K =vectors in V ⊗K
acted-on through a finite quotient of GK . For the second equality, we L ≃ ⊕σ∈G(L/K)Kσ as GalK-
module (follows from normal basis theorem), so (V ⊗Qp

L) ≃ ⊕σ∈G(L/K)V ⊗Qp
Kσ. Hence (V ⊗Qp

L)GK = ((V ⊗Qp
L)GL)G(L/K) = (V GL ⊗Qp

L)G(L/K) = (⊕σ∈G(L/K)V
G(L)⊗Qp

Kσ)G(L/K). It’s readily
verifiable that it consists of elements in the form of

∑
σ σ(v)σ for v ∈ V GL ⊗Qp K.

• What about (V ⊗Qp
C)GK? Consider HK = G(K/K∞) = ker(χ : GK → Z×

p ) and ΓK := GK/HK ↪→
Z×
p .

Theorem 8.6 (Tate-Sen). Let W be a f.d. C = C-vector space with an HK-semilinear continous action
(e.g. W = V ⊗Qp

C). Then W ≃ Cdim(W ) as a (semilinear) HK-representation.

Remark 8.7. On the contrary, for V a Qp-representation of GK , V ⊗Qp
K ≃ K

dimQpV as semilinear GK-
modules only if the GK-action on V factors through some finite quotients.11 Indeed, one can verify that if the
GK-action on V does not factor through some finite quotients, then V ⊗Qp

K does not have a GK-invariant
basis.

To see the theorem, we use the following two results. In fact, these two results powers the p-adic hodge
theory.

Lemma 8.8 (special case of étale descent). Let R→ S be a finite Galois étale map of rings. MS a projective
S-module equipped with a semilinear action of G := G(S/R). Then MS ≃ M ⊗R S for some R-module M
as modules with S-semilinear G-action.

Theorem 8.9 (Almost Purity,Tate-Faltings-Scholze). Let L/K∞ be a finite extension. Then OK∞ → OL
is almost étale: ΩOL/OK∞

is annihilated by mL.
12

Remark 8.10. The almost purity is true for K ′
∞ = K(p1/p

∞
) as well. Moreover, upto p-adic completion,

perfectoid fields are exactly those for which almost purity holds.

Example 8.11. For an odd p, let K = Qp, L = K ′
∞(
√
p). Note Zp ⊂ Zp[

√
p] is not étale: ΩZp[

√
p]/Zp

is

Zp[
√
p]dp/(

√
pd
√
p = 0).

Note that OL ∋ p1/(2p
n) = p1/2(p1/p

n

)−(pn−1)/2. Thus we get

dp1/2 = d(p1/2p
n

(p1/p
n

)(p
n−1)/2) = (p1/p

n

)(p
n−1)/2dp1/(2p

n).

dp1/(2p
n) is annihilated by p1/2p

n

, hence so is dp1/2. This shows dp1/2 is annihilated by element with
arbitrarily small valuation, hence by mL. Similar argument shows that dp1/2p

n

is annihilated by mL for any
n, which means ΩOL/OK′

∞
is annihilated by mL.

A formal argument takes care of Tate-Sen using almost purity and étale descent: specifically, one gets
Tate-Sen for modules over OC/pn, then one takes the limit.

Now V ⊗Qp C ≃ C⊕ dimV as an HK-module, so (V ⊗Qp C)
HK ≃ K̂∞

dimV
as ΓK-modules. To turn this into

a K∞[[t]]-module, the first step is

Decompletion: there is a ΓK-module H(V ) over K∞ such that H(V ) ⊗K∞ K̂∞ ≃ (V ⊗Qp
C)HK as a ΓK-

module, and we make the following

11The converse of this statement is true as well, which is a special case of Lemma 8.8. Alternatively, it follows from Hilbert
90: If the GK -action factors through G(L/K) for finite Galois L/K, then the Hilbert 90 (H1(G(L/K),GLn(L)) = 1) is saying

V ⊗Qp L ≃ L
dimQpV

as modules with semilinear G(L/K)-action.
12The almost purity theorem and the étale descent lemma are used to show the vanishing of the H1(HK ,GLd(C)) which

proves the theorem.
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Definition 8.12.
ϕ : H(V )→ H(V )

is defined by differentiating the ΓK action:

ϕ(v) = lim
γ→1

γ(v)− v
χ(γ)− 1

.

ϕ is a K∞-linear operator because for any x ∈ K∞, every γ close enough to 1 will fix x.

Goal 8.13. We want to define a functor RH+ from C to the category ofK∞[[t]]-modules with∇ : RH+(V )→
RH+(V )⊗K∞[[t]]dtt s.t. ∇(am) = a∇(m) +m⊗ da. What we defined so far is RH+(V )/t = H(V ) and t∇
mod t is ϕ.
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9 Rigid local systems. Speaker: Jake Huryn. Notes by Jake
Huryn.

This talk takes place in the following setting, the notation of which we use throughout.
Setting: Let X be a smooth connected quasiprojective scheme over C, fix a point x ∈ X(C), and set

Γ := π1(X,x). Let X ↪→ X be an embedding into a smooth connected projective scheme over C such that
D := X \X is a normal crossings divisor, and let D1, . . . , Dn be the irreducible components of D. Finally,
for each i, let Ti ∈ Γ be a “counterclockwise loop around Di”.

To describe Ti explicitly, let D
sing be the singular locus of D, and put U := X \Dsing. Fix an open ball

∆i in U(C) meeting Di, but no other Dj , and a point xi in the “punctured ball” ∆∗
i := ∆i \D(C). Then

π1(∆
∗
i , xi)

∼= Z, and there is a “counterclockwise” generator determined by the orientation on ∆∗
i ; let Ti be

the image of this generator under the map π1(∆
∗
i , xi) → Γ induced by choosing a path in X(C) from x to

xi. It is important that the conjugacy class of Ti does not depend on the choices.

9.1 Rigidity

The goal of this section is to formalize the following “definition”: a local system ρ is rigid if it cannot be
deformed to a non-isomorphic local system while its determinant and “local monodromy” (the conjugacy
classes of the ρ(Ti)) remain fixed. To do this, we define “representation varieties” which parameterize local
systems on X.

Definition 9.1. Fix the data of

• a positive integer r and a field K.

• a finite set Θ of homomorphisms Γ→ K×.

• a tuple C = (C1, . . . , Cn) of locally closed subschemes of GLr,K which are finite unions of conjugacy
classes.

Define a functor Rep(Γ, r) : Ring→ Set by sending R to the set of homomorphisms Γ→ GLr(R). This is an
affine scheme of finite type over Z because Γ is finitely generated:13 if {γ1, . . . , γm} is a generating set of Γ
closed under inverses, then Rep(Γ, r) is isomorphic to the closed subscheme of GLnr cut out by the equations∏
j gij = 1 whenever

∏
j γij = 1 in Γ. (Since GLnr is a Noetherian scheme, finitely many such equations

suffice to define Rep(Γ, r).)
Define Rep(Γ, r; Θ, C) : RingK → Set to be the functor which sends R to the set of ρ ∈ Rep(Γ, r)(R) such

that det(ρ) ∈ Θ and, for each i ∈ {1, . . . , N} and K-algebra morphism φ : R → F with F a field, one has
φ(ρ(Ti)) ∈ Ci(F ). This is a locally closed subscheme of14 Rep(Γ, r)K , which we call a representation variety.

Observe that Rep(Γ, r; Θ, C) has an action of GLr,K by conjugation. Also, it is independent of the choices
made in defining the Ti.

Definition 9.2. Assume that #Θ = 1 and each Ci is a conjugacy class. A local system ρ ∈ Rep(Γ, r; Θ, C)(K)
is rigid if its orbit under the action of GLr,K (i.e. the set-theoretic image of the morphism GLr,K →
Rep(Γ, r; Θ, C) given by g 7→ gρg−1) is a connected component of Rep(Γ, r; Θ, C) for some compactification
X as above.

Remark 9.3. (For an exposition of items (4–6) below, see [KP22, §4].)

1. In the context of Definition 9.2, if ρ is rigid, then its GLr,K-orbit is a connected component in any
representation variety obtained by finitely enlarging the set Θ.

13Indeed, it is well known that the complex manifold X(C) admits a finite triangulation. Alternatively, one can show using
Morse theory that X(C) is homotopy-equivalent to a finite CW complex [Mor78, p. 137].

14Since Ci is open in Ci, if we let Z and Z′ be, respectively, the closed subschemes of Rep(Γ, r; Θ) (where we impose a
determinant condition but no local monodromy condition) defined by the identities ρ(Ti) ∈ Ci(R) and ρ(Ti) ∈ (Ci \Ci)(R), then
Rep(Γ, r; Θ, C) = Z \ Z′; indeed, its R-points are the morphisms Spec(R) → Z whose image does not meet Z′.
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2. In the context of Definition 9.2, if ρ is rigid and semisimple, then its GLr,K-orbit is a connected
component in the representation variety Rep(Γ, r; Θ, C) obtained by replacing each conjugacy class Ci
with its closure Ci. This follows from the fact that Rep(Γ, r; Θ, C) is open in Rep(Γ, r; Θ, C) and that the
orbit of ρ in the entire parameter space Rep(Γ, r)K is closed by [Ric88, Theorem 3.6] (which requires
semisimplicity).15

3. The “connected component” condition in Definition 9.2 (or in items (1–2) of the present remark) may
be checked on geometric points endowed with the Zariski topology.

4. An actual moduli space (i.e. parameterizing isomorphism types) of local systems on X is obtained by
taking a quotient of a representation variety by its GLr,K-action. This can be done using a stack
quotient or a GIT quotient. In the latter case, the Ci must be closed, so the representation variety
is affine, say, Spec(O); the GIT quotient is then Spec(OGLr,K ), which is a coarse moduli scheme for
semisimple local systems. From these perspectives, the orbit of a local system is a connected component
of a representation variety if and only if it is an isolated point of the corresponding moduli space.

5. The reformulation of rigidity in terms of isolated points of a moduli space leads to the following
notion: a local system is cohomologically rigid if it is a smooth (i.e. reduced) isolated point of the
appropriate moduli space. In other words, it has no infinitesimal deformations. The terminology is
due to the fact that if M is the moduli scheme of Rep(Γ, r; Θ, C) where each Ci is a conjugacy class,
and ρ ∈ Rep(Γ, r; Θ, C)(K), the tangent space of M at [ρ] is

T[ρ]M = Ker

(
res : H1(Γ, slr(K))→

n⊕
i=1

H1(TZ
i , slr(K))

)

where slr(K) is a representation of Γ via γ · Ξ := ρ(γ)Ξρ(γ)−1.

6. One can (and it is interesting and useful to) generalize the above discussion by replacing GLr with
other connected reductive groups. Much of what is said below extends beyond GLr.

9.2 Simpson’s conjecture

Example 9.4. For the purposes of the rest of the talk, it suffices to consider representation varieties of
the following form. Set K = Q, fix an integer d ≥ 1, and assume each Ci is a conjugacy class of quasi-
unipotent matrices (meaning some power is unipotent). Let Θ be the set of all homomorphisms Γ → K×

of order dividing d (i.e. satisfying θd = 0), and let C := (C1, . . . , Cn). Then we write Rep(Γ, r; d, C) for
Rep(Γ, r; Θ, C), which is closed in Rep(Γ, r)Q. By Remark 9.3(1–2), the rigidity of a semisimple local system

ρ ∈ Rep(Γ, r; d, C)(K) can be checked in this larger representation variety.

The following is an elaboration of [Sim92, p. 9, Conjecture].

Conjecture 9.5. Let ρ : Γ→ GLr(C) be an irreducible rigid C-local system on X. Assume that

1. ρ has quasi-unipotent local monodromy.

2. ρ has finite-order determinant.

Then ρ is of geometric origin in the sense of Definition 4.1.

Remark 9.6. A local system of geometric origin satisfies the properties (1) and (2) above. Indeed, (1) is
the quasi-unipotent monodromy theorem (see e.g. [sga72, Theorem 1.2]; the case when X is a curve was
explained in Corollary 3.13 above) and (2) is [Del71, Corollaire 4.2.8.iii(b)].

15To see this, use the fact that the orbit (being the continuous image of the irreducible scheme GLr,K) is irreducible. It is an

easy exercise to give a counterexample if ρ is not semisimple, or if one replaces Ci by a more general finite union of conjugacy
classes including Ci (even when ρ is taken to be irreducible).
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Remark 9.7. We outline some evidence for Conjecture 9.5. Let ρ be as therein; then ρ “looks geometric”
in the following ways:

1. ρ is a C-direct factor of a Q-VHS. This was proven by Simpson for X projective [Sim92, p. 56, Theorem
5] and T. Mochizuki in general [Moc06, Lemma 10.13].

2. ρ is arithmetic in the sense of Definition 4.5. This was essentially proven by Simpson for X projective
[Sim92, p. 55, Theorem 4] and Esnault–Groechenig in general [EG18, Proposition 3.1]. See §9.3 below.

3. if ρ is cohomologically rigid, then it is integral, i.e. conjugate to an OK-local system for some number
field K. This was proven by Esnault–Groechenig [EG18, Theorem 1.1]. See Daniel Litt’s Lecture 3
(§10) below.

These facts should be compared with the statements of Simpson’s non-Abelian Hodge conjecture (Conjecture
6.12) and the relative Fontaine–Mazur conjecture (Conjecture 4.8).

Also, there are some X for which Simpson’s conjecture is known to hold:

4. ρ comes from geometry if X is open in P1. This was proven by Katz using his method of “middle
convolution” [Kat96, Theorem 8.4.1].

5. ρ comes from geometry if X = Ag,n is the moduli space of principally polarized Abelian varieties of
dimension g ≥ 2. In this case, every local system on X is rigid and of geometric origin. See §9.4 below.

The rest of this talk will be devoted to explaining some details of (2) and (5) above.

9.3 Arithmeticity

Fix ρ as in Conjecture 9.5. Let d ≥ 1 be an integer satisfying det(ρ)d = 1, and for each i, let Ci be the
conjugacy class of ρ(Ti). Let R be a finitely generated subring of C such that X ↪→ X spreads out to an open
immersion XR ↪→ XR over R with XR again smooth projective and XR \ XR a normal crossings divisor.
Let k be the fraction field of R.

Since Rep(Γ, r; d, C) is defined over Q (see Example 9.4), each of its connected components contains a
Q-point, so by rigidity, we may conjugate ρ to have image contained in GLr(Q). Since Γ is finitely generated,
ρ further factors through GLr(OK [1/N ]) for some number field K and positive integer N . Let λ be any
finite place of K not dividing N . Since GLr(OKλ

) is profinite, the composition

Γ
ρ−→ GLr(K) ↪→ GLr(OKλ

)

factors through the profinite completion of Γ, which we identify via Riemann’s existence theorem (Corollary
3.7) with the étale fundamental group πét

1 (X,x); this we in turn identify with πét
1 (Xk, x), using that πét

1 is
invariant under base-change between algebraically closed fields. Thus we obtain a representation

ρλ : π
ét
1 (Xk, x)→ GLr(Kλ)

for any such λ, i.e. an étale local system on Xk.

Theorem 9.8. There exists a finite extension k(λ) of k such that ρλ extends to a étale local system16

πét
1 (Xk(λ), x)→ GLr(Kλ) on Xk(λ).

Proof. We give a proof in the case when X is projective, i.e. D = ∅, so any condition on local monodromy
is vacuous (but see Remark 9.9 below). We may assume X(k) ̸= ∅ and moreover (by choosing a suitable
étale path between geometric points) that x lies above an element of X(k). This splits the exact sequence

1→ πét
1 (Xk, x)→ πét

1 (X,x)→ Galk → 1.

16By a standard argument using the Baire category theorem, any continuous representation πét
1 (Xk(λ), x) → GLr(Kλ) takes

values in GLr(L) for a finite extension L/Kλ.
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Given σ ∈ Galk, define ρ
σ
λ : π

ét
1 (Xk, x) → GLr(Kλ) by γ 7→ ρλ(σγσ

−1), where we identify σ with its image
in πét

1 (X,x) via a fixed section of the short exact sequence. This induces a map Galk → Repr(Γ, d)(Kλ)
given by σ 7→ ρσλ|Γ. This is continuous for the λ-adic topology on the target since Galk acts continuously
on πét

1 (Xk, k), and it sends 1 to ρ, so there is an open neighborhood of 1 in Galk which maps into the
Zariski-connected component of ρ. Replacing k by a finite extension, we may assume all of Galk is sent to
the connected component of ρ; then for any σ ∈ Galk, rigidity implies that ρσλ|Γ is GLr(Kλ)-conjugate to ρ,
hence (by the density of Γ in πét

1 (Xk, x)) that ρ
σ
λ is GLr(Kλ)-conjugate to ρλ.

For each σ ∈ Galk, let Pσ ∈ GLr(Kλ) be a matrix such that ρσλ = PσρλP
−1
σ . Let Pσ denote the image of

Pσ in PGLr(Kλ). Then, since ρλ is irreducible, Schur’s lemma implies that Pσ does not depend on the choice
of Pσ. The function σ 7→ Pσ is a therefore a homomorphism and is, by a simple argument, continuous. Now
let Λ be the image of 1 + ar×r in PGLr(Kλ), where a is an ideal of OKλ

small enough that 1 + a contains

no roots of unity of order ≤ r. Then the canonical map (1 + ar×r) ∩ SLr(Kλ) ↠ Λ is an isomorphism
of topological groups, so after enlarging k such that Pσ ∈ Λ for all σ, we may lift each Pσ uniquely to
(1 + ar×r) ∩ SLr(Kλ), and thereby assume that σ 7→ Pσ is a continuous homomorphism Galk → SLr(Kλ).

We claim that, after making these enlargements, k(λ) = k works. Indeed, define

πét
1 (Xk, x)→ GLr(Kλ), γσ 7→ ρλ(γ)Pσ (2)

for all γ ∈ πét
1 (Xk, x) and σ ∈ Galk. One checks, using the isomorphism πét

1 (Xk, x) ∼= πét
1 (Xk, x)⋊Galk and

the definition of Pσ, that (2) is in fact a continuous homomorphism.

Remark 9.9. (Not included in the talk.) LetD1,R, . . . , Dn,R be the irreducible components ofXR\XR. The
difficulty in generalizing the proof to the quasiprojective case lies in showing that ρσλ|Γ remains in the same
(appropriately chosen) representation variety as ρ. In other words, one has to study the local monodromy
of ρσλ|Γ. To do this, one has to identify the local monodromy of ρσλ|Γ (defined topologically as above) with
the image of

πét
1

(
Spec

(
Frac

(
O∧
Xk,Di,k

)))
→ πét

1 (Xk, x)
ρσλ−→ GLr(Kλ)

(cf. the statement of Corollary 3.13). See e.g. the proof of [EG18, Lemma 3.2], which begins by reducing to
the curve case.

9.4 Superrigidity

Let Hg be Siegel’s upper half space, the set of g × g complex symmetric matrices with positive-definite
imaginary part. Let Γg(n) be the kernel of the reduction map Sp2g(Z) → Sp2g(Z/n). Then Γg(n) acts on
the complex manifold Hg; let Ag,n be the (topological) quotient Γg(n)\Hg. If n ≥ 3, then Ag,n has the
structure of a smooth quasiprojective variety, is the moduli space for principally polarized Abelian varieties
of dimension g with level-n structure (i.e. a symplectic basis of n-torsion), and Γg(n) acts on Hg in a
sufficiently nice way that π1(Ag,n) ∼= Γg(n). (The last two statements hold in general if one instead takes a
stack quotient.)

Example 9.10. Here are some local systems on Ag,n. There is a “tautological” local system coming from
the inclusion Γg(n) ↪→ GL2g(C). If f denotes the universal family of Abelian varieties over Ag,n, then R1f∗C
is a local system on Ag,n. (Actually, it can be shown that these are the same local system.)

The following is a version of “superrigidity” for Γg(n), which gives us a source of rigid local systems.

Theorem 9.11. Suppose g ≥ 2. For any field K of characteristic 0 and representation ρ : Γg(n)→ GLr(K),
we have H1(Γg(n), ρ) = 0. Consequently, every local system on Ag,n is cohomologically rigid.

Remark 9.12. A stronger version of superrigidity allows one to prove that, if g ≥ 2, any ρ : Γg(n) →
GLr(C) as above is isomorphic to ρ1⊗ ρ2, where ρ1 is the restriction to Γg(n) of an algebraic representation
Sp2g(C) → GLr(C) and ρ2 factors through a finite group. Since the category of algebraic representations
of Sp2g(C) is generated by a single faithful representation, and finite-order local systems are of geometric
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origin, it follows that every local system on Ag,n is of geometric origin. For an exposition of this, see [Put],
which treats the analogous question for SLn, n ≥ 3 (though the same argument works for Sp2g, g ≥ 2).

The statements above can be derived from the solution to the congruence subgroup problem for Sp2g
(g ≥ 2) by Bass–Milnor–Serre [BMS67]. However, they are special cases of very deep “superrigidity” theorems
of Margulis which apply to general irreducible lattices in semisimple Lie groups of rank ≥ 2. For example,
Theorem 9.11 is a special case of [Mar91, Chapter IX, Theorem 6.15(ii)].
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10 Nonabelian cohomology and applications, lecture 3. Speaker:
Daniel Litt. Notes by Kyle Binder

Let X be a smooth, projective variety over a finitely-generated field k and ℓ ̸= char k.
Sasha discussed the similarity between the Tate Conjecture and the Relative Fontaine–Mazur Conjecture.

Conjecture 10.1 (Tate Conjecture). An element ξ ∈ H2i (Xk̄,Qℓ(i)) is in the image of

cl : Zi (Xk̄)Qℓ
→ H2i (Xk̄,Q(i))

if and only if the orbit Galk ·ξ is finite.

Analogously in the non-abelian case we have the following conjecture.

Conjecture 10.2 (Non-abelian Tate Conjecture, Relative Fontaine–Mazur/Petrov Conjecture). A contin-
uous, semi-simple representation

ρ : πét
1 (Xk̄)→ GLn

(
Qℓ
)

is of geometric origin if and only if Galk ·[ρ] is finite (equivalently, by Jake’s talk, ρ is arithmetic).

What we now have is two conjectural characterizations of representations of geometric origin: being a
direct factor of a Z-VHS and having finite orbit Galk ·[ρ]. Conjecturally, these two characterizations should
be equivalent, and this is also an open problem.

One piece of weak evidence for the equivalence is the following.

Proposition 10.3. Suppose we have the Cartesian diagram

X̃ X

S̃ S

π̃ □ π smooth, proper

f

univ.cover

of varieties over C and V a Q-local system on X̃ such that V|very general fibre of π̃ underlies a Z-VHS. (Very
general here means on the complement of a countable number of analytic closed subvarieties of S̃.)

Then V⊗Qℓ (viewed as a local system on XC(S)) has finite orbit over GalC(S).

Proof. We want to show that π1(S, s) ·
[
V|fibre

]
is finite. Consider f−1(s); for all s′ ∈ f−1(s) we get a local

system Vs′ on Xs. This is because we get local system on X̃s′ which is isomorphic to Xs by base-change. By
assumption, Vs′ underlies a Z-VHS. By unwinding definitions, the family {Vs′} is precisely π1(S, s) ·

[
V|fibre

]
.

Using the following theorem of Deligne, this implies the orbit is finite.

Theorem 10.4 ([Del87, Théorème 0.5]). The set of isomorphism classes of rank r Q-local systems on a
smooth, quasi-projective variety over C which underlie a Z-VHS is finite.

10.1 Some Predictions

1.

Conjecture 10.5 (Simpson’s Conjecture). Rigid local systems are of geometric origin.

As Jake explained, this conjecture makes many predictions. If we take any property satisfied by a
local system of geometric origin, we can try to verify that rigid local systems satisfy the property. For
example, take the property of being a direct factor of a Z-VHS. Jake explained that Mochizuki showed
in the quasi-projective case that rigid local systems are direct factors of a Q-VHS. In order to conclude
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the rigid local system is a direct factor of a Z-VHS, we are left to show that the rigid local system is
integral, i.e., that the monodromy is defined over OK for a number field K.

The main goal of this talk is to prove this statement for cohomologically rigid local systems.

Theorem 10.6 ([EG18, Theorem 1.1]). Irreducible, cohomologically rigid local systems with finite-
order determinant are integral.

Remark 10.7. Implicit in the statement of cohomological rigidity is the group GL, but it is natural to
ask similar things for a different connected, reductive group G. By [KP22, Theorem 1.2], the analogue
of Esnault–Groechenig’s integrality result holds for G-cohomologically rigid local systems.

Remark 10.8. One can ask if Esnault–Groechenig’s theorem implies Simpson’s Conjecture, viz. are
all rigid local systems also cohomologically rigid? In this simplest phrasing, de Jong, Esnault, and
Groechenig construct a rigid but non-cohomologically rigid local system ([dJEG22]). However, one
may ask the sharper question of whether all rigid local systems are G-cohomologically rigid (here G is
the Zariski-closure of monodromy); the answer to this question is unknown.

2. Another property of representations of geometric origin in our context is the relation between choices
of the prime number ℓ.

Conjecture 10.9 (Deligne). Let X/Fq be a normal variety and ℓ ̸= charFq a prime. If E is an
irreducible Qℓ-sheaf on X with finite determinant, then there is a number field E ⊆ Qℓ such that:

(a) For all closed points x ∈ |X| we have det(1−Fxt | Ex) ∈ E[t], where Fx is the geometric Frobenius
of the point x.

Why is this predicted? The fact that the local system is defined on X/Fq means the corresponding

representation is extended from π1

(
XFq

)
to π1

(
XFq

)
. In particular, the representation is arith-

metic, so we expect the representation to come from geometry and the cohomology of a family
of varieties. But in this case, the characteristic polynomials of Frobenius count points on the
various fibres. So if we take the total cohomology, the characteristic polynomials should live in
Z[t]. However, our conjectures only assume this is a direct summand of the total cohomology, so
the coefficients of these characteristic polynomials live in some number field.

(b) For all places λ′ of E not above charFq, there is an Eλ′ -sheaf E ′ with

det(1− Fxt | E ′) = det(1− Fxt | E).

As the local system conjecturally has geometric origin, this predicts the choice of prime ℓ (the
place λ′ corresponding to a different choice) when taking cohomology doesn’t have much effect,
as it is still just counting points in some fixed family of varieties.

(c) Roots of det(1− Fxt | E) should be integral over Z
[

1
char Fq

]
.

This is some property that is satisfied when E comes from geometry. It is saying that the Frobenius
eigenvalues of the sheaf should behave like the Frobenius eigenvalues acting on cohomology.

(d) E is pure of weight 0.

This conjecture is actually mostly known, as we will see in the following two results.

The first is a result coming from Lafforgue’s proof of the Langland’s Program for Function Fields for
GLn [Laf02]. Via this proof, Lafforgue proves the Relative Fontaine-Mazur Conjecture (Conjecture
10.2) for curves over finite fields, as he is able to realize that arithmetic local systems on some curve
come from the cohomology of a stack of shtukas.
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Theorem 10.10 ([Laf02, Théorème VII.6]). If dimX = 1, Conjecture 10.9 holds.

The second result proves Deligne’s conjecture when the normality assumption is replaced with the
stronger condition of the variety being smooth.

Theorem 10.11 (Lafforgue, Deligne, Drinfeld, see [Dri12]). If X is smooth (and dimX ≥ 1), Con-
jecture 10.9 holds.

The proof works by a reduction to the theorem in dimension 1. For each curve on X, we can find some
local system E ′ as in part (b) of the conjecture. Then the job is to show that these local systems glue
together, and this is non-obvious.

Remark 10.12. One way of thinking about the characteristic polynomials of Frobenius is in terms
of the Weil Conjectures. Another way of thinking about these is that the characteristic polynomials
det(1− Fxt | E) determine E at least up to semi-simplification by the Čebotarev Density Theorem, so
the E ′ in part (b) of the conjecture is unique. However, this relation between Qℓ-local systems and
Qℓ′ -local systems is not functorial. In fact, this bijection should not be expected to be a functor, as in
one category, the morphisms are Qℓ-vector spaces, while in the other they are Qℓ′ -vector spaces.

Remark 10.13. In Deligne’s Conjecture 10.9, we restricted to the case ofX over a finite field. However,
the Relative Fontaine–Mazur Conjecture 10.2 is stated for any finitely-generated field, so we should
expect Deligne’s Conjecture to also be true in this case.

3.

Conjecture 10.14 (Non-abelian Variational Conjecture). Suppose X −→ S/C is a smooth and proper
map and that V is a local system of geometric origin on a fibre Xs. Then the Relative Fontaine–Mazur
Conjecture gives a prediction when the local system Vs′ on a nearby fibre is of geometric origin.

Specifically, suppose the π1(S, s) · V orbit is finite.

Then:

(a) There is a dominant étale map S′ −→ S such that V extends to XS′ .

(This part is proven and is just a way of rephrasing that the orbit π1(S, s) · V is finite. It makes
no mention of V having geometric origin on Xs.)

(b) The local system V|general fibre of XS′→S is of geometric origin.

Let us briefly say why the Relative Fontaine–Mazur Conjecture predicts this. Assuming the conjecture,
what one should check in verifying the local system V|general fibre of XS′→S is of geometric origin is that
this local system has finite orbit under the Galois action of the generic point of S over some finitely-
generated field. Roughly, this Galois group is composed of the Galois group of S and the Galois group
of the finitely-generated field. The Galois group of S by assumption induces a finite orbit, while the
Galois group of the field should be independent of fibre; hence if it holds for one fibre it should hold
for nearby fibres.

Some predictions coming from this conjecture are known. For example, if the local system on one fibre
in this family underlies a Z-VHS then the same is true on all fibres. This is a theorem of Katzarkov,
Pantev ([KP02]) and Jost, Zuo ([JZ01]). One may also use Mochizuki’s work in [Moc06] to derive the
result using parabolic Higgs bundles.

10.2 Integrality

For the rest of this talk we will explain how the Theorem of Lafforgue, Deligne, and Drinfeld (Theorem
10.11) implies the result of Esnault–Groechenig (Theorem 10.6).
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Lemma 10.15 (Simpson). Let X be a smooth, projective variety over C, and suppose V is rigid. Then V
is defined over OK

[
1
N

]
where K is a number field and N ∈ Z>0.

Proof. By assumption, [V] ∈MB(X, r) (C) is an isolated point of the character variety (which is a finite-type
Q-scheme), so the residue field of this point is finite over Q. Then by some algebra the representation can be
defined over a slightly larger number field. To show we only have to invert finitely many primes, we use the
deep result that π1(X) is finitely generated. Therefore the representation can be defined by finitely many
matrices and hence only finitely many numbers.

In order to prove the result of Esnault–Groechenig, all we have to do is remove the 1
N appearing in the

lemma. To do this we utilize Lafforgue, Deligne, and Drinfeld’s result about switching between primes.

Proof of Esnault–Groechenig. (For more details, see [EG18, Theorem 1.1]). Let L(r, d) be a set of irreducible,
cohomologically rigid, complex local systems on X, of rank r, with determinant of order dividing d, one for
each isomorphism class. This is a finite set, so Simpson’s Lemma implies the existence of an integer N such
that every local system in L(r, d) is defined over OK

[
1
N

]
. Choose primes ℓ ∤ N and ℓ′ | N . For an element

V ∈ L(r, d) take the associated representation

ρV : π1(X) −→ GLn

(
OK

[
1

N

])
.

For a place of K, λ | ℓ, we can then take the λ-adic completion

ρV,λ : π1(X) −→ GLn

(
OK

[
1

N

])
−→ GLn

(
OK

[
1

N

]∧λ
)
.

As GLn

(
OK

[
1
N

]∧λ
)
is a profinite group, this map factors through the profinite completion of π1(X), which

is πét
1 (X). So we have the commutative diagram

π1(X) GLn
(
OK

[
1
N

])
GLn

(
OK

[
1
N

]∧λ
)

πét
1 (X)

By rigidity, Jake explained how this representation can be extended to a model of X over a finitely-
generated Q-algebra. A similar argument shows the representation can be extended to a smooth model over
R which is finitely-generated over Z.

π1(X) GLn
(
OK

[
1
N

])
GLn

(
OK

[
1
N

]∧λ
)

πét
1 (X) πét

1 (XR)

arithmeticity

Now suitably pick a closed point p in Spec(R) which is not above ℓ, then reduce mod p. 17

This gives the commutative diagram

17Added by the note-taker: The closed point p | p must satisfy the following conditions, with p uniform across all represen-
tations from L(r, d) (see [EG18, Bottom of p. 4285]).

1. p is prime to the order of the image of the residual representation

πét
1 (X) → GLn

(
OK

[
1

N

]∧λ

/m

)
.

2. p ∤ ℓ.
3. p ∤ N .
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π1(X) GLn
(
OK

[
1
N

])
GLn

(
OK

[
1
N

]∧λ
)

πét
1 (X) πét

1 (XR)

πét
1 (Xp)

ρV,p,λ

Note that Xp := XR ×R R/p is now a variety over a finite field.
By Part (b) of Theorem 10.11 (see 2b of Section 10.1), there is a representation

ρV,p,ℓ′ : π
ét
1 (Xp) −→ GLn

(
Qℓ′
)

which is a companion to ρV,λ. This yields, by “unspecializing” the representation, a Qℓ′-representation of
πét
1 (X) and therefore of π1(X) which we call ρV,ℓ′ .

18

If we have chosen the ℓ and p sufficiently nicely, we claim we have constructed a bijective map from
the isomorphism classes of irreducible, cohomologically rigid, rank r, with determinant of order dividing d,
Qℓ-representations to the isomorphism classes of those Qℓ′ -representations. In fact, it is enough to show this
mapping is an injection: Qℓ and Qℓ′ are isomorphic as fields, so there are the same number of isomorphism
classes of irreducible, cohomologically rigid, rank r, with determinant of order dividing d representations of
π1(X) over either field.

Assuming the claim, we will have shown that for any ℓ′ | N there is an integral model of the representation
ρV . This is because π

ét
1 (X) is a profinite, compact group, so any representation factors through a maximal

compact subgroup of GLn
(
Qℓ′
)
. Using the integrality criterion of [Bas80, Corollaries 2.3 and 2.5], this is

enough to show the result.
In order to verify the claim, we need to check two things:

1. We need the representation ρV,ℓ′ (and ρV,p,ℓ′) to be irreducible, cohomologically rigid, rank r, with de-
terminant of order dividing d, in order to have a map between the appropriate class ofQℓ-representations
and the appropriate class of Qℓ′ -representations.

2. We need this map to be injective.

The obstruction to cohomological rigidity is

H1
(
Xp,End

0 (ρV,p,ℓ′)
)
.19

4. p is prime to the order of the determinant of the representation

ρV : π1(X) −→ GLn

(
OK

[
1

N

])
.

18Added by the note-taker: Let us explain how this yields a Qℓ′ -representation of π1 (X). Let p be a geometric point of
Spec(R) over p.

We consider the companion to ρV,p,λ,

ρV,p,ℓ′ : π
ét
1 (Xp) → GLn

(
Qℓ′
)
.

It is easy to check that ρV,p,ℓ′ has finite determinant. Then we pull back ρV,p,λ to a representation of πét
1

(
Xp

)
, then to a

Qℓ-representation of πét
1 (X) via the surjective specialization map

sp : πét
1 (X) ↠ πét

1

(
Xp

)
.

Finally, we pull back again to get a representation of π1(X).
19Added by the note-taker: The verification of the other properties of ρV,ℓ′ follows from first verifying the representation

ρV,λ factors through ρV,p,λ, and this is where the assumptions on p are necessary. Let p be a geometric point of Spec(R) over
p. Recall the specialization isomorphism

sp : πét,p′

1 (X)
∼=−→ πét,p′

1

(
Xp

)
,
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The second part on injectivity has obstructions

H0 (Xp,Hom(ρ1, ρ2))

for each pair of distinct representations ρ1, ρ2 : π1 (Xp)→ GLn
(
Qℓ′
)
.

By Part (d) of Theorem 10.11 (Part 2d of Section 10.1) both of these obstructions are cohomology groups
of pure local systems; hence, the obstructions are pure. Therefore the dimensions of the obstructions can be
read off from the respective L-functions. In particular, the dimension of the obstructions are independent of
the prime λ and therefore vanish.

where πét,p′

1 denotes the prime-to-p quotient.
We first want to show the representation

ρV,λ : πét
1 (X) → GLn

(
OK

[
1

N

]∧λ
)

factors through πét,p′

1

(
Xp

)
. By the prime-to-p specialization isomorphism, it is enough to show we have the factorization

πét
1 (X) → πét,p′

1 (X) → GLn

(
OK

[
1

N

]∧λ
)

.

This is done in two steps. First, the condition that p is prime to the order of the image of the residual representation

πét
1 (X) → GLn

(
OK

[
1

N

]∧λ

/m

)
.

ensures the factorization

πét
1 (X) → πét,p′

1 (X) → GLn

(
OK

[
1

N

]∧λ

/m

)
.

Second, the kernel of the residue map

GLn

(
OK

[
1

N

]∧λ
)

→ GLn

(
OK

[
1

N

]∧λ

/m

)
is pro-ℓ, so the assumption that p ∤ ℓ yields the factorization

πét
1 (X) → πét,p′

1 (X) → GLn

(
OK

[
1

N

]∧λ
)

→ GLn

(
OK

[
1

N

]∧λ

/m

)
.

Using the assumption that p is prime to the order of the determinant of the representation

ρV : π1(X) −→ GLn

(
OK

[
1

N

])
,

one similarly shows the determinant of

πét,p′

1

(
Xp

)
→ GLn

(
OK

[
1

N

]∧λ
)

is finite.
By replacing p with a point with larger residue field, one can show this representation of πét,p′

1

(
Xp

)
factors through πét,p′

1 (Xp)
and the resulting representation, which is ρV,p,λ, has finite determinant. (This is [EG18, Proposition 3.1].)
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11 Rigid-Analytic Geometry. Speaker: Zeyu Liu.
Notes by Mehmet Basaran

11.1 Rigid analytic space

Definition 11.1. A nonarchimedean field is a field K that is complete with respect to a non-archimedean
absolute value | · |, i.e. | · | satisfies

(i) |x| = 0 iff x = 0

(ii) |xy| = |x||y|

(iii) |x+ y| ≤ max (|x|, |y|)

Example 11.2. K = Qp,Fp((T )),C((T ))

From now on we fix a nonarchimedean field K with ring of integers O = {x ∈ K : |x| ≤ 1} , maximal ideal
mK = {x ∈ K : |x| < 1} , and residue field k = O/mK .

Definition 11.3 (näıve definition). X/K is called an n-dimensional compact manifold, if

(i) X is an analytic variety over K,

(ii) X is compact, and

(iii) dimX = n.

Theorem 11.4 ([Ser65, Théorème (1)]). Assume that K is discretely valued and q := |k| <∞. Then there
are only q − 1 many isomorphism classes of compact n-dimensional manifolds over K.

Because of this theorem, the näıve definition of a compact p-adic manifold is not very interesting. There-
fore we need new ideas to work in rigid analytic geometry. Mimicking the setup in algebraic geometry outlined
below, where polynomial algebras are the building blocks, we start working in rigid analytic geometry by
first defining Tate algebras, which will serve as building blocks in this case.

Classical algebraic geometry Rigid analytic geometry

schemes/C rigid spaces/K

affine schemes affinoid rigid spaces

finite type algebras affinoid algebras

polynomial algebras Tate algebras

⊂ ⊂

⊂ ⊂

11.1.1 Tate algebras

Tate algebras can be thought of functions on the unit disk.
In the complex case C, holomorphic functions on the open unit ball are given by power series f(z) =∑
anz

n with restrictions on the coefficients an.
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In the nonarchimedean case K, we consider power series f(T ) =
∑
anT

n with coefficients an ∈ K. This
power series f(T ) converges on the closed unit ball B if and only if |an| → 0. This is true, since restricting
to B gives ∣∣∣∣∣∣

∞∑
n≥k

anT
n

∣∣∣∣∣∣ ≤ max
n≥k
|anTn| ≤ max

n≥k
|an| .

Definition 11.5. For n ≥ 1, the n-th variable Tate-algebra of K is

Tn := Tn(K) :=

{∑
J

aJX
J : |aJ | → 0, for ∥J∥ → ∞

}
,

where J = (j1, . . . , jn) ∈ Nn is a multi-index, ∥J∥ =
∑n
i=1 ji, and X

J = xj11 · · · · ·xjnn . It will also be denoted
by K ⟨X1, . . . , Xn⟩. So Tn(K) is the subring of formal power series that converge on Bn.

Example 11.6. • Qp ⟨X1, . . . , Xn⟩

• C ⟨X1, . . . , Xn⟩, where C = Cp = Q̂p
In both of these examples, elements of the Tate algebras can be viewed as functions on the unit ball Bn (C) =
{(x1, . . . , xn) : xi ∈ C, |xi| ≤ 1}.

• Qp
〈
X,X−1

〉
=
{∑∞

i=−∞ aiX
i : lim |ai| → 0 as |i| → ∞

}
.

Elements in this Tate algebra can be viewed as functions on the unit circle {a ∈ C : |a| = 1}.

Definition 11.7. Given a function f =
∑
aJX

J ∈ Tn(K), we define its Gauß norm ∥f∥ to be ∥f∥ :=
maxJ |aJ |.

Lemma 11.8. Tn(K) with the Gauß norm is a Banach algebra, i.e. for all f, g ∈ Tn(K) and c ∈ K we have

(i) ∥f∥ = 0 if and only if f = 0,

(ii) ∥f + g∥ ≤ max {∥f∥, ∥g∥},

(iii) ∥cf∥ = |c|∥f∥,

(iv) ∥fg∥ ≤ ∥f∥∥g∥, and

Tn(K) is complete with respect to this norm.

For any point x ∈ Bn
(
K
)
and any function f ∈ Tn(K), we get a point f (x) ∈ K. So for fixed x ∈ Bn

(
K
)

we can define a norm

∥ · ∥x : Tn(K) −→ K
|·|−→ R

f 7−→ |f (x)| .

Then (see [Bos14, Section 2.2 Proposition 5])

∥f∥ = sup
x∈Bn(K)

∥f∥x = sup
x∈Bn(K)

|f (x)| max. mod. principle
= max

x∈Bn(K)
|f (x)| .

Proposition 11.9. The Tate algebra Tn(K) has the following properties:

(i) It is Noetherian, regular, and a UFD.

(ii) Every ideal I ⊂ Tn(K) is closed with respect to the Gauß norm.

(iii) For all maximal ideals m ∈ Tn(K), the residue field Tn(K)/m is finite over K.

(iv) The map Bn
(
K
)
→M (Tn(K)) := {maximal ideals of Tn(K)} is surjective.

Proof. See [Con, Theorem 1.1.5].
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11.1.2 Affinoid algebras

Definition 11.10. A K-algebra A is an affinoid K-algebra, if there is a surjective maps α of K-algebras
α : Tn(K)→ A.

Remark 11.11. (i) Any affinoid K-algebra A is Noetherian.

(ii) Given a surjection α : Tn(K)→ A we can define a norm on A as follows: For x ∈ A we set

∥x∥α = inf
y∈Tn(K)
α(y)=x

∥y∥.

This norm depends on the choice of α, but the topology defined by it does not.

Definition 11.12. Let A be an affinoid K-algebra and write X = M(A). Let f1, . . . , fn, g ∈ A such that
(f1, . . . , fn, g) = A. Define rational subdomains as sets of the form

X

〈
f1
g
, . . . ,

fn
g

〉
:= {x ∈ X : ∥fi(x)∥ ≤ ∥g(x)∥ for all i} ⊂ X,

where f(x) denotes the image of f in the residue field A/x of the maximal ideal x, and the norm ∥ · ∥ on
A/x is the unique extension of the norm on K. Moreover, if (f1, . . . , fn) = A, we define

Xi := X

〈
f1
fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn
fi

〉
.

Then X = ∪Xi, and this is called a rational cover. We define a Grothendieck topology on M(A) to be the
one generated by these Xi.
One can define a structure sheaf O on X = M(A) that sends X to A and any rational subdomain

X
〈
f1
g , . . . ,

fn
g

〉
to an affinoid algebra A

〈
f1
g , . . . ,

fn
g

〉
:= A ⟨T1, . . . , Tn⟩ / (gTi − fi) (see [Bos14, Chapters

3-5] for details).
To any affinoid K-algebra A we can associate the space Sp(A) = (X =M(A),OX) consisting of the topo-
logical space M(A) with its structure sheaf. Such a space Sp(A) is called an affinoid rigid space. More
generally, a rigid space over K is one that locally looks like an affinoid rigid space

The goal now is to associate to an algebraic variety over K a rigid space over K. Pick c ∈ K with |c| > 1
(e.g. c = 1/p for K = C), and define the affinoid K-algebra

T (i)
n := Tn

(
|c|i
)
:= K

〈
X1

ci
, . . . ,

Xn

ci

〉
.

Elements in T
(i)
n can be viewed as functions on the n-dimensional closed ball of radius |c|i. Then

T (0)
n ←↩ T (1)

n ←↩ · · · ←↩ T (k)
n ←↩ · · · ←↩ K [X1, . . . , Xn]

and
Bn := Sp

(
T (0)
n

)
↪→ Sp

(
T (1)
n

)
↪→ . . .

Each of these are affinoid rigid spaces and we define

(AnK)
rig :=

∞⋃
i=0

Sp
(
T (i)
n

)
to be the rigidification of the n-dimensional affine space. If instead the algebraic variety is of the form

Spec (K [X1, . . . , Xn] /α), we can repeat the above process with T
(i)
n /α in place of T

(i)
n , and we get the

rigidification

(Spec (K [X1, . . . , Xn] /α))
rig

=

∞⋃
i=0

Sp
(
T (i)
n α

)
.
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This rigidification process gives a well-defined functor from the category of algebraic varieties over K to the
category of rigid spaces over K independent of the choice of c and the choice of α (see [Bos14, Section 5.4
Corollary 5] for more details).

11.2 Raynaud generic fiber functor

Let O be a discrete valuation ring with uniformizer π ∈ O. The goal is to define a functor

{admissible formal schemes/O} → {Rigid spaces over/K}

Definition 11.13. A topological O-algebra A is called admissible, if

(i) A is topologically finite type over O, i.e.

A ≃ O ⟨X1, . . . , Xn⟩ /α,

where O ⟨X1, . . . , Xn⟩ is defined as Tate algebras were defined over K before; and

(ii) A has no π-torsion, so A is flat over O.

We realize the desired functor above by sending an admissible formal scheme Spf (O ⟨X1, . . . , Xn⟩ /α) to
Sp (Tn/α), where Tn = (O ⟨X1, . . . , Xn⟩)

[
1
π

]
(see [Con, Section 3.3] for details).

Example 11.14. Let X = Sp (C ⟨T ⟩). To show that X has many nonsplit finite étale extensions, we show
that H1

ét (X,µp) is very large. To see this, consider the Kummer sequence

0 µp Gm Gm 0,

x xp

which is exact in the étale topology ([Sta24, Tag 03PL]). Therefore we get a sequence

0 C⟨T ⟩×/ (C⟨T ⟩×)p H1
ét (X,µp) H1

ét (X,Gm) .

Since X has no nontrivial étale line bundles, the latter part H1
ét (X,Gm) vanishes, and thus H1

ét (X,µp) ≃
C⟨T ⟩×/ (C⟨T ⟩×)p, which is nontrivial. For example it has the nonzero element 1 + p1/1000000000T . This can
be seen by looking at the coefficients am of any p-th root. They satisfy the recursive relation

am = − (m− 1)p− 1

pm
p1/1000000000am−1,

and since ∣∣∣∣− (m− 1)p− 1

pm
p1/1000000000

∣∣∣∣ ≥ 1,

the coefficients am do not tend to 0. In contrast, if we did the same computation with Spec (C[X]) in place
of Sp (C ⟨T ⟩), then we get

0 = C[T ]×/
(
C[T ]×

)p ≃ H1
ét (Spec (C[T ], µp)) .
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12 The p-adic Riemann-Hilbert correspondence, lecture 3. Speaker:
Alexander Petrov. Notes by Stefan Nikoloski.

We continue with our notation from earlier whereK∞ =
⋃
nK(µpn), HK = Gal(K/K∞) and ΓK = GK/HK ,

which is realized as an open subgroup of Z×
p via the cyclotomic character χcyc. We recall that we defined a

functor

H :
{
Qp−representations

of GK

}
−−−−−→

{
K∞−vector spaces M

ϕ:M−→M

}
(∗)

as follows: Starting with a Qp-representation V of GK , we consider (V ⊗Qp
C)HK , which by the almost

purity theorem is a vector space over K̂∞ with the same dimension as V . We also had a decompletion H(V ),

a vector space over K∞ such that H(V )⊗K∞ K̂∞ ≃ (V ⊗Qp C)
HK . This was a functorial construction and

H(V ) comes with a K∞-semilinear ΓK-action. We then define a K∞-linear operator20 on H(V ) by:

ϕ(v) = lim
γ→1
γ∈ΓK

γ(v)− v
χcyc(γ)− 1

The purpose of ϕ is to capture the ΓK-action, although we remark that ϕ could lose a bit of information.
For example, if ΓK acts through a finite quotient on H(V ), then any γ close enough to 1 will act trivially
on H(V ) and hence ϕ ≡ 0.

Example 12.1. Let V = χacyc = ⟨e⟩, where a ∈ Zp is close enough to 1 that we can make sense of the power

of the cyclotomic character. Since HK acts trivially on V we have that (V ⊗Qp
C)HK = (e ⊗ 1) · K̂∞ and

from this H(V ) = (e⊗ 1) ·K∞. Now

ϕ(e⊗ 1) = lim
γ→1

χacyc(γ)− 1

χcyc(γ)− 1
(e⊗ 1) = a(e⊗ 1)

From this we deduce that ϕ acts on H(V ) as multiplication by a.

Definition 12.2. The eigenvalues of ϕ acting on H(V ) are called the Hodge-Tate weights of V .

Motivation 12.3. The motivation for this definition comes from the Hodge-Tate decomposition. We recall
that for X/K smooth and proper and V = Hn

ét(XK ,Qp) we have the decomposition

V ⊗Qp
C ≃

⊕
i

Hn−i(X,ΩiX)⊗K C(−i)

Therefore, V ⊗Qp
C looks like a direct sum of cyclotomic characters. By the same computations as in Example

12.1 we get that

H(V ) =
⊕
i

Hn−i(X,ΩiX)⊗K K∞

with ϕ acting on the graded piece indexed by i as multiplication by −i. In other words, ϕ remembers the
Hodge numbers on the n-th cohomology.

As we want to study the functor DdR we instead consider (V ⊗Qp
B+

dR)
HK . We recall that B+

dR has
a filtration whose associated graded ring is a direct sum of Tate twists of C. Therefore, on the associated
graded pieces the action of HK is same as the action on C. Moreover, after a choice of a system of compatible
roots of unity there is a canonical element t ∈ B+

dR such that g ∈ GK acts on t by g(t) = χcyc(g)t. We note
that the filtration on B+

dR is given in terms of power of t, i.e. F iB+
dR = tiB+

dR.

20On an element of K∞, ΓK acts via a finite quotient. Hence every γ close enough to 1 will act trivially on this element,
giving us the K∞-linearity of ϕ.
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Given the de Rham comparison theorem we can easily see the existence of such t. Consider the projective
line P1

K . We have H2
ét(P1

K
) ⊗Qp BdR ≃ H2

dR(P1
K) ⊗K BdR. By Serre’s duality H2

dR(P1
K) is isomorphic to

K, so the right-hand side is isomorphic to BdR. The image of 1 under this isomorphism has to land in
the GK-invariants of H2

ét(P1
K
) ⊗K BdR, which is isomorphic to (Qp(−1) ⊗Qp

BdR)
GK . After a choice of a

generator of Qp(−1), the image of 1 will be of the form 1⊗ t, which gives us the desired element t of B+
dR.

As before there is a decompletion RH+(V ) such that RH+(V )⊗K∞[[t]] (B
+
dR)

HK ≃ (V ⊗Qp
B+

dR)
HK , where

RH+(V ) is a free K∞[[t]]-module of rank dimQp
V , which is also equipped with a ΓK-action. We remark

that K∞[[t]] maps into (B+
dR)

HK , as HK acts trivially on both K∞ and t. Moreover, the projection onto the
zeroth graded piece gives rise to the commutative diagram

RH+(V )⊗K∞[[t]] (B
+
dR)

HK (V ⊗Qp
B+

dR)
HK

H(V )⊗K∞ K̂∞ (V ⊗Qp
C)HK

≃

≃

We want to study the ΓK-action on RH+(V ). To do that we can define an operator ϕ on RH+(V )
which will be compatible with the action on ϕ on the base ring K∞[[t]], which in turn is given by the
earlier derivative formula. To see how ϕ will interact with the K∞[[t]]-module structure on RH+(V ), we first
compute its action on K∞[[t]]. As GK acts by the cyclotomic character on t we get that ϕ(t) = t. Therefore,
as ϕ is a K∞-linear20 derivation on K∞[[t]] we get that ϕ = t∂t on K∞[[t]]. Now generalizing the construction
of ϕ on H(V ) we can construct an operator ϕ on RH+(V ) such that

ϕ(am) = aϕ(m) + t∂t(a)m

for all a ∈ K∞[[t]] and m ∈ RH+(V ). We can then equip RH+(V ) with a connection ∇ : RH+(V ) →
RH+(V )⊗K∞[[t]] K∞[[t]]dtt defined by ∇ = ϕ⊗ dt

t . We now have that

DdR(V )⊗K K∞ ≃ RH+(V )[1/t]∇=0

Proposition 12.4. V is de Rham if and only if RH+(V )[1/t] is spanned by flat sections as a K∞((t))-vector
space.

Example 12.5. We revisit our earlier example. As in Example 12.1 let V = χacyc. Since HK acts trivially
on V , as above we can immediately see that RH+(V ) is a free K∞[[t]]-module of rank 1. Moreover, as in
Example 12.1 we get that ϕ will act by multiplication by a on a basis element e of RH+(V ). We remark that
ϕ is a K∞-linear operator, but not a K∞[[t]]-linear operator. It will satisfy the derivation rule mentioned
above and therefore for f ∈ K∞[[t]] we have:

ϕ(fe) = fϕ(e) + t∂t(f)e = afe+ t∂t(f)e = (af + t∂t(f)) · e

Hence, after identifying RH+(V ) with K∞[[t]] we get that ϕ acts on K∞[[t]] as a+t∂t. From here ∇ = d+adt
t .

Now, since RH+(V )[1/t] ≃ K∞((t)) is a 1-dimensional vector space, by Proposition 12.4 χacyc is de Rham if

and only if K∞((t)), equipped with the connection ∇ = d+adt
t has a non-zero flat section. As this differential

equation has a solution in K∞((t)) if and only if a ∈ Z 21, we get that χacyc is de Rham if and only if a ∈ Z.

12.1 The Relative Setting

Let X be a smooth variety over K. Our goal is to define an analogue of the de Rham functor for local
systems

21 If a ∈ Z, obviously t−a is a non-zero solution. Conversely, let f =
∑∞

i=N ait
i be a non-zero solution to ∇ = 0. Then,

0 = df + adt
t

=
∑∞

i=N ai(i+ a)ti−1dt. As aN ̸= 0 we must have a = −N ∈ Z.
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DdR :
{

Qp−local
systems on X

}
−−−−−→

{
vector bundles E on X

with flat connection∇:E→E⊗Ω1
X

and filtration ···⊂F iE⊂F i−1E⊂...
such that ∇(F iE)⊂F i−1E⊗Ω1

X

}
satisfying the following:

Properties 12.6.

1. If X = SpecK, then DdR(V ) = (V ⊗Qp BdR)
GK

2. If f : Y → X is a morphism of smooth varieties and L is a local system on X, then f∗DdR(L) =
DdR(f

∗L)

Definition 12.7. A local system L is called de Rham if rankQpDdR(L) = rankQpL.

Theorem 12.8 ([LZ17, Theorem 1.1]). Let X be a smooth connected variety over K. Let L be a Qp-local
system on X. Suppose there exists a point x ∈ X(K) such that the GK-representation Lx is de Rham. Then
for any finite field extension L/K and every y ∈ X(L), Ly is de Rham.

Proof. The proof follows rather formally from Properties 12.6. Lx being de Rham is equivalent to the
equality dimK DdR(Lx) = dimQp

(Lx) being satisfied. By the properties mentioned above this equality
becomes rankQp

DdR(L) = rankQp
(L). Applying this equivalence in the reverse direction for any y ∈ X(L)

we get the result.

12.2 p-adic Simpson and p-adic Riemann-Hilbert

Let X be a smooth variety over K. To construct the relative dR functor, the first step is to build relative
versions of the functors H and RH+. There is a functor

H :
{

Qp−local
systems onX

}
−−−−−→


Higgs bundles M/XK∞

θ:M→M⊗Ω1
XK∞

OXK∞
−linear endomoprhism ϕ:M→M

such that θ◦ϕ=(ϕ−1)◦θ


satisfying the following:

Properties 12.9.

1. For every x ∈ X(K) and local system L on X we have H(L)x = H(Lx), where the functor H on the
right is the one defined in (∗).

2. The functor H preserves ranks, i.e rankQp(L) = rankOXK∞
H(L).

3. The characteristic polynomial of ϕ has constant coefficients.

Example 12.10. Let f : Y → X be a smooth proper morphism of varieties and L = Rnf∗Qp. Then

H(L) =
⊕
i

Rn−if∗Ω
i
Y/X ⊗K K∞

Moreover, the Higgs field is θ : Rn−if∗Ω
i
Y/K → Rn−i+1f∗Ω

i−1
Y/K ⊗ Ω1

X . On the i-th graded piece ϕ acts as

multiplication by −i. This means that θ maps the (−i)-eigenspace of ϕ to the (−i + 1)-eigenspace of ϕ,
which gives us the relation θ ◦ ϕ = (ϕ− 1) ◦ θ.

Remark 12.11. The relation θ ◦ϕ = (ϕ− 1) ◦ θ implies that θ is nilpotent in the sense that this bundle has
a filtration such that on the associated graded module θ acts as 0 22. Additionally, the relation implies that
(M, θ) ≃ (M,λθ) for any λ ∈ K×

∞, as in the setting of variations of Hodge structures.
22 One such filtration is given by the eigenspaces of ϕ. The relation θ ◦ϕ = (ϕ−1)◦ θ means that θ will map the λ-eigenspace

of ϕ to the (λ− 1)-eigenspace of ϕ, which we already saw to be the case in Example 12.10.
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Remark 12.12. If X is over C and not over K, then we get neither ϕ nor the nilpotence of θ. However,
there is a more general p-adic Simpson correspondence over C.

Let XK∞[[t]] be the locally ringed spaces whose underlying topological space is XK∞ and whose structure
sheaf is OXK∞

[[t]]. We also have a functor

RH+ :
{

Qp−local
systems on X

}
−−−−−→

{
vector bundles E on XK∞[[t]]

with a flat connection ∇:E→E⊗ 1
t

(
Ω1
XK∞

[[t]]⊗OXK∞
[[t]] dt

)
satisfying the Leibnitz rule

}
Example 12.13. We consider the same example as above with the local system L = Rnf∗Qp. We then
have

RH+(L) =
∑

F iHodgeHndR(Y/X)⊗ t−iOXK∞
[[t]] ⊂ HndR(Y/K)⊗OX

OXK∞
((t))

and the connection is∇ = ∇GM⊗ d, where∇GM is the Gauss-Manin connection and d is the usual derivation.

We can now decompose the connection ∇ appearing in the definition of the RH+ functor as
∇ = ∇geom + ∇arithm, where ∇geom is the projection to the summand Ω1

XK∞
[[t]] and ∇arithm is the pro-

jection to the summand OXK∞
[[t]] dt. Moreover, since ∇ is flat, these two will have to commute with each

other. With this notation we remark that the target category of RH+ is equivalent to
vector bundles E on XK∞[[t]]

with a connection ∇geom:E→E⊗ 1
tΩ

1
XK∞

[[t]]

and OXK∞
−linear endomorphism ϕ:E→E

such that ϕ(tm)=tϕ(m)+m and [∇geom,ϕ]=0


where ϕ = t · ∇arithm. From this equivalence we can connect the two functors and in particular we get

H(L) = RH+(L)/t θ = ∇geom (mod t) ϕ = t · ∇arithm (mod t)

Remark 12.14. The functors H and RH+ are far from equivalence of categories. Indeed, for any finite
image representation as explained at the beginning the endomorphism ϕ will be trivial. Hence, any such
representation will be sent to the trivial object.
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13 Algebraic differential equations in characteristic p > 0. Speaker:
Ziquan Yang. Notes by William C. Newman.

13.1 Algebraic de Rham Cohomology

Definition 13.1. Suppose π : X → S is a smooth morphism of schemes. For (E ,∇) ∈ MIC(X/S), define
the complex23

Ω•
X/S ⊗OX

E := (· · · → ΩiX/S ⊗OX
E ∇i−−→ Ωi+1

X/S ⊗OX
E → . . . )

where
∇i(ω ⊗ e) = dω ⊗ e+ (−1)iω ∧∇(e).

Define the (relative) algebraic de Rham cohomology

Hq
dR(X/S, (E ,∇)) := Rqπ∗(Ω

•
X/S ⊗OX

E).

These are quasi-coherent sheaves on the base S.

Remark 13.2. Alternatively, one can define for Hq
dR(X/S, (E ,∇)) as the qth derived functor of

MIC(X/S)→ QCoh(S)

(E ,∇) 7→ π∗(E∇=0)

These definitions are shown to be equivalent in [Gro68]. Note that an element of MIC(S/S) is a pair (E ,∇)
with E ∈ QCoh(S) and ∇ : E → E ⊗OS

ΩS/S = 0. Hence, the natural map MIC(S/S) → QCoh(S) is an
equivalence of categories. We sometimes will write MIC(S/S) instead of QCoh(S).

We focus mainly on
Hn

dR(X/S) := Hn
dR(X/S, (OX , d)).

Remark 13.3. For S = Spec(k), Hn
dR(X/k) satisfies some usual cohomology properties, including Poincare duality,

Kunneth property, and a cycle class map Zi(X) → H2n(X/k). When k has characteristic 0, X 7→ H∗
dR(X/k) gives a

Weil cohomology theory ([Sta24, Tag 0FWC]).

Lemma 13.4. Let A be an abelian category with countable direct sums and enough injectives. Given a left
exact functor T : A → B and a complex K• of objects in A with a filtration

· · · ⊇ F i(K•) ⊇ F i+1(K•) ⊇ · · · ,

whose graded pieces griKn = 0 for |i| sufficiently large, we have a spectral sequence Ep,q1 converging to
Rp+qT (K•), where

Ep,q1 = Rp+qT (grpK•)

and differential d : Ep,q1 → Ep+1,q
1 coming from the boundary map in the long exact sequence coming from

applying RT to
0→ grp+1(K•)→ F pK•/F p+2K• → grp(K•)→ 0

We get an induced filtration on RnT (K•) by setting F iRnT (K•) to be the image of

Rqπ∗(F
iK•)→ Rqπ∗(K

•).

23Note this complex is not simply the tensor product of the de Rham complex Ω•
X/S

with E, as the differentials depend on

the connection ∇.
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Definition 13.5. For any complex K•, one can define the so-called “stupid filtration” by

F i(Kj) =

{
0 j < i

Kj j ≥ i

The Hodge-to-de Rham spectral sequence is the spectral sequence Ep,qr computing Riπ∗(Ω
•
X/S) via Lemma

13.4 using the stupid filtration. The induced filtration F on Hi
dR(X/S) = Riπ∗(Ω

•
X/S) is called the Hodge

filtration.

We can compute the E1-page of the Hodge-to-de Rham spectral sequence explicitly:

Ep,q1 = Rp+q(grp(Ω•
X/S)) = Rp+qπ∗(Ω

p
X/S [−p]) = Rqπ∗(Ω

p
X/S).

In our setting, we cannot take the complex conjugate of the Hodge filtration F to obtain another filtration
of Rqπ∗(Ω

•
X/S). However, we do have the following notion:

Definition 13.6. The conjugate spectral sequence is the “second spectral sequence of hypercohomology”

conE
p,q
2 := Rpπ∗(Hq(Ω•

X/S)) =⇒ Rp+qπ∗(Ω
•
X/S)

The induced filtration Fcon on Rp+qπ∗(Ω
•
X/S) is called the conjugate filtration.

We will see later why this is some sort of analogue of the complex conjugate of the Hodge filtration in
the complex-analytic setting.

13.2 Gauß–Manin Connection

In the complex analytic setting, given a smooth map π : X → S and (E ,∇) ∈ MICan(X), there is a connec-
tion on Riπ∗E called the Gauß–Manin connection. We describe an algebraic analogue of the Gauß–Manin
connection and prove that it satisfies Griffiths transversality.

Suppose we have smooth maps

X

S

T

π◦f

π

f

The Gauß–Manin connection ∇GM on Riπ∗E will give a commutative diagram of functors

DMIC(X/S)

DMIC(X/T ) DMIC(S/T )

DMIC(T/T )

(Rπ∗,∇GM)

R(π◦f)∗
Rf∗
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where DA denotes the derived category of A. As a special case, we obtain a “Leray” spectral sequence

Ep,q1 = Hp
dR(S/T, (H

q
dR(X/S),∇GM)) =⇒ Hp+q

dR (X/T ).

To construct ∇GM, recall the exact sequence

0→ π∗Ω1
S/T → Ω1

X/T → Ω1
X/S → 0. (3)

Exactness on the left follows from smoothness of X → S ([Sta24, Tag 06B6]). We define the filtration
GiΩnX/T to be the image of

π∗ΩiS/T ⊗OX
Ωn−iX/T → ΩnX/T

Using (3), one can show that graded piece of this filtration is

griG ΩnX/T = π∗ΩiS/T ⊗OX
Ωn−iX/S .

Now, the spectral sequence induced via Lemma 13.4 by this filtration has E1-page

Ep,q1 = Rp+qπ∗ gr
p
G Ω•

X/T = Rp+qπ∗(π
∗ΩpS/T ⊗OX

Ω•−p
X/S)

∼= ΩpS/T ⊗OS
Rqπ∗(Ω

•
X/S) = ΩpS/T ⊗OS

Hq
dR(X/S),

where the middle isomorphism is the projection formula (which is allowed because π∗ΩpS/T is locally free).

The Gauß–Manin connection ∇GM is defined to be the map

Hq
dR(X/S) = E0,q

1
d−→ E1,q

1 = Ω1
S/T ⊗OS

Hq
dR(X/S).

In fact, the associated de Rham complex Ω•
S/T ⊗OS

Hq
dR(X/S) is equal to the complex E•,q

1 .

Theorem 13.7 (Griffiths transversality). We have ∇GM(F iHq
dR(X/S)) ⊆ Ω1

S/T ⊗OS
F i−1Hq

dR(X/S).

Proof. Recall as stated in Lemma 13.4 that the differential ∇GM = d : E0,q
1 → E1,q

1 is obtained by taking
the boundary map in the long exact sequence coming from applying Rπq∗ to

0 gr1G(K
•) G0K•/G2K• gr0G(K

•) 0

0 π∗Ω1
S/T ⊗OX

Ω•−1
X/S G0Ω•

X/T /G
2Ω•

X/T Ω•
X/S 0

We have the following subcomplex of the above complex:

0→ π∗Ω1
S/T ⊗OX

F i−1Ω•−1
X/S → F i(G0Ω•

X/T /G
2Ω•

X/T )→ F iΩ•
X/S → 0.

Applying Rqπ∗ and looking at the connecting homomorphisms, we get the commutative diagram

F iHq
dR(X/S) Ω1

S/T ⊗OS
F i−1Hq

dR(X/S)

Hq
dR(X/S) Ω1

S/T ⊗OS
Hq

dR(X/S).

∂

∇GM

This gives the desired result.
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13.3 Characteristic p

We now work exclusively in characteristic p. Suppose S is a characteristic-p scheme, i.e. pOS = 0, and
let π : X → S be smooth and proper. Recall that for any characteristic-p scheme T , we have an absolute
Frobenius morphism FT : T → T , defined by taking the underlying map of topological spaces to be the
identity, and defining the map on OT to be a 7→ ap.

Define X(p), σ, π(p) to be the fiber product

X(p) X

S S.

σ

π(p) π

FS

Using that π ◦FX = FS ◦π, we get an induced map F : X → X(p), the relative Frobenius morphism, making

X

X(p) X

S S.

FX

π

F

σ

π(p) π

FS

commute. When writing X/S, we mean the morphism π : X → S, and when writing X(p)/S, we mean the
morphism π(p) : X(p) → S.

While the complex F∗Ω
•
X/S a priori only has OS-linear maps, note that for f ∈ OX , we have

d(σ#(f)ω) = d(fpω) = d(fp) ∧ ω + fpdω = fpdω = σ#(f)dω,

and so F∗Ω
•
X/S is a complex of OX(p) -modules. Moreover, we can explicitly describe Hi(F∗Ω

•
X/S) via the

Cartier isomorphism:

Theorem 13.8 ([Kat72, Proposition 2.1.1]). For each i, there is a unique isomorphism

C−1 : ΩnX(p)/S → H
n(F∗Ω

•
X/S)

called the Cartier isomorphism, such that
C−1(1) = 1

C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ)

C−1(dσ−1(x)) = [xp−1dx]

Using this, we are able to give a different form of the E2-page of the conjugate filtration:

Corollary 13.9. The Cartier isomorphism C induces an isomorphism of OS modules

conE
a,b
2 = Raπ∗Hb(Ω•

X/S)
∼−→ Raπ

(p)
∗ (σ∗ΩbX/S)

Proof. Using that F is a homeomorphism, we have the following isomorphisms:

Raπ∗Hb(Ω•
X/S) = Ra(π

(p)
∗ F∗)Hb(Ω•

X/S)

∼= Raπ
(p)
∗ Hb(F∗Ω

•
X/S)

C∼= Raπ
(p)
∗ ΩbX(p)/S

∼= Raπ
(p)
∗ σ∗Ω•

X/S .

52



If FS is flat or the Raπ∗(Ω
b
X/S) are flat, flat base change and the above give

conE
a,b
2
∼= Raπ

(p)
∗ σ∗ΩbX/S

∼= F ∗
SR

aπ∗Ω
b
X/S .

Theorem 13.10 ([DI87, Corollaire 3.7]). Assume S lifts to S̃ flat over Z/p2 and X(p) lifts to a smooth

morphism over S̃. Then τ<pF∗Ω
•
X/S is decomposible. Each choice of X̃(p) → S induces a quasi-isomorphism⊕

i<p

ΩiX(p)/S [−i]
C∼=
⊕
i<p

Hi(F∗Ω
•
X/S)[−i]→ F∗Ω

•
X/S .

In the statement of the Theorem, the τ<p refers to the truncation of complexes, defined for a complex
K• with differentials d• by

τ<n(K
•)i =


Ki i < n

ker(dn) i = n

0 i > n.

From this result, one obtains the following on degeneration of the Hodge-to-de Rham spectral sequence in char-
acteristic p:

Corollary 13.11. If S = Spec(k) with k perfect, dim(X) < p, and X lifts to W2(k), then the Hodge-to-de Rham
spectral sequence Ep,q

1 = Hq(X,Ωp
X/k) =⇒ Hp+q(X,Ω•

X/k) degenerates at the E1 page.

We also have a theorem on the degeneration of the conjugate spectral sequence:

Theorem 13.12 ([Kat72, Proposition 2.3.2]). If Raf∗(ΩX/S) is locally free of finite rank and the Hodge-to-de Rham

spectral sequence degenerates at the E1-page, then the conjugate spectral sequence conE
a,b
2 =⇒ Ra+bπ∗(Ω

•
X/S)

degenerates at the E2-page.

Assume that S = Spec(k), k a field, and that both spectral sequences degenerate. The degeneration of the Hodge
spectral sequence gives

gra(Hn(X,Ω•
X/S)) ∼= Hn−a(X,Ωa)

and degeneration of the conjugate spectral sequence gives

gracon(H
n(X,Ω•

X/S)) ∼= F ∗
kH

a(X,Ωn−a
X/k ).

Hence
gracon H

n(X,Ω•
X/k) ∼= F ∗

k grn−a Hn(X,Ω•
X/k).

Viewing Fk as an analogue of complex conjugation, we see that the conjugate filtration in this setting behaves like
the conjugate of the Hodge filtration in the complex analytic setting.

One can also use the degeneration of the Hodge-to-de Rham spectral sequence in characteristic p to show degen-
eration in characteristic 0:

Theorem 13.13. Suppose S has characteristic 0 and π : X → S is smooth and proper. Then the Hodge-to-de Rham
spectral sequence Ep,q

1 = Hq(X,Ωp
X/S) =⇒ Hp+q(X,Ω•

X/S) degenerates at page 1.

This was originally proven using complex analytic techniques.

13.4 p-curvature

Suppose f : S → T is smooth and (E ,∇) ∈ MIC(S/T ). A connection ∇ : E → Ω1
S/T ⊗OS

E can equivalently

be thought of as a map ∇ : Der(S/T )→ Endf−1OT
(E) satisfying

∇(D)(fe) = D(f)e+∇(D)e

for f ∈ OS , e ∈ E and
∇(gD) = g∇(D),

for g ∈ OS . This is done by setting ∇(D) equal to the composition

E ∇−→ Ω1
S/T ⊗OS

E D⊗1−−−→ E .
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Definition 13.14. Assume pOT = 0. We define the p-curvature associated to a connection ∇ as the map

ψ∇ : Der(S/T )→ EndOS
(E)

given by D 7→ ∇(D)p −∇(Dp).

Note that ψ∇(D) is indeed OS-linear as

ψ∇(D)(fe) = ∇(D)p(fe)−∇(Dp)(fe) = Dp(f)e+ f∇(D)p(e)− (Dp(f)e+ f∇(Dp)(e)) = fψ∇(D)(e).

Remark 13.15. The map ψ∇ itself is not OS-linear, but one can compute that

ψ∇(gD) = ∇(gD)p −∇(gpDp) = gpψ∇(D).

Thus, the p-curvature can alternatively be thought of as a map ψ∇ : F ∗
SDer(S/T )→ EndOS

(E) or ψ∇ : E →
F ∗
S(Ω

1
S/T )⊗ E .

We say that the p curvature of (E ,∇) is nilpotent if there exists a filtration of E such that the p-curvature is

0 on the graded pieces. It is a fact that the Gauß–Manin connection∇GM on conE
a,b
2 = Raπ∗(Hb(Ω•

X/S)) =⇒
Ra+bπ∗Ω

•
X/S has p-curvature 0 [Kat70, Theorem 7.4]. When the conjugate spectral sequence degenerates,

such as in the hypothesis of Theorem 13.12, this then says that the Gauß–Manin connection has p-curvature
0 on the graded pieces of the conjugate filtration, and is therefore nilpotent.

Now in this same setting, because

ψ∇GM(F aconR
nπ∗Ω

•
X/S) ⊆ F

∗
S(Ω

1
S/T )⊗ F

a+1
con R

nπ∗ΩX/S ,

we get an induced map

graconR
nπ∗(Ω

•
X/S)

ψ∇GM−−−−→ F ∗
S(Ω

1
S/T )⊗ gra+1

con Rnπ∗(ΩX/S).

Theorem 13.16 ([Kat72, Theorem 3.2]). Assuming the hypothesis of Theorem 13.12, one has a commutative
diagram

graconR
nπ∗(Ω

•
X/S) F ∗

S(Ω
1
S/T )⊗ gra+1

con Rnπ∗(Ω
•
X/S)

F ∗
S(R

aπ∗Ω
n−a
X/S) FS(Ω

1
S/T )⊗ F

∗
S(R

a+1π∗Ω
n−a−1
X/S )

ψ∇GM

∼

−F∗
S (ρ)

∼

where ρ is the Kodaira-Spencer mapping, and the vertical isomorphisms are induced by the Cartier isomor-
phism.24

24Note that in [Kat72, Theorem 3.2], the bottom arrow is (−1)n−a+1F ∗
S(ρ), but there seems to be a sign error.
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14 Nonabelian cohomology and applications, lecture 4. Speaker:
Daniel Litt. Notes by William C. Newman.

The following is the analogue of the Hodge conjecture/Tate conjecture for algebraic de Rham cohomology:

Conjecture 14.1 (Ogus Conjecture). Suppose R ⊆ C is finitely generated over Z. Let K = Frac(R). For
X/R a smooth proper scheme, we have that the image of the cycle class map Zr(XK)⊗ZK → H2r

dR(XK/K)
is

spanK(ξ ∈ H2r
dR(X/R)|ξ mod p ∈ F rconH2r

dR(Xp/κ(p)), p ∈ U cl, U ⊆ Spec(R) a dense open}

Now, we set up a nonableian version of the Ogus conjecture, due to André. Suppose k has characteristic p
and X/k is smooth. For a vector bundle E on X with connection ∇, the condition that ∇ is flat is equivalent
to the associated map

∇ : TX → Endk(E)
respecting the Lie bracket, where the Lie bracket on the right is the commutator of composition. In char-
acteristic p, raising a derivation to the p-th power gives another derivation. As p-curvature is defined to
be

ψ∇ : F ∗
XTX → EndOX

(E)
v 7→ ∇(v)p −∇(vp),

(see Remark 13.15) we can view p-curvature as a measure of the failure of ∇ to respect the p-th power
operation.

Conjecture 14.2 (Non-abelian Ogus Conjecture, André). Suppose R ⊆ C is finitely generated over Z. For
X/R a smooth proper scheme, and (E ,∇) ∈ MIC(X/R), we have that (E ,∇) is of geometric origin if and
only if for all p ∈ U cl ⊆ Spec(R) a dense open, the p-curvature of (E ,∇) mod p is nilpotent.

Remark 14.3. The forward implication is true because the p-curvature of ∇GM vanishes on grFcon
(E ,∇).

Remark 14.4. As in the case of the Non-abelian Hodge conjecture and the Non-abelian Tate conjecture, one
can give an equivalent statement of the Ogus conjecture that makes it look very similar to the non-abelian
version.

The following conjecture describes when (E ,∇) ∈ MIC(X/R) is not just of geometric origin, but when it
trivialized on an a finite étale cover, i.e. when it is a summand of π∗OY , for finite étale π : Y → X.

Conjecture 14.5 (Grothendieck-Katz p-Curvature Conjecture). Suppose X/R is smooth, for R ⊆ C is a
finitely generated subring, and (E ,∇) ∈ MIC(X/R). Then (E ,∇)C is trivialized over a finite étale cover if
and only if for all p ∈ U cl, U ⊆ R a dense open, the pullback of (E ,∇) along Specκ(p)→ Spec(R), (E ,∇)p,
has zero p-curvature.

Remark 14.6. We have that (E ,∇) ∈ MIC(X/C) is trivialized on a finite cover exactly when the solutions
to the corresponding differential equation have finitely many branches, i.e. are algebraic functions. Thus,
this conjecture predicts exactly when the solutions to linear differential equations over C are algebraic.

Example 14.7. We consider the differential equation ( ddz −
a
z )f = 0 on A1

C \ 0, for a ∈ C.
Take a ∈ C, and set R = Z[a], X = A1

R \ {0}, and consider E = OX , ∇ = d− adz
z . The complex solutions

to ∇ = 0 are constant multiples of za, so (E ,∇)C is trivialized over a finite étale cover if and only if a ∈ Q.
Next, we compute the p-curvature. Take p ∈ Spec(R)cl lying over p ∈ Spec(Z). Using that ( ddz )

p = 0 in
characteristic p, we have

ψ(
d

dz
)(f) = ∇( d

dz
)p(f)− 0 = (

d

dz
− a

z
)p(f)

Evaluating at f = zn, we get

ψp(
d

dz
)(zn) = (n− a)(n− a− 1) . . . (n− a− p+ 1)zn−p
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For this to be 0, we must have n− a− k mod p to be zero, for some k ∈ {0, . . . , p− 1}. In other words, since
a generates Fp/Fp, this is zero if and only if Fp = Fp.

If a were transcendental over Q, the only primes p ∈ Spec(R)cl where Fp = Fp are those of the form
(a − i, p) for i ∈ Z, so no such open dense U ⊆ Spec(R) exists. For a algebraic over Q, we can assume a is
integral by multiplying it by an appropriate integer N ∈ Z. Note the Chebatarov density theorem restricts
the density of primes for which Fp = Fp for all primes p over p for deg(a) > 1. Hence, if the p-curvature is
zero at closed points of a dense open U ⊆ Spec(R), we must have deg(a) = 1, i.e. a ∈ Q.

Here are some known cases of this conjecture:

• (Katz) In the geometric setting, i.e. for (E ,∇) = (Riπ∗Ω
•
Y/X ,∇GM), for π : Y → X smooth and

projective (though this is still open for summands of (Riπ∗ΩY/X ,∇GM)).

• (André, Bost, Chudnovsky-Chudnovsky) When (E ,∇) has solvable monodromy (think ∇ = ( ddz −
A)f(z), where A is upper triangular.

• (Esnault–Groechenig) Rigid Z-local systems

• (Farb-Kisin) True for certain locally symmetric varieties in the superrigid regime.

14.1 (Non-abelian) GM Connections

We discuss Katz’s aforementioned proof of the geometric case, as it will help motivate what follow.

Theorem 14.8 (Katz). Suppose R ⊆ C is finitely generated over Z, X/R is smooth, and π : Y → X is
smooth and proper. Then the p-curvature conjecture holds for (Riπ∗ΩY/X ,∇GM).

Proof Idea. Write (Riπ∗ΩY/X ,∇GM) = (E ,∇). This comes equipped with the Hodge filtration, F . We
consider the induced map on the associated graded

gri∇ : gri E → gri E ⊗OX
Ω1
X .

We claim that it is enough to show that this map is zero. Using either non-abelian Hodge theory or using
polarization with the fact that ∇GM preserves the Hodge filtration under these hypotheses, one sees that
(E ,∇) has unitary monodromy. So the corresponding representation lands in a compact group. We also
know that the monodromy is discrete: it factors through GLn(Z) because it has the structure of a Z-local
system. Thus, the image of the monodromy representation is finite.

To see that gri∇ = 0, recall that, mod p we have the diagram

gracon(Ep) F ∗
S(Ω

1
Xp/κ(p)

)⊗ gra+1
con (Ep)

F ∗
abs(Ep) Fabs(Ω

1
Xp/κ(p)

)⊗ F ∗
abs(Ep)

ψ∇GM

∼

F∗
abs(ρ)

∼

By hypothesis, the top map is zero, and so the bottom map must be zero as well. This bottom map is
essentially the pull back of gri∇GM mod p. Since we have that gri∇GM is zero mod p on an open dense
subset, it must be identically zero.

We now define relative versions of moduli spaces of local systens. Given π : X → S a smooth and proper
map of complex manifolds, s ∈ S, and a universal cover S̃ → S, define

MB(X/S) := (MB(Xs)× S̃)/π1(S, s).

Note this is independent of s ∈ S, because all fibers of π are diffeomorphic.
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Definition 14.9. Let Y → W be a smooth map (either in the algebraic or analytic setting). A horizontal
foliation on Y/T is a subbundle F ⊆ TY closed under the Lie bracket, such that F → π∗TW is an isomorphism.
A leaf of F is a map f : Z → Y such that the induced map df : TZ → f∗TY factors through f∗F , with
TZ → f∗F an isomorphism.

Remark 14.10. Horizontal foliations should be thought of as non-linear differential equations, and leaves
should be thought of as solutions. If Y/W is a vector bundle, a foliation satisfying some mild hypothesis is
the same as the data of a connection.

If Y = W × Y ′, we can view π∗TW as a sub-bundle of TY , giving a horizontal foliation. Thus, we have
a foliation on MB(Xs) × S̃ → S̃. This foliation descends when quotienting by π(S, s), giving a horizontal
foliation on (the smooth locus of) MB(X/S)→ S.

We also have a relative MdR(X/S) → S, which works in either the algebraic or analytic setting. Its
fiber over s ∈ S parameterizes (E ,∇) ∈ MIC(Xs). By the Riemann-Hilbert correspondence, in the complex
analytic setting, this space should be isomorphic to MB(X/S)→ S, giving rise to a horizontal foliation (on
the smooth locus). It is a fact that this horizontal foliation always exists on MdR(X/S)→ S in the algebraic
setting as well. It is called the Gauss-Manin foliation, denote by FGM.

Remark 14.11. The more correct way of saying the above is that, viewing MdR(X/S) → S as a stack, it
is a crystal.

The p-curvature conjecture predicts when the solutions to a linear differential equation are algebraic. We
can ask the analogous question in this setting:

Question 14.12. When are the leaves of a foliation algebraic?

Example 14.13. Consider P1
Confn(P1) \D → Confn(P1). Inside of the associated MdR, we have the locus of

Fuchsian ODES, which are those of the form (On,∇) with ∇ = d+
∑
i

Bi

z−xi
d. On this locus, FGM is given

by the Schlesinger equations (see Answer 2.6).

Conjecture 14.14 (Ekedahl-Shepherd-Barron-Taylor, [ENSBT99]). All leaves of a horizontal foliation are
algebraic if and only if the foliation is closed under taking p-th powers mod p for almost all p.

Remark 14.15. This conjecture has been studied by Menzies and Papaioannou.

Instead of asking for all of the leaves of a horizontal foliation to be algebraic, one could instead ask when
the leaf through a particular point of a foliation is algebraic. The following conjecture addresses this question
for the foliation on MdR(X/S).

Conjecture 14.16. Let R ⊆ C be finitely generated over Z, S/R smooth, s ∈ S(R), and π : X → S
smooth and proper. Take (Xs, E ,∇) ∈ MdR(X/S)(R). The leaf through (Xs, E ,∇)C is algebraic if and
only if the formal leaf through (Xs, E ,∇) is p-integral to order ω(p2) (i.e. if the formal leaf has the form
(
∑∞
i=0 a1,it

i, . . . ,
∑∞
i=0 an,it

i) and the function f(p) is defined to be the smallest i such that aj,i has a p in
the denominator for some j, then f(p) is eventually greater than εp2 for all ε > 0).

Theorem 14.17 (Lam-L). This is true if (E ,∇) = (Riπ∗ΩY/Xs
,∇) for some Y → X smooth and proper.

Proof Idea. We have (E ,∇) ∈ MIC(Xs), which we know has a Z-variation of Hodge structure. We want to
show that (E ,∇) extends to a Z-variation of Hodge structure on a general fiber of π. To do this, we show
that the filtrations F, Fcon extend to a formal neighborhood. This is done iteratively, using the characteristic
p version of non-abelian Hodge theory due to Ogus-Vologodsky.
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15 More on variations of Hodge structures, period maps. Speaker:
Andy Jiang. Notes by Kyle Binder

15.1 Polarized Variation of Hodge Structure

Definition 15.1. A C-Variation of Hodge Structure (C-VHS) of weight n on a complex manifold S is a
C-local system H whose associated vector bundle E := H ⊗C C∞ has a Hodge decomposition of smooth
bundles

E =
⊕
p+q=n

Ep,q

satisfying the following: Writing the associated integrable connection

∇ : E −→ E ⊗A1

into its holomorphic and anti-holomorphic parts

∇ = ∂ + ∂,

1. The filtration
F pE :=

⊕
a≥p

Ea,b

must be holomorphic (i.e., it is ∂-stable).

2. The filtration
F
q
E :=

⊕
b≥q

Ea,b

must be anti-holomorphic (i.e., it is ∂-stable).

3. The following version of Griffiths Transversality holds:

∂ : F pE −→ F p−1E ⊗A1,0

∂ : F
q
E −→ F

q−1
E ⊗A0,1.

Remark 15.2. If H is an irreducible local system which underlies a C-VHS, then the integers

{a : Ea,b ̸= 0}

must be a set of consecutive integers.

Proof. Suppose for contradiction we have a C-VHS coming from H with Ea,b = 0 even though Ea−j,b+j ̸= 0
and Ea+k,b−k ̸= 0 for some j, k ∈ N. This means we have the decomposition

· · · ⊕ Ea−1,b+1 ⊕ 0⊕ Ea+1,b−1 ⊕ · · ·

Then the subbundle
E1 :=

⊕
p≥a+1

Ep,q

is ∂-stable and moreover is ∂-stable because of Griffiths Transversality and the vanishing of Ea,b. Therefore
(E1,∇|E1

) is a submodule with integrable connection of (E,∇).
The same proof shows for

E2 :=
⊕
p≤a−1

Ep,q

that
(
E2,∇|E2

)
is a submodule with integrable connection of (E,∇).

But this shows (E,∇) decomposes non-trivially as the direct sum of
(
E1,∇|E1

)
and

(
E2,∇|E2

)
which

contradicts the irreducibility of H.
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Definition 15.3. A polarization of a C-VHS is a map of C-VHS

ψ : H ⊗C H → C(−n)

such that ∑
ip−qψ ⊗ C∞|Ep,q

is a hermitian metric.

Here we recall C(−n) is a weight 2n VHS concentrated in the (n, n)-th component where it is (2πi)nC.
The fact that ψ is a map of C-VHS implies the smooth bundles Ep,q are pairwise orthogonal with respect
to this metric:

Ep,q ⊥ψ⊗C∞ Ep
′,q′ for p ̸= p′.

Note that on each fibre ψ induces a non-degenerate hermitian form; this is not necessarily positive definite.
Real variations of Hodge structures (R-VHS) are defined similarly. They are the C-VHS which are

invariant under conjugation. Then a polarization of an R-VHS is a polarization of C-VHS which respects
this conjugation.

Remark 15.4. Polarizations come up in the geometric case by way of the Hard Lefschetz Theorem: multiply
the two things together and multiply by enough powers of the Kähler form to integrate. Specifically the
Hard Lefschetz Theorem allows one to define the primitive cohomology; then the Hodge–Riemann relations
on the primitive cohomology shows how this integration yields a hermitian metric.

15.2 Theorem of the Fixed Part

For the following theorem, we restrict to the case of quasi-projective varieties even though the theorem holds
in the slightly more general context of a compact complex analytic space with some closed complex analytic
subspaces removed.

Theorem 15.5 ([CMSP17, Theorem 13.1.10]). Let S be quasi-projective and (H,Ep,q, ψ) a polarized C-VHS
on S. Suppose s ∈ H(S) is a global flat section of E. Then writing s =

∑
sp,q, where sp,q = s|Ep,q , each

sp,q is flat.

We omit the proof, but the idea is to verify it using induction on p by making an analytic argument using
plurisubharmonic functions.

Corollary 15.6. On a quasi-projective S, any irreducible C-local system H may be enhanced into a polarized
C-VHS in at most one way (up to tensoring with a C-VHS on a trivial local system).

Proof. If H underlies two different C-VHS, we will construct the internal hom between them and produce a
flat section of this which is in a pure Hodge component.

Suppose H1 := (H,Ep,q, ψ) and H2 := (H,E′p,q, ψ′) are two different polarized C-VHS. Consider the
internal hom of polarized C-VHS

H̃om (H1, H2) :=

(
H̃omC (H,H) , H̃om

(⊕
Ep,q,

⊕
E′p,q

)p′′,q′′
, ψ∨ ⊗ ψ′

)
.

This internal hom has an obvious non-zero flat section, id, given by the identity map on the underlying
local system H. Using the Theorem of the Fixed Part, we have

id =
∑

(id)
p,q

with (id)
p,q ∈ Hom(

⊕
E,
⊕
E′)

p,q
flat. Flatness and irreducibility ensures there is only one non-zero

component idp,q. This yields a polarized C-VHS on the trivial local system C and a map

C −→ H̃om (H1, H2)
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of C-VHS, because id is concentrated in a single Hodge component. This gives a non-zero map

C⊗H1 −→ H2

which is an isomorphism due to the irreducibility of local systems.

15.3 Period Domains

A period domain is roughly the moduli space of (polarized) Hodge structures on a fixed C-vector space with
fixed weight and Hodge numbers (and polarization). For details of the following, see [CMSP17, Section 4.4].

We restrict our discussion to the case of period domains for polarized C-VHS. For a vector space H,
weight n, polarization

ψ : H ⊗H −→ C,

and Hodge numbers, there is a complex analytic space D such that a map

S −→ D

from S a complex manifold is the data of a polarized C-VHS (minus the condition of Griffiths Transversality)
with underlying trivial local system H with prescribed weight n, polarization ψ, and Hodge numbers.

For a rough idea of why such a space exists, once we fix ψ, the Ep,q of a VHS must be orthogonal to one

another, and this says the F pE and F
n−p

E are orthogonal complements to one another. Therefore the data

of the F
n−p

E is determined by that of F pE. This also determines the data of the Ep,q. So the data of the
C-VHS is completely determined by the data of the flag {F pE}p with the correct rank given by the Hodge
numbers. For an open subset of flags, this will give rise to a polarized C-VHS. The only condition such a
flag may break is the condition for the Hermitian metric, but its failure is a closed condition. Therefore this
period domain D will be an open subset of a flag variety D∨. This gives D a complex structure.

For the case of R-VHS, we can also define a period domain. After complexification, we are in the case
of a C-VHS invariant under conjugation. So for the associated complex period domain D there is a real
analytic automorphism whose fixed points give the real period domain. Hence for the real period domain
we have to impose a closed condition (for being fixed under the automorphism) and then an open condition
(for satisfying the bilinear metric), while for the complex period domain we only have to impose the open
condition on the flag variety.

Note that the flag variety D∨ is the quotient of GLn (C) by a parabolic subgroup. Moreover, the unitary
group corresponding to the Hermitian form ψ acts transitively on the space of flags in D that gives rise to
a polarized Hodge structure. Therefore the period domain is a unitary group modulo the stabilizer of this
action.

Remark 15.7. This definition of period domain is only for trivial local systems. In the general case, even
the moduli space of local systems involves some stackiness. If we have a non-trivial local system, we can
pass to a cover where it is trivialized. Then this gives a map to the period domain. To remove ambiguity,
we can then get a map to the period domain modulo the image of π1(S).

15.4 Griffiths Transversality

Suppose x ∈ D ⊆ D∨ = GLn /P for some parabolic subgroup P . At this x, the tangent space of GLn, which
is the Lie algebra gln, maps to the tangent space TxD∨, and the kernel of this map is the Lie algebra Px of
the parabolic subgroup P . Then because D is an open in the flag variety D∨,

TxD = gl(H)/Px = End(H)/F 0 End(H),

where F 0 End(H) is coming from the Hodge structure given by x ∈ D.
To satisfy Griffiths Transversality, a map

S −→ D
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must have derivative
TS −→ F−1 End(H)/F 0 End(H).

From the data of the holomorphic part ∂ of the connection ∇ on E, we get a Higgs field by restricting
to the associated gradeds of the Hodge structure, and the Higgs field is equivalent to the data of the map of
tangent bundles if you have a variation of Hodge structures.

Recall ∇ = ∂ + ∂. Then
∂ : Ep,q −→

(
Ep−1,q+1 ⊕ Ep,q

)
⊗A1,0.

This implies the projection
σ : Ep,q −→ Ep−1,q+1 ⊗A1,0

is a Higgs field on (grF ) (E).
For a map S −→ D, this Higgs field encodes the data of the derivative of the period map. For a precise

statement, see [CMSP17, Lemma 5.3.2].

15.5 Finitude of Local Systems

Theorem 15.8 ([Del87, Théorème 0.5]). For a fixed smooth variety S and integer N , the number of iso-
morphism classes of dimension N Q-local systems which admit a polarized Z-VHS is finite.

Proof. For fixed Hodge numbers, polarization, and σ ∈ π1(S), there is a bound on coefficients of the matrix
of the monodromy action of σ which is uniform across the variation of Hodge structures ([Del87, Corollaire
1.8]). To see this, take a universal cover of S endowed with a metric so the map of the period domain
decreases distance. This yields the bound on coefficients.

Then one needs to show that the period domain (i.e., the choice of Hodge numbers) doesn’t matter for
this uniform bound ([Del87, Corollaire 1.9])25.

These bounds on entries of the matrices yield a bound on the trace ([Del87, Corollaire 1.10]).
Then we show we can choose finitely many σ ∈ π1(S) that determine a bound on the traces for all

elements of π1(S) ([Del87, Théorème 2.1]). As the traces are integral, this gives a finite number of traces
which can occur. For each choice, as these local systems are semi-simple, there is a unique local system
which has these traces.

Remark 15.9. The bounds this theorem gives depends on the variety S, but for fixed S, the proof gives an
effective way to get the bound.

25For given N , restrict to irreducibles, and use Remark 15.2 to show the non-zero Hodge numbers must be a consecutive
interval of integers. Then twist the weight so this interval begins at 0, whence it is obvious there are only finitely many choices
of Hodge numbers, so the bound can be made uniform across period domains.
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16 The p-adic Riemann-Hilbert correspondence, lecture 4. Speaker:
Alexander Petrov. Notes by Min Shi.

This talk will cover some relative p-adic Hodge theory (Faltings, Brinon, Scholze, Liu-Zhu, Diao). In the
following, K will denote a complete discrete valued field of characteristic 0 with a perfect residue field with
characteristic p.

16.1 Description of the relative de Rham functor

Let X be a smooth variety over K. We will sketch some ingradients in the construction of the relative de
Rham functor.

DdR : {Qp − local system on X} → {filtered vector bundle with flat connection on X} .

Assume X is proper, with rigid analytification Xan = ∪Sp(Ri). Then there are equivalences of categories:

{vector bundles on X} ∼= {vector bundles on Xan} ∼= {vector bundles on Sp(Ri) and some gluing data} ,

where the first isomorphism is rigid GAGA (using that X is proper).

Remark 16.1. The vector bundles on Sp(Ri) are just projective modules over Ri.

Example 16.2. X = P1
K = Spec(K[X]) ∪ Spec(K[X−1]), and the analytification Xan = Sp(K⟨x⟩) ∪

Sp(K⟨x−1⟩).

Let L be a Qp local system. Then L|Sp(R) is a representation of πét1 (R). Let R be the colimit of Ri where

Ri is a connected finite étale cover of R, and let R̂ be the completion of R. The relative de Rham functor is
defined as

DdR(L)R := (L
⊗
OBdR(R̂))

πét
1 (R)

for a suitable ”period sheaf” OBdR. OBdR(R̂) carries a π
ét
1 (R) action.

To understand DdR, we will roughly sketch some properties of OBdR(R̂). The first property is that

OBdR(R̂) has a filtration with gri ∼= OC(i) for another period sheaf OC, and this filtration is compatible
with the action of πét1 (R).

Remark 16.3. If R = K, so R̂ = C, then OC = C.

First guess: OC(R̂) = R̂, but it is not suitable, since it will not capture the following periods:

Example 16.4. Consider Kummer local systems over R = K⟨x±1
1 , ..., x±1

d ⟩, i.e. extensions:

0→ Qp(1)→ L→ Qp → 0 (4)

They are classified by Ext1πét
1 (R)(Qp,Qp(1)) = H1

ét(R,Qp(1)). We recall this identification: suppose

⟨e1, e0⟩ is a basis for L, where e1 is the image of a base element in Qp(1), and the image of e0 is a base
element for Qp. Then g.e1 = χ(g)e1, with χ the cyclotomic character and g.e0 = ae1 + e0 for some a ∈ Qp.
Then g → a is a 1-cocycle in H1

ét(π1(R),Qp(1)) ∼= H1
ét(R,Qp(1)). Denote the boundary map in the long exact

sequence induced from the Kummer sequence by κ : R× → H1
ét(R,Qp(1)). Denote by Li one representative

of the class [Li] such that [Li] = κ(xi).

Remark 16.5. These are of geometric origin, but they are not seen by our “first guess” for O.
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Correct answer: OC(R̂) = R̂[v1, ..., vd], where the action of πét1 (R) on vi is defined such that (e1
⊗
vi+

e0
⊗

1) ∈ (Li
⊗
OC(R̂))πét

1 (R), where ⟨e0, e1⟩ is a chosen basis for Li as in the discussion below (4).

Remark 16.6. This is the construction of OC in local coordinates. It glues and can be made functorial
and independent of coordinates. Then grOBdR sees the periods of all local systems of geometric origin. For
more details on OC, see [LZ17, Remark 2.1] and [Sch13, §6].

We do not construct OBdR.

16.2 Automatic de Rhamness of p-adic local systems

We return to the disccussion of the first lecture.

Conjecture 16.7 (The relative Fontaine-Mazur conjecture). Let S be a smooth variety over C. For a

semisimple Qp-local system L on S(C), L is arithmetic, i.e., there is some L̃ on S0/F , where F is some
finitely generated subfield of C, extending L, if and only if L is of geometric origin.

A basic question here is for arithmetic L to try to recover an integral variation of Hodge structure (a
Z-VHS). This question is wide open.

Remark 16.8. If L is irreducible, then for all other L̃′ on S0 such that L̃|S,F = L̃′|S,F , L̃′ = L̃
⊗
χ for

some χ : GF → Qp
×
, since we can look at the GF action on Homπ1(SF )(L̃, L̃′) ∼= Qp. Thus the topological

monodromy group mostly sees all Galois representation obtained by specializing a descent to F -points of S0.

Theorem 16.9. [Pet23,Theorem 1] Let X/K be a smooth variety and let L be a Qp local system on X such

that L|XK
is irreducible. Then there exists a character of the Galois group χ : GK → Qp

×
such that L

⊗
χ

is de Rham.

Let L be a de Rham local system onX. ThenDdR(L) is a vector bundle with filtration and flat connection.
To approach finding a Z-VHS in the setting of conjecture 16.7, we face a question of compatibility between
C-Riemann-Hilbert correspondence and p-adic Riemann-Hilbert correspondence.

Question 16.10 (Diao-Lan-Liu-Zhu). Choose K ↪→ C. Is (DdR(L)anC )∇=0 ∼= L|XC

⊗
Qp

C?

This question has a positive answer when L is of the form Rif∗Qp for some i, where f : X → S is a
smooth proper family of varieties. However, for general local systems L, this question is open, and it is
unclear whether this should hold for arbitrary de Rham L.

16.3 Some ideas in the proof

Let L be a Qp-local system on a smooth variety X over K. In lecture 3 we discussed the functors:

H : {Qp-local systems} −→


Higgs bundles M on XK∞ with
Higgs field θ :M →M

⊗
Ω1
XK∞

and an operator ϕ on M such that
θ ◦ ϕ = (ϕ− 1) ◦ θ



RH+ : {Qp-local systems} −→


vector bundles E on XK∞ [[t]]
with ∇geom : E → E

⊗
1
tΩ

1
XK∞

[[t]]

and an OXK∞
-linear operator ϕ : E → E commuting with ∇geom

and satisfying: ϕ(am) = aϕ(m) + t∂t(a)m, a ∈ OXK∞
[[t]], m ∈ E


These two functors are related to each other by RH+(L)/t ∼= H(L).
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Now, L is de Rham if and only if rkOXK∞
RH+L[1/t]ϕ=0 = rkQpL. If this holds, then the following

condition holds:

the action of ϕ on H(L) is semi-simple and has integer eignenvalues. (5)

This condition is slightly weaker than than the condition that L is de Rham, because even in classical
p-adic Hodge theory, condition 5 is the Hodge-Tate condition, which is weaker than the de Rham condition.

Theorem 16.11 (Shimizu). det(IdH(L) − ϕ · T ) ∈ H0(XK∞ ,OXK∞
)[T ] has constant coefficients, i.e., it is

an element of K[T ].

This implies that H(L) admits a generalized eigenspace decomposition: H(L) =
⊕

λ∈K H(L)λ. By the
condition on θ and ϕ, θ maps H(L)λ to H(L)λ+1

⊗
Ω1
XK∞

.

For the rest of this notes, we explain how a local system can be twisted so that the condition (2) holds.
For simplicity, assume that X/K is a proper variety. Let L1,L2 be two Qp local systems. Then

HomXK
(L1,L2)

⊗
Qp

C ∼= HomXK∞ ,θ(H(L1), H(L2))
⊗
K∞

C

naturally. Assume L is a Qp local system such that L
⊗

Qp
Qp|XK

is irreducible. Then by Schur’s

lemma, EndXK
L = Qp · Id. By the natural isomorphism above, EndXK∞ ,θH(L) = K∞ · Id. Therefore the

eigenvalues of ϕ belong to a single coset of K/Z, because otherwise this will contradict how θ interacts with
the generalized eigenspace decomposition. Denote this single coset by a+Z, for some a ∈ K. The next step

is to find a character χ : GK → Qp
×
such that the associated Higgs bundle H(χ) bears a ϕ-action such that

ϕ acts by −a. χ can be a suitable power of χcyc. A little more linear algebra shows ϕ is also semisimple and
has integer eigenvalues.

Remark 16.12. Compare the above discussion with that in Andy’s talk. A refined version of this argument
also gives the de Rham result.
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