Local Systems in Algebraic Geometry 2024

Abstract

These are the lectures notes of the instructional conference “Local Systems in Algebraic Geometry”
held May 7-10, 2024 at Ohio State University (organized by Stefan Patrikis, Dave Anderson, Angelica
Cueto, and Jennifer Park). The conference featured two mini-courses of four lectures each given by
Daniel Litt (“Nonabelian cohomology and applications”) and Alexander Petrov (“The p-adic Riemann-
Hilbert correspondence”), and supplemented by background lectures given by PhD student and postdoc
participants. For n = 1...8, talk (i.e., section in this document) 2n — 1 is the background lecture for
talk 2n, which may also rely on some earlier talks.

The conference and subsequent mathematical retreat in which the students worked on the notes was
funded by an NSF Research Training Grant, DMS-2231565, and by Ohio State’s Mathematics Research
Institute.

For more information about the conference and retreat, see https://people.math.osu.edu/cueto.5/
RTG/rtg24/RTGConference24.html. For lecture videos from the conference, see https://www.youtube.
com/@0SU_RTG_AGNT.
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1 The classical Riemann-Hilbert correspondence. Speaker: Chris-
tian Klevdal. Notes by Yifei Zhang and Jake Huryn

Let X be a connected manifold, and let C be the constant sheaf on X attached to C. More concretely we
have
C(U) :={f: U — C|f locally constant}.

Definition 1.1. A local system on X is a sheaf of C vector spaces F such that F|y ~ C" for U in some
open cover of X. The category of local systems on X is denoted by Locc(X).

Example 1.2. e Let f:Y — X be a smooth proper submersion. By Ehresmann’s theorem, f is a
locally trivial fibration, so R f,.C is a local system on X.

e Let A* C C be a punctured open disk. Let f : E — A* be the family of elliptic curves where the
fibre over ¢ € A* is E, := C*/¢Z (this is isomorphic to C/(Z + tZ) via the exponential map). Let
L := (R'f.C)Y. We have L, ~ H,(E,,C). This is generated by e1,es where e; is a loop that lifts to
the loop around 0 in C* and ey is a loop that lifts to a loop from 1 to q.

Let F be a local system on X, and let v : [0,1] — X be a path, then we have a canonical isomorphism
Fy0) = Fy1) as both of them are naturally isomorphic to H°([0,1],~v*F). Using that a locally constant
sheaf on a simply connected space is constant, this induces a monodromy representation

71 (X, z) = GL(F,).

Example 1.3. For L as above, we get m(A*) ~ Z — GL2(C). The generator v acts on H;(E,,C) by
sending e; to e; and e to e + eo

Theorem 1.4. The following is an equivalence of categories

Loce(X) —=— Rep(m (X, x))

Fr—mmm F,

Remark 1.5. Locg(X) is a purely topological invariant of X. The Riemann Hilbert correspondence will
relate this to a category that is defined by the analytic structure of X.

Now let X be a complex manifold.

Definition 1.6. A module with integrable connection (MIC) on X is a pair (£,V) where £ is a coherent
sheaf with respect to Ox, the sheaf of holomorphic functions, and

V:E-ERQ

satisfies the Leibniz rule: V(fs) = s®@df + fV(s) for f € Ox(U),s € £(U), and the flatness condition:
V2: € = E®Q% (given by V composed with the induced map from £ @ Qx to € ® Q% sending s ® w to
V(s) ANw+ s ® dw) is 0.

Example 1.7. e Take X = C*, and let a € C. Consider (Ox,V,) with V. f =df — ad—j. This gives a
module with integrable connection.

e Let V € Locg(X). Then (V ®c Ox, V) with V =1®&d is an MIC because d* = 0.
Let X C P!(C) be open, and let
d - .
ZF_A
F=AGf
be a rank-n homogeneous linear system of differential equations. Then there is an associated connection

(0%, V) with V(f) = df— A(z)fdz. The solutions to this system of equations correspond to global sections
of (0% )V=0 :=ker(V).



Remark 1.8. An equation like f(™) 4+ a,,_1(2)f1) 4+ ...+ ag(2) = 0 is encoded by the companion matrix
associated to the polynomial 2™ + a,_1(2)z" ! + -+ + ap(2).

Theorem 1.9. We have an equivalence of categories

MICC (X) —— LOC(C (X)

(€, V) ——— V70,

and the quasi-inverse is given by V — (V¥ ®@c Ox, V).

This is the analytic RH correspondence. Main point of the proof: Locally (€, V) looks like a solution
to a differential equation, so £V=C is a local solution by existence and uniqueness for ODEs (by [Kat70,
Proposition (8.8)], MICs are vector bundles).

Now let X be a smooth variety over C. Then the category MIC(X) is defined in the same way, doing
everything with the algebraically defined sheaves. We have

MIC(X) sl Loce(X)

\/

MIC(X ™)

Question 1.10 (what should have been Hilbert’s 21st problem). Is sol essentially surjective?

Case 1: X proper. In this case Serré’s GAGA says Coh(X) — Coh(X*") is an equivalence of categories,
then so is MIC(X) — MIC(X"). (One has to be careful here: a connection is not O yan-linear but only C-
linear. One has to slightly reinterpret connections; see Daniel’s mathoverflow post [hl])

Case 2: X not proper. Fix j : X < X an open immersion with X smooth proper and X \ X = D a
strict normal crossing, which is guaranteed to exist by Hironaka’s resolution of singularity. This means
for any € X there is a neighborhood U C X of z and U — A" étale with D]y ~ V(t1---t)|y =
V(t1---tr) xan U (this says D|y is the pullback of union of some coordinate hyperplane in A™). We use the
sheaf of logarithmic differentials Qly(log D) C j.QL given by Qly(log D) restricted to U as above being free

dt dt
on {#7 7T:7dtk+la"' adtn}

Definition 1.11. 1. An MIC on X with log poles along D is (£, V) with £ € Coh(X) and with V: & —
E® Qly(log(D)) again satisfying the Leibniz condition and flatness condition.

2. The essential image of the restriction j* : MIC(X, D) — MIC(X) is MIC*¥(X), connection with
regular singularity at oo.

Remark 1.12. In the definition of MIC, the existence of such V forces £ to be locally free by Katz, but in
this definition, such V won’t guarantee £ to be locally free anymore.

Fact 1.13. MIC™#(X) does not depend on the the choice of X.
Example 1.14. o Vo(f) =df — a2 on C* has a regular singularity at co: if t = 271, dt/t = —dz/=.

e Consider L. on A* in the Example 1.2, (V, V) the associated MIC. V' is a free module that is globally
generated by e; ® 1,e; ® log(z) — ez ® 1. Then we let V be free of rank 2 on A with V[fy, fo] =
d[f1, f2] + [fadz/z,0] which has log pole at 0. We have that (V,V) is the restriction of (V,V) just
defined.

Theorem 1.15. Analytification is an equivalence of categories

MIC™8(X) — MIC(X ).



Key points of the proof: Given (Eun, Van) € MIC(X "), we want to extend it to MIC(X*", D*") (which
is defined similarly as in the algebraic setting and can be shown to be equivalent to MIC(X, D) by GAGA)
such that _

HO(YU’”,EGH)V:O e HO(Xan7gan)V:0'

This is called Deligne’s canonical extension. Since the category MIC has internal Hom, and the actual Hom
set is the global flat section of the internal Hom, this gives the fullness. It is faithful since the analytification
functor is faithful.

For essential surjectivity: Let’s assume for simplicity dim(X) = 1. Then we only need to extend along
the punctured disk to the whole disk and glue. On A*, we have the equivalence between MIC on A* and
representation of w1 (A*). Let’s say (Eqn, Van) corresponds to 71 (A*) — GL(E) which sends the generator
v to A. Choose B € End(FE) such that A = exp(2miB). Take &,, to be a free module on A with V
being v ® df — f(B(v) ® dz/z). Then the flat sections are ¢ - v where ¢” := exp(Blogz). Check that the
monodromy representation of this on A* is the same as (E4n, Van) : v - ¢° = Ag®. Now we can deanalytify.



2 Nonabelian cohomology and applications, lecture 1. Speaker:
Daniel Litt. Notes by Luke Wiljanen.

2.1 Pre—History: Non-abelian cohomology and examples
Question 2.1. Let X/K be a variety. How does the topology of X reflect its geometry? ...its arithmetic?
e Abelian: Let X/K be smooth and proper.

— K =C: For H]*Jodge(X), there is a Hodge structure and the Hodge conjecture.
— K finitely generated: For Hj ;. (X), there is a Galois action and the Tate conjecture.

— K finitely generated: For H}j,(X), there is a conjugate filtration, Hodge filtration, and the Ogus
conjecture.

e Relative abelian: Let X — S be smooth and proper. One can associate an abelian invariant Rz, A.
There is an action of m1(S,s) on (R'm.A)s. One can ask questions about it, and there are various
conjectures.

e Non-abelian: For X, we have 71(X). Since this is a complicated object, we slightly abelianize and
look at its representations Rep(71(X)). The idea is that questions we can ask in the abelian setting,
we can ask in this non-abelian setting, and vice versa.

e Relative non-abelian: For X — S smooth and proper and s € S. There is an exact sequence
7T1(X5) — ’/Tl(X) — ’/Tl(S,S) — ].,

and this induces an outer action m (.S, s) — Out(m(X;)). We get an action of w1 (S, s) on Rep(mi(X5s)).
We’ll study this non-abelian monodromy representation.

In this talk, we will consider X = PL\ D and P \ Dypniy — S = Conf” (CP') where Dy is a divisor
whose fiber over x1 + -+ + x, is {z1,..., T}
2.2 Projective Line Removing Some Points
Consider CP! \ {z1,...,7,}. Its fundamental group has a presentation
m(CP \ {21, 20 }) = (Yoo o [ 91 = i)
where ; comes from a loop around z;. From this presentation we have an identification

Hom(m (CP' \ D), GL,(0)) , {(A1,.., An) € GL(C)" | TT, Ai = id}

~ simultaneous conjugation

Finding such matrices Ay, ... A, which product to the identity is straight-forward since you can solve for
A, in terms of Aq,...,A,_1. The problem becomes more interesting when we impose some constraints.

Question 2.2. Fix conjugacy classes C1,...C, C GL,.(C).

1. (Existence) Does there exist Aq,..., A, € GL,(C) such that [[;_, A; = id and A; € C; for all 4?7
(Deligne—Simpson Problem)

2. (Uniqueness) When is a solution unique up to simultaneous conjugation? (If so, (Ai,...,Ay) is called
a “rigid tuple”, “rigid representation”, or “rigid local system”.) From [Kat96], a tuple (A,...,A,) €
GL,(C)" yields by middle convolution a tuple (A4%,..., A" ) € GL,,(C)™. Under a suitable specification
of parameters and a middle tensor product by rank 1 local systems, middle convolution maps rigid
tuples to rigid tuples and is such that ' < r if » > 2. Middle convolution is invertible. By reduction
to the case of rank 1, Katz is thus able to classify (irreducible) rigid local systems on the punctured
line.



3. (Monodromy) The group 7 (Conf™(CP') acts on Rep(mi (CP \ {z1,...2,})) by
g; (1417 - ,An) — (A1, ey Az;l, AiAi+1A;1, Ai, Ai+27 . 7An)

where 71 (Conf”(P!)) = (01,...,0,_1). We then get an induced action where we mod out by si-
multaneous conjugation on the right. What are the dynamics for this action? What are the finite
orbits?!

2.3 ODE (de Rham side)

There is a category of modules with integral connection
MIC(P', D) = {(£,V : £ = £ ® Q. (log D)) flat bundles on P* with regular singularities along D} .

Example 2.3. Suppose that oo ¢ D, and that By,...B, € gl.(C) are such that ) B; = 0. Let & = O,
and V =d + Y. Bidz. This is a Fuchsian ODE.

Z—T;

Remark 2.4. The matrix A; conjugate to the matrix exp(2miB;).

Question 2.5. As you vary x;, how does one change B; so that the monodromy representation stays the
same?

Answer 2.6 (Schlesinger 1912). The B; have to satisfy a differential equation:

s =Bell iz
9B; —(  for all j

i ij

Remark 2.7. Schlesinger wasn’t the first person to try to write this down. In 1905, Fuchs did the case
n =4, B; € sly. In this case, the equation is called the Panlevé VI equation.

There is a correspondence
{finite 71 (Conf™)-orbits on Rep(m (CP* \ D))} +— {algebraic solutions to Schlesinger equation}

Classification of algebraic solutions when n = |D| = 4, r = 2 (Hitchen, Dubrovin, Mazzocco, Boalch,
Kitaev, Lisovyy, Tykhyy):

e 4 continuous families,
e 1 countable infinite family, and
e 45 exceptional.
The computer aided proof relies on effective version of Manin—Mumford for tori.
Question 2.8. Can we classify finite 71 (Conf™(CP"))-orbits on 2-dimensional representations of
7 (CP'\ {z1,...,2,})?
Answer 2.9. Almost.
Definition 2.10. We say (Ay,...,A,) € SL2(C)™ is interesting if
1. Tt has finite 71 (Conf™)-orbit.
2. The subgroup (Aj,...,A,) C SLy(C) is Zariski-dense.

1A complete classification of finite orbits appears in recent work of Bronstein and Maret: see https://arxiv.org/abs/2409.
04379.


https://arxiv.org/abs/2409.04379
https://arxiv.org/abs/2409.04379

3. None of the A; are +id.
4. Tt doesn’t move in a continuous family of finite orbits (Corlette—Simpson).

Theorem 2.11 (Lam-Landesmann-Litt). Suppose that (A1,...,A,) is interesting and that some A; has
infinite order. Then, there exists aq,...,an, A € C* such that (a1 Ay,...,anA,) = MCx\(By,...,By,) where
MC) is Katz’s middle convolution operator and where (By, ..., By,) C GL,_2(C) is a finite complex reflection

group.

Definition 2.12. B € GL,(C) is a pseudo-reflection if B has finite order and the rank of B —id is 1. A
finite complex reflection group (FCRG) is a finite subgroup of GL,(C) generated by pseudo-reflections.

Finite complex reflection groups were completely classified by Shephard and Todd. There is 1 infinite
family and 34 exceptional ones.

Corollary 2.13. Let (A4y,...,A,) be interesting with some A; of infinite order. Then, n < 6.

The upshot is that MCx(By,...,B,) € R'7.C where 7 : Y — P*\ {x1,...,2,} is an explicit family of
curves.



3 Etale fundamental groups and local systems. Speaker: Gleb
Terentiuk. Notes by Luke Wiljanen.

3.1 Etale fundamental groups

Goal 3.1. For a connected scheme X with a geometric point T € X (K), construct a profinite group 7¢¢(X, 7).

Motivation 3.2. For X a reasonable topological space, there is a correspondence
{covering spaces over X} <> {m (X, z)-sets}

Fact 3.3. Let F': G — Sets — Sets be the forgetful functor. There is a natural map G — Aut(F) which is
an isomorphism.

Fact 3.4. Let F : Finite — G — Sets — FiniteSets be the forgetful functor. Then,

Aut(F) =~ im G/N =G
N<G
finite index
normal subgroup

where G is the profinite completion of G.

Let FEt x be the category of finite étale X—schemes, and let Fy : FEt x — FiniteSets be the functor
sending a finite étale X scheme Y — X to the finite set |Yz|, the underlying topological space of the fiber
product Yz =Y X x Spec K.

Definition 3.5. The étale fundamental group of X relative to a geometric point T is
78X, T) = Aut(Fy).
Remark 3.6. (1) If 7,7 € X(K), then 7$%(X,Z) ~ 7$¢(X, 7).
(2) We have an equivalence of categories
FEtx = {finite (X, T)-sets} .

(3) Given f: X — Y and a geometric point T € X(K), let y = foZT € Y(K). There is a natural map
(X, 7) = 7 (Y, )-

Given a finite type scheme X over C, let X* = X(C). Then, (Y — X) — (Y*" — X°") gives an

equivalence between FEtx and {finite covering spaces of X"} by the Riemann existence theorem.
Corollary 3.7. With X as above, the natural map 7. (X", x)" = n{{(X,T) is an isomorphism.

Example 3.8. Let X = Spec(K) with a geometric point T given by K < K. Then, we have an isomorphism
78X, 7) ~ Gal(K /K)
between the étale fundamental group of X and the absolute Galois group of K.

Example 3.9. Let F be a finitely generated field over Q. Consider G,, . Let Y — G, & be a finite étale
map. By composing with the inclusion G,, = — IF’%, we get a map Y — IP’%. This map extends to a smooth

compactifaction Y — Y. We now look at the resulting map @ : Y — ]P’lf. An argument using Riemann-
Hurwitz shows that g~ = 0 and that there are exactly two points of ramification. Namely, with ramification

10



points y1,...,ys above 0 and ramfication points z1,..., 2. above co of ramification degrees ey, ...,es and
di,...,d,, respectively, we have

2y —2=-2n+» (e;—1)+» (dj—1)=—(r+s)

where n is the degree. Consequently, gy = 0. Hence, Y = Plf. It follows that Y can be identified with
G,, 7, so that the map Y — G, 7 is the map z + ™. The group of automorphisms of the nth power map

is identified with the group of nth roots of unity. So, Aut(Y|G,, 7) ~ pn(F). So,

ét gl

4G, ) = lim o (F).
This comes with an action of G = Gal(F/F). We write Z(l) for I'Ln,un (F) with this Galois action.

3.2 Local systems

Definition 3.10. A Q-local system on X is a continuous homomorphism 7$*(X,Z) — GL,,(Qy).

Example 3.11. A main source of local systems comes from the following setting: Let X — S be smooth
and proper, and assume that ¢ is invertible on the base, i.e., £ € O(S)*. Then, we have Q-local systems
(9, 3) — GL(HE (X5, Qy)).

Theorem 3.12. Let F be a finitely generated field over Q, and let p : Gpy) — GLn(Qe). Then, p|Gf«t>> is
quasi-unipotent. That is, if o topologically generates GF((t)) >~ 7., then p(o)N — 1 is nilpotent for some N.

Proof. Since 1+ (2M,,(Zy) C GL,,(Qy) is open, there exists a finite extension K/F((t)) such that
Gk C p_l(l + £2Mn(Z4))

Then, F(t) C K,, where K,, is the maximal unramified extension of K. Since K,,/F((t)) is a finite
extension, some power of the topological generator o € GF((t)) topologically generates Gg , i.e., there is
some n € N such that o™ topologically generates G, .

Let Ky C K be the field obtained by adjoining all /-power roots of a uniformizer to K,,. Then, G, is a
prime to ¢ profinite group, so p|g x, 1s trivial. Thus, p factors through Gal(K,/K). We have the short exact
sequence

nr?

1 — Gal(Ky/Kpr) = Gal(K¢/K) — Gal(K,,/K) — 1.

Let x : Gal(K,,,/K) — Z; be the f-adic cyclotomic character.

For s € Gal(K;/K,,), we see that s and sX(!) are conjugate for all ¢ € Gal(K,,/K). Then, write
X =log(p(s)). We have that X and x(t)X = log(p(s)X()) are conjugate. Since X and x(t)X are conjugate,
they have the same characteristic polynomials. But, we describe a relationship between the characteristic
polynomials. Namely, if >°"" ja;(M)y" " is the characteristic polynomial of a matrix M € M, (Q;), then
a;(X) = a;(x(t)X) = x(t)'a;(X). Since F is finitely generated over Q, if i > 0, then there exists ¢ such that
x(t)" # 1. Hence, a;(X) = 0 for i > 0. Thus, the characteristic polynomial of X is y™. Therefore, X is
nilpotent, and exp(X) = p(s) is unipotent. O

Corollary 3.13. Let X — S = S\ {s'} be over C be smooth projective, where S is a smooth projective
curve. Let SpecC((t)) — S be around s, i.e., look at Oz, — (/9\575, >~ C[t], which gives SpecC[t] —
Spec((’)gys,) — S, and localize to get SpecC((t)) — S. As in Ezample 3.11, we get a homomorphism
7S, s) = GL(H,(X,,Q)). Then, Gy — mi'(S, s) — GL(HZ,(X,, Qp)) is quasi-unipotent.

Proof. Find F finitely generated over Q and a smooth projective spreading out X — & over F' such that the
fiber product with Spec(C) — Spec(F) recovers X — S. Then, G¢(y) — GL(H, (Xs,Qr)) extends to

Gr(r) — GL(H (X, Q).

We have Gy =~ Gf((t)), and so the theorem implies Gy — w4 (S, s) — GL(H}(Xs,Qy)) is quasi-
unipotent. O

11



4 The p-adic Riemann-Hilbert correspondence, lecture 1.
Speaker: Alexander Petrov. Notes by Mehmet Basaran.

Fix a prime p. Let S/C be a connected smooth variety, and let f: X — S be smooth and proper. Then
R'f.Z form a local system on S(C), where i is an arbitrary nonnegative integer.
Let A be a commutative ring (most of the times one of Z, Z,, Q,, Q,). We define

local systems L PL
of free A—modules = {ﬂ'l (S(C)vs)_K}Ln(A)} .
/=

of rank n on S/C up to conjugation

Definition 4.1. A local system of A-modules L is of geometric origin, if there is a Zariski open U — S and
a smooth proper family f: X — U such that L|yc) is a direct summand of Rif.A.

Conjecture 4.2 (Litt, during the lecture). We may replace U by S in the above definition.
Question 4.3. How can we classify local systems of geometric origin?

Remark 4.4. For any Z-local system L on S(C) there is a proper fibration of complex manifolds f: Y —
S(C) such that L is a direct summand of R!f,Z.

Definition 4.5. A Z,-local system L on S(C) is called arithmetic, if there exists a finitely generated over
Q field F C C, and a variety Sy/F with Sy x C ~ S, such that L extends to an étale local system L on Sy.
In a diagram: Here, the homomorphism p; needs to be continuous.

™ (S(C), ) o GLy, (Z,)
|
(S, s) o

1 — wf’t (Sof) e wft (So,s) —— Gp = Gal (F/F) G |

This definition can be formulated verbatim for Q, or Q, in place of Z,.
Remark 4.6. If a Q,-local system L is of geometric origin, it is arithmetic.

Example 4.7. Take S = A{\{0}. Then a Q,-local system L is arithmetic if and only if for the corresponding
representation pr: m (S(C),s) — GL, (Q,), the matrix pp, is quasi-unipotent, where 7 is a generator of
71 (S(C),s) = Z (ct. Theorem 3.12).

Conjecture 4.8 (relative Fontaine-Mazur). For every semi-simple Q,-local system L on S(C), L is arith-
metic if and only if LL is of geometric origin.

Example 4.9. For S = A%: \ {0} the conjecture is true: In this case, L being arithmetic implies that it has
finite monodromy (i.e. it is trivialized by a finite étale cover). If f: X — S is such a finite étale cover, then
L is a direct summand of f.Q,, and thus of geometric origin.

Now we illustrate how Conjecture 4.8 can be viewed as a non-abelian analogue of the Tate conjecture.
We work with Q,-local systems on S 7 as in Definition 4.5. Then

{@—local systems of rank n on SO,F} = Hét (SO,Fv GL, (@p)) .
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There is an action of G on the right-hand side. In this setting it holds that L is arithmetic if and only if
the class [L] in the right-hand side has finite orbit under Gr. Now assume that S is smooth and proper.
Then there is a map

cl: 2'(S) © Qy = HE (S5 Q(1))
where Z%(S) consists of algebraic cycles of codimension i.

Conjecture 4.10 (Tate conjecture). The image of the above map is

im (cl) = {x € HY (SO,F Qp(i))‘ x has finite orbit under GF} .

4.1 p-adic Hodge theory

Remark 4.11. If Conjecture 4.8 holds, then all semi-simple arithmetic I should underlie a VHS. In the
following we investigate where this VHS would come from.

Let X be a smooth proper variety over Q,. Then Gg, acts on H, (X@, Qp>. There is a functor

D . finite dimensional continuous vector spaces V/Q, with a filtration
dR - representations of Gg,, on a Qp-vector space — 0=F'VC-.-CF'VCF~1VC...CF'V=V

such that Dyg (Hgg (X@, Qp)) = Hjp (X/Qp) with filtration F, e Fﬁodge/FIfIJgége =H"" (X,Q%).

4.2 p-adic Riemann-Hilbert correspondence

First we summarize the complex Riemann-Hilbert correspondence. Let Y/C be a smooth proper variety, and
let f: Z — Y be a smooth and proper family of varieties. Then there is a bijection

{C-local systems on Y (C)} = {vector bundles with flat connection on Y}
such that ‘ _
R'f.C— (Hyr (Z]Y),Veum) -
Now to introduce a p-adic Riemann-Hilbert correspondence, let S/Q, be a smooth variety. There is a functor
vector bundles E/S with

a flat connection V: E%E@Qg onY

, ~ d with a filtrati
Dyr: {étale Q,-local systems on S} — PP e CFiC it o Fo—E

such that F?/F**! is a vector bundle
and V(F')CF'~'@Q}

such that for f: X — S smooth proper, we get Dy (R" f.Q,) ~ (’HZR (X/S),Veu, Fﬁodge>.
Remark 4.12. This functor Dyr cannot preserve ranks and be monoidal (meaning that Dy (L1 ® Lo) =
Dyr (L1) ® Dggr (L2)). To see this, take S = Spec (K) with K = Q, (up) for p > 2, and V = Q,(—1) =
Xc_ylcl = H?, (IP’}@—Z), Qp). Then

DunlV) = Hy (P) = K
with filtration 0 = F?2 C F! = K. If Dyg preserved ranks and was monoidal, then

®2

Dun (X;ylf) = Dar(V) = (K,0=F2 C F' = K) .

This is impossible, since Dggr (X;ylc{2) also needs to be a one dimensional vector space where the filtration

®2
jumps at some point, and thus the filtration of Dyg (X;,lc{2> would have to jump at an even index, but

the jump is at index 1.
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5 Variations of Hodge structure and Higgs bundles. Speaker: Yi-
long Zhang. Notes by Min Shi.

5.1 Content
1. Example: one parameter family of elliptic curves;
2. Hodge structures;

3. From variations of Hodge structures to Higgs bundle.

5.2 Motivation

Treat the compact, oriented surface with g = 1 as a complex torus C/A, where A = Z(eq, e2). Choose a basis
{8,~} for H{(T,Z), so that Hy(T,Z) = 7Z + Z~. On the complex torus, there is a canonical holomorphic
I-form dz, with dz € H}z(T) @z C = (H1(T.Z)") Q,C.

One can integrate dz against ¢ and 7 to get two complex numbers (periods) f 542, f7 dz, which depend
on e1, es. However, what matters is not these two numbers, but rather their ratio, so we can regard

[ /. sdz f7 dz} € P'. Up to some choices, this gives a map from the isomorphism classes of elliptic curves

over C to A!(C), which is part of the reason that the moduli space of elliptic curves over C has P!(C) as the
set of complex points.

5.3 Hodge structures

Let X be a compact K&hler manifold (for instance, the complex points of a smooth projective variety).
Then H"(X,Q) has a Hodge structure, i.e., H"(X,C) = H"(X,Q) Qo C admits a Hodge decomposition of
complex vector spaces

H'(X,C) 2 " (X)e H" " (X)®---® H*"(X)
satisfying HPmn—P(X) = H" PP (X).
Equivalently, H"(X, C) admits a filtration called the Hodge Filtration:
0=F""'H" C F"H" C F*'H" C .. C F'H" C F'H" = H"(X,C)
satisfying
1. FPH™ N Fr=pHLH" = {0};
2. FPH"@ Fr—pr+l1H" = H*(X,C).
To recover the Hodge decomposition, take HP"~P(X) = FPH" N Fr—PH",
Example 5.1. For T = complex torus, span(dz) = F*HY(T,C) = H"(T) = C.

5.3.1 Where does the Hodge Filtration come from?
We have a resolution of Cx by the holomorphic de Rham complex Q%
Cx »0x 50k 5 0% -0,

where Q% is placed in the i-th degree.
By the abstract de Rham theorem,

sing (X, C) = H"(X,Cx) = H"(X, Q%).
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Define FPQ& = QJX if p<j<n,and Fpﬂg( := 0 otherwise. Then define the Hodge Filtration

FPH™(X,C) := Im(H(X, FPQ%) % H(X, Q%))

By the d0-lemma, the inclusion of the holomorphic de Rham complex into the complex of (real) smooth
differentials (Q%,d) — (A®,d) is a quasi-isomorphism. Then the Hodge decomposition combined with
Dolbeault’s theorem implies the degeneration of the Hodge-to-de Rham (Frohlicher) spectral sequence at the
FEq-page. In particular, ¢ is injective, and

FPH™(X,C) =H"(X, FPQ%).
Also as a consequence of the degeneration at the E;-page,

FPH™(X,C)/FPT H™(X,C) = H" P(X,0%)

5.4 Real Variation of Hodge structures

Let B be a complex manifold and V™ a local system on B. A real variation of Hodge structures is a filtration
by holomorphic subbundles on V" @ Op

FF V' QO | P V'R Os | €. CF [ V'R Op | CF [ V'R O5 | =V" () O5.
Cp Cgp Cgp

satisfying

1. F? AFn»H1 = {0}
2. FPRF 71 =V Q. Op

3. Griffiths transversality: there is a flat connection V on V" Q. Op such that
VE = P (R) Q.

To be more specific, suppose V" = R"f,C, where f : X — B is a smooth family of compact Kéhler
manifolds. By Ehresmann’s theorem, locally, X is diffeomorphic to Xy x B. A picture is drawn below, where

X is the fiber over a point 0 in B, % is a tangent vector at 0 in B, and a% is a lift of the tangent vector %.
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By Kodaira’s theory on deformation of complex structure, the 1st order deformation is governed by a
(0,1) form in TH9(X,):

0
R = anﬂfo‘ﬁ(‘a? ®d§[3

Now Griffiths transversality means that for w € FP A%, /B On fiber direction with at least p dz;’s, the image
of w under the Gauss-Manin connection is in FP~'!H"(X,,C). In fact, locally, the map H"P(X, Q%) —
H™PH1(X, Q%) induced by V can be written as V(a) = a U k.

5.4.1 What is a variation of Hodge structure?

Fix a complex vector space H"(X,C). Then a variation of Hodge structures is a family of Hodge structures
on it that varies in a certain way and satisfies certain axioms.

Example 5.2. The Legendre family of elliptic curves is {y? = z(z — 1)(z — t),t € P! — {0,1,0}}, whose
singularities are roughly described in Figure 1. Pick a basepoint ¢ty € P*(C) — {0,1,00}. The holomorphic

1-forms are w; = [%} € H'(X;,C), which spans F*H'(X;,C) C H'(X;,C) = H*(X,,,C). After desingu-
larization, the minimal resolution can be depicted in Figure 2, with two rational curves meeting transversely
above each 0 and 1, and an I3 fiber (7 components, with three multiplicity-two fibers colored in red) above
00.
The corresponding Picard-Fuchs equation is (for details, see [Lit13, section 1.4.2])
" 1 2t—1 ,

T T ) ST D

By ODE theory, locally around 0, solutions take the form: f(¢)log(t) + ¢(t), where f and g are holomorphic.
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Figure 2: Kodaira-Néron model of Legendre family

The local monodromy operators on Hy(FE:,,Z) are Ty = [(1) ﬂ NS [_12 [1)] At infinity, the mon-

odromy is = [; :g] , which is the inverse of the product To77.
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6 Nonabelian cohomology and applications, lecture 2. Speaker:
Daniel Litt. Notes by Jake Huryn.

6.1 Introduction
Let X be a smooth projective variety over C.

Conjecture 6.1 (Hodge). The image of the cycle-class map Z*(X) ®z Q — H*(X,Q(i)) is H*(X,Q(i)) N
HOO(X, C(i)).2

The “non-Abelian Hodge conjecture” is:

Conjecture 6.2 (Simpson). Any Q-local system on X underlying a polarizable Z-VHS is of geometric origin
in the sense of Definition 4.1.

One goal of the rest of the talk will be to explain the parallel between these two conjectures, which will
require us to fill in the missing entry in the following table of analogies.

Abelian ‘ non-Abelian

H™(X,C) Hom(m (X), GL,.(C))/=

H (X) MIC(X)/=
EBp+q:n HP1(X) 777

Remark 6.3. Recall that the isomorphisms between objects in different rows of this table are highly tran-
scendental!

6.2 Higgs bundles

Continue to assume X is a smooth projective variety over C. (This permits us, by GAGA, to ignore the
difference between algebraic and holomorphic coherent modules on X.)

Definition 6.4. A Higgs bundle on X is a pair (£, 6), where £ is a vector bundle on X and §: £ — E®o, Q%
(the Higgs field) is an Ox-linear map such that §2 = 0, i.e. the following composition vanishes:?
0 1 0®id 1 1 2
gﬁg@oXQX —>g®oXQX®OXQX_»g®OXQX
Remark 6.5. 1. It is necessary to note the difference between a Higgs field and an integrable connection;
the former is Ox-linear, rather than C-linear, hence does not satisfy the Leibniz rule.

2. The Ox-linear nature of the Higgs field allows C* to act on the category of Higgs bundles via ¢-(€,0) =
(€,10).

Example 6.6. 1. If £ is any vector bundle on X, then (£,0) is a Higgs bundle on X (but essentially
never a MIC!).

2. Suppose (€, F*,V) is a C-VHS. Since V(F(€)) C F=1(€), we get a map gr(V): gr(€) — gr(€) ®oy
QL. The integrability of V implies that (gr(€),gr(V)) is a Higgs bundle.

Definition 6.7. Let £ be a vector bundle bundle. The slope of £ is (&) = degy (€)/rankep, (£). (We fix
an ample divisor to define the degree function.) We say that a Higgs bundle (£, 0) is stable if for any proper
sub-Higgs bundle* (£',6), we have u(£') < p(€), and semistable if p(€') < p(€).

2The_ (4) here is the Tate twist in Hodge cohomology; it subtracts ¢ from both superscripts in the Hodge decomposition, so
that H%(X,Q(:)) N H%0(X,C(i)) = H*(X,Q)N H»*(X,C). This is done simply to ensure that the notation parallels the usual
formulation of the Tate conjecture.

3Tf Q& is free on w1, ...,wq, then 6 = 1w1 + - - - + Oqwq for some 0; € Endo , (£), and the condition 62 = 0 means that the
0; commute.

4Meaning £’ is a vector bundle which is a proper subsheaf of £ preserved by 0, i.e. 8(£) C &’ ®ox Qk
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Example 6.8. If £ is a direct sum of line bundles, then (&) is the average degree of the line bundles, and
(€,0) is semistable if and only if all of the line bundles have the same degree.

Higgs bundles are related to local systems via the following theorem, which was contributed to by
Narasimhan—Seshadri, Hitchin, Corlette, Donaldson, Simpson, ... See [Sim91, §1] for citations and more
discussion of the following theorem and remark.

Theorem 6.9. There is a bijection between isomorphism classes of irreducible C-local systems on X and
isomorphism classes of stable Higgs bundles with vanishing Chern classes.> This bijection satisfies (viewing
local systems as MICs on X wvia Riemann—Hilbert):

1. If(&,V) is a MIC whose monodromy representation is unitary (i.e. the closure of its image is compact),
the corresponding Higgs bundle is (£,0). Conversely, any Higgs bundle with vanishing Higgs field arises
in this way.

2. If (E,F*,V) is a C-VHS, the Higgs bundle corresponding to (£,V) is (gr(€), gr(V)).
3. It is compatible with pullback and smooth proper pushforward.
This is the non-Abelian Hodge decomposition (the “???” in the “table of analogies” above).

Remark 6.10. 1. The proof of Theorem 6.9 passes through a category of “harmonic bundles” (somehow
analogous to the proof of the Hodge decomposition via harmonic forms).

2. A Higgs bundle (&,0) arises (via Theorem 6.9) from a C-VHS if and only if (£,6) = (€,t0) for each
teCx.

To summarize: let Mg(X,r) be the moduli space of semisimple rank-r local systems on X, let Mygr (X, r)
be the moduli space of semisimple rank-r MICs on X, and let Mpq (X, r) be the moduli space of rank-r
polystable Higgs bundles on X with vanishing Chern classes (“polystable” meaning “direct sum of stable”).
Then we have the following isomorphisms:

MB(XvT)((C) = MdR(Xv T)((C) = MDol(Xa T)(C), (1)

and the final object has an action of C* whose fixed points correspond to C-VHSs. The first isomorphism
is in general only holomorphic, while the second is in general only real-analytic.

Example 6.11. We explain the isomorphisms (1) in the case dim(X) = r = 1. Let g be the genus of X.

1. (Representations). We have Mp(X,1) = H!(m (X),C*) = HY(X,C*) = C*+29. Using the exponential
exact sequence, this moduli space is (holomorphically) equivalent to H'(X,C)/H'(X,Z).

2. (MICs). By interpreting MICs as objects coming from Cech cohomology, we get an isomorphism
Mur(X,1) = HY(X, 0% 2% L) = 1 (X)/H'(X,Z). If g > 1, this space admits a nontrivial
algebraic map to the Abelian variety Pic’(X) via (£, V) + £; in fact, it is an H°(X, Q% )-torsor over
Pic’(X). In particular, Mar(X,1) cannot be algebraically isomorphic to Mg(X,1) if g > 1, since
C*29 admits no nontrivial algebraic map to Pic’(X).

3. (Higgs bundles). Since dim(X) = 1, the Higgs-field condition §? = 0 is meaningless, so a Higgs field
on a line bundle £ over X is just an Ox-linear map £ — £ ®0, Qk, which in turn is the same
as a global section of Q. Thus Mpe(X,1) = Pic’(X) x H°(X,Q%). The isomorphism between
this and Mgr(X,1) is just the Hodge decomposition of H}z(X). However, the H°(X, Q% )-torsor
Mg (X,1) — Pic’(X) is in general nontrivial, in which case Myg is not algebraically isomorphic to
MDol(Xv 1)

5If X is a curve, the condition of vanishing Chern classes just means the vector bundle has degree 0.
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Finally, we return to the Hodge conjecture. Recall that an R-Hodge structure H is endowed with a
X
C*-action in which z acts on HP? via 2Pz~ 9, so that H*® = H® . In view of Remark 6.10(2), we can
rephrase Simpson’s non-Abelian Hodge conjecture as:

Conjecture 6.12. Every element of Mg (X,r)(Q) N Mpe(X,r)(C)S" which admits a Z-structure is of
geometric origin.

6.3 Geometry of the Dolbeault moduli space

A key observation for non-Abelian Hodge theory is that the Higgs field, being Ox-linear, has a notion of
“characteristic polynomial”.5 (A reference for this section is [Sim91, §§1-2].)

Let (£,60) be a Higgs bundle. From 6 we get an action of the tangent sheaf Tx, hence Sym*(Tx ), on £
(the action of the tensor algebra factors through the symmetric algebra since §2 = 0). Thus we may view &
as a sheaf on the relative spectrum Tot(Q2}) := Spec y (Sym* (T'x)).

Question: What is its support? (These will be the eigenvalues of 8, and the fibers the eigenspaces of 6.)

Let A, = @._, H*(X,Sym'(Q%)). The Hitchin map h: Mp(X,r) — A, sends (£,6) to the “charac-
teristic polynomial of §”, the element whose ith component is tr(A\*6: A'E = A\' € ®o, Sym‘(Qx)). This
map has some useful and remarkable properties:

Theorem 6.13. 1. Each fiber of h corresponds to (€,6) supported on a fized subscheme of Tot(Q) finite
flat over X, called the spectral variety.

2. Because (1) identifies each fiber of h with a moduli space of certain semistable sheaves on the spectral
variety, h is a proper map.

3. By (2), the limit lim_,o (€,t0) always exists in Mpo(X,7) and is C*-stable (but need not equal (€,0),
as the latter might not be semistable).

Corollary 6.14. As a consequence of Theorem 6.13(8) and Remark 6.10(2), any semisimple C-local system
can be deformed to a C-VHS.

6.4 Rank-2 local systems

As an application of the theory, we have the following theorem of Simpson [Sim91, p. 340, Theorem 10]
(generalized to the quasiprojective case by Corlette—Simpson [CS08, Theorem 1]).

Theorem 6.15. Let X be a smooth projective variety over C, and let V be a C-local system on X whose
monodromy group is Zariski-dense in SLo(C). Then one of the following holds

1. There exists a map f: X — Y with Y a smooth Deligne-Mumford curve” and a C-local system W on
Y such that V= f*W.

2. V is rigid and of geometric origin.

Proof sketch. First of all, if V is rigid, Corollary 6.14 implies V is a direct summand of a C-VHS, and as
Daniel Litt’s Lecture 3 (§10) will discuss (from a very different perspective!), V is in fact a C-direct summand
of a Z-VHS. Now since V is of rank 2, there are at most two interesting pieces of the Hodge filtration, hence
V comes from a family of Abelian varieties [Sim92, Corollary 4.9] (by the equivalence of categories involving
Abelian varieties over C and certain Hodge structures).

6For understanding this section, it is extremely instructive to first try to answer the following questions: Consider a map
f:V = V®cW of C-vector spaces satisfying f2 = 0 (as in the definition of a Higgs field). What is an eigenvalue, eigenvector, or
eigenspace of f? What is the trace, determinant, or characteristic polynomial of f? Viewing f as a linear map WV — End¢(V),
we get a Sym* (WY )-module structure on V; what is the support, and what are the fibers, of the corresponding coherent sheaf
V on Spec(Sym* (WV)) = Aglm(W)?
7See [CS08, §§2-3] and [Sim91, p. 340], although the reader should ignore this technicality.

20



Now suppose V is not rigid. We want to describe where the curve Y comes from (and how non-Abelian
Hodge theory gets involved). Let Spec(R) be the C-scheme whose set of A-points is Hom(m (X), SLa(A))
(cf. Definition 9.1 below). Then the monodromy representation of V takes the form

71 (X) £ SLy(R) — SLy(C).

for some map R — C. It suffices to show that p factors through the fundamental group of a DM curve. Note
that if ¢ € Spec(R)(C) is a closed point not lying in a fixed countable union of proper closed subvarieties
of Spec(R), then the composition p; of p with the induced map SLa(R) — SLo(C) will have kernel equal to
that of p and have Zariski-dense image. Thus it suffices to pick one such ¢ and show that p; factors through
a surjective map 71 (X) — m1(Y) with Y a DM curve.

To describe what ¢ to pick, observe that the image of Spec(R) in Mp(X,r) is affine (being the quotient
of Spec(R) by the GLg-action; see Remark 9.3(4) below) and of positive dimension (since V is not rigid;
see loc. cit.). Moreover, we have a homeomorphism Mg(X,r)(C) & Mp,(X,r)(C), and since h is proper,
the image of Spec(R)(C) in Mpe(X,r)(C) cannot live in the fiber above 0. Thus we may pick ¢ such that
the Higgs bundle (&,6) corresponding to p; via Theorem 6.9 satisfies h(€,0) # 0. Then det(d) # 0 in
H°(X,Sym?*(Q%)), and also tr(f) = 0 since p; has image contained in SLy(C). (The latter implication is not
obvious but follows from the proof of Theorem 6.9.)

Now let Z C Tot(Q%) be the spectral variety of (€,6). Since tr(f) = 0, it is the space of square roots
of det(f). Since det(0) is locally a square, Z is finite and flat over X, and its desingularization Z carries a
tautological 1-form w, the “global square root” of det(#). It induces a map® 7 — Alb(Z ) and a tautological
1-form on Alb(Z) which pulls back to w. Let Alb(Z) —» A be the smallest quotient by an Abelian subvariety
such that w is pulled back from A.

Claim: The image of Z in A is a curve.

Granted this, one takes the quotient of Z — A by a Z/2-action and then the Stein factorization to obtain
amap X — Y with X birational to X and Y a curve. Next, one shows that X — Y factors through X — Y.
Finally, giving Y an appropriate structure of a DM curve yields the desired map. See [Sim91, p. 345-347]
and [CS08, Lemma 3.1] for details.

Finally, we outline the proof of the claim. Assume the image of Z in A is not a curve. By a simple
argument, the zero-locus of w maps to a finite set of points in A [Sim91, p. 343, Lemma 13], so the assumption
implies that, after a suitable birational modification, the zero-locus of w has codimension > 2 in X. By a
Lefschetz-type theorem, we may then find a projective curve C in X such that w|¢c is nowhere vanishing and
the map 71 (C) — 1 (X) is surjective. Now let C' — C be the connected (double or single) cover determined
by Z — X. Since w has a globally defined square root on C, the eigenspaces of (£,0)|z are globally defined,
ie. (£,0)|s is a direct sum of two Higgs line bundles. But Cisa projective variety, so we may use Theorem
6.9(3) to conclude that p;|5 is a direct sum of two local systems. So the image of p;|5 is contained in a torus

in SLy(C) and is an index-two normal subgroup of the image of p; (normal since C — C is a Galois cover).
This contradicts Zariski density. See [Sim91, p. 344-345] for details. O

Remark 6.16. 1. Jost—Zuo have proven a similar result for local systems of higher rank [JZ97, p. 497,
Theorem 3.1].

2. This whole story, at least in rank 2, has an analogue in the non-Archimedean world. In particular, one
can give a proof, which is different to what will be discussed in Daniel Litt’s Lecture 3 (§10), of the
integrality of rigid local systems from this “non-Archimedean Corlette-Simpson” point of view.

Lastly we state a result due to Landesman—Litt which connects back to Daniel Litt’s Lecture 1 (§2) and
whose proof uses techniques of non-Abelian Hodge Theory (in particular, Corollary 6.14 above). Recall that
given a smooth proper map X — S and s € S, there is an action of 71 (.S, s) on the moduli space Rep(71(X5))
of representations of 7 (X;). In the following, we take X to be the moduli space M, ,, of genus-g curves
with n punctures and X — S to be the universal such curve.

8Recall that Alb(Z) denotes the Albanese variety, the Abelian variety given by the complex torus HO(Z, Q%)V/Hl(Z,Z).
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Theorem 6.17 ([LL24]). If p: m1(24,n) = GL,(C) is such that
1. r2 < g and
2. the conjugacy class of p has finite w1 (Mg ,)-orbit,

then p has finite image.
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7 p-adic Hodge theory. Speaker: Alice Lin. Notes by Stefan
Nikoloski.

7.1 The field C and Tate twists
Let K be a complete discretely valued field of characteristic 0 with a perfect characteristic p residue field.
Definition 7.1. C =C, = %\7 the p-adic completion of K.
Fact 7.2.
e ( is algebraically closed.

e By continuity Gk = Gal(K/K) acts on C, preserving the absolute value | - |.

Definition 7.3. We set Z,(1) := @upn. By a choice of a system of compatible p-th power roots of unity
we get an isomorphism

z—xP

szyinz/pn:(_.. Z/p" Z/p2 LOd{JZ/p)

The p-adic cyclotomic character x : I'x — Z, is defined so that for all n and for all 0 € Gk we have

o(Cpn) = C;‘,q(,”). Hence, we can view Z,(1) as Z, with a G k-action by x.
Definition 7.4. The r-th Tate twist for r € Z is given by

{Zp(l)@)ra r Z 0

Zp(r) = Zp(—1)Y, r<0

In general, for a Z,[Gx]-module M we define the r-th Tate twist of M, to be M(r) = M ®z, Z,(r).

Theorem 7.5 ([Tat67, Theorem 1 and Theorem 2]).

(1) H% (Gk,C) = CY% = K and H}

4s(GK,C) is a 1-dimensional vector space over K.

(2) Forr #0, HO(Gk,C(r)) = C(r)9% =0 and H%(Gx,C(r)) = 0.

cts

Remark 7.6. The statements about H),, are incorrect if we replace C' with K.

7.2 Hodge—Tate decomposition

The p-adic Hodge-Tate theory is motivated by studying H}, (X7, Q,) for smooth projective varieties X. In
particular, we can ask what these Galois representations can recover about the geometry of X?
We recall that if we have a smooth proper scheme Y over C then we have the classical Hodge decomposition

gng(y(c)v Q) ®q C= @ Hn_j (Y7 Q%/)

J

In [Tat67], Tate showed that an analogous decomposition exists for Hj, of an abelian variety over a p-adic
field with a good reduction. He also conjectured that such a decomposition exists beyond abelian varieties.
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Theorem 7.7 (Hodge-Tate decomposition, [Fal88, Chapter III, Theorem 4.1]). Let X be a smooth proper
K-scheme, n > 0

Gk 4
(7005 @) 00, B CG)) = @ H™ (X, %)

JEL J
as graded K -vector spaces.

Remark 7.8. Alternatively, using the Serre-Tate Lemma ([BC, Lemma 2.3.1]) the statement of the theorem
can be rewritten as

HE (X7, Qy) ®o, C = @) H' (X, 0% ) ©x C(—q)
q

Remark 7.9. The theorem tells us that Hf recovers the Hodge numbers.

We point out that as in the classical case where we only get the decomposition after tensoring with C,
the analogous thing happens in this case after tensoring with € j C(4). This is the first example of a period
ring.

Definition 7.10. The ring Bur := €, C(j) is called the Hodge-Tate period ring.

7.2.1 Abelian variety example

Let A be an abelian variety and n = 1, then the Hodge—Tate decomposition becomes:

Hi(Ag, Qp) ©q, C =~ H'(A,04) ®x C @ H°(A, Qi) @k C(—1)

We get a Galois equivariant map a4 : H'(A,04) @ C — H} (A%, Q) ®g, C, which we can explicitly
construct.

7.3 Constructing a4
Suppose A/K has good reduction, i.e. it extends A/Ok. We let O = 6%

[p

Definition 7.11. We define the Og-scheme A, = li . —]> A1 = Ao, ﬂ Ao = Ap,) as a limit of

affine morphisms.

We let © : A, — Ap be the projection map coming from the limit. Then 7 will induces a map
™ RTI'(Aog, Oac,,) = RI'(Ac, O, ). We now observe that A[p"](C) act on A, by translation and this
action is compatible with the transition maps. Hence, we get a T,(A) = lim A[p"]-action on A.. Then, the
map 7 : As — Ao is Tp(A)-equivariant, where the action on Ay is trivial, as all the p-torsion points will be
mapped to 0 in Ajp.

Remark 7.12. We need to work over Oc, or at least over O in order to make sure that the p™-torsion
points of A are defined over the underlying ring.

T,(A) acts trivially on Ap,. and the sheaf cohomology, so by functoriality we get a composition of maps

RT'(Aoc, Ouo,,) = Rlets(Tp(A), RI' (Ao, Oao,,)) = Blets(Tp(A), RT (A, Oa,))

Fact 7.13 ([Bha, Proposition 2.2.1]). The natural map Oc — RI'(Ax, O 4. ) given by sending the constant
sections O¢ to H(Aw,O4.,) is an isomorphism after p-adic completion.
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Using this fact, after p-adic completion we get a map

RT(Aoe,Oap,) = Rles(Ty(A), Oc) = RTes(n7' (A), Oc) = RTs(Ac, Oc)

where the last map is induced by the map from the étale site to the finite étale site. Finally, taking H' and
tensoring with C' we get

aa: HY(A,04) 9k C — HY(Ac,Q,) ®g, C

7.4 Etale-de Rham comparison

We recall that for a smooth proper C-scheme Y of dimension d we have:

given by the Poincaré duality and the “period” pairing

HiR(Y(C)/C) x Haq—n(Y(C),Q) ® C — C, (w,Z) — /zw

In general, these “periods” f , w are highly transcendental, which explains why we have to tensor with C to
get the identification.

Theorem 7.14 (p-adic de Rham comparison, [Fal89, Theorem 8.1]). For X a proper smooth K-scheme,
n > 0 there is a canonical isomorphism

HE (X%, Qp) ®q, Bar ~ Hig (X/K) ®k Bar
compatible with the G -action and filtration.

Remark 7.15. In general, de Rham cohomology isn’t equipped with a G i-action, while on the other side
the étale cohomology doesn’t come with a filtration. The role of Bgg is to fill in the gaps of what is missing
on both sides of this isomorphism.

The ring Bqr was constructed by Fontaine and he conjectured that such an isomorphism exists

Definition 7.16 ([Fon82, Chapter 2]). The de Rham period ring Bgr has

(1) filtration such that the associated graded ring is Byr.
(2) Gg-action such that prf =K.
Definition 7.17.
finite dimensional filtered
Dyr : . —
Q, — representations of Gk K — vector spaces
V ———————— Dar(V) = (V ®q, Bar)“~
With this definition in hand, we can rephrase the p-adic de Rham comparison as

Dar (Hé (X7, Qp)) =~ Hig (X/K)

as filtered K-vector spaces.
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7.5 Construction of Bj;, By
Recall that O¢ = 6%
Definition 7.18. The tilt 0% of O¢ is defined as

0 = lim O¢ = {(a;<0>,x<1>,...) e[[oc

r—xP

<x<n+1>)” _ x(n)}

It is isomorphic to lim Oc/(p).

x—xP
Fact 7.19. (’)bc is perfect of characteristic p. It is a domain with a continuous G g-action.

Let Ajnr = W(0%), the ring of Witt vectors of O%. We then define a map 6 that makes the diagram
below commute.

Szl ————— YOy

%

Ainf = W(Obc) —0» OC
mod p mod p

Oy —————— Oc/(p)

Ty = (:céo),xgl),...) — zg (mod p)

where [z;] are multiplicative lifts of z, € O%.

We can now extend 6 to g : Ains[1/p] = Oc[1l/p] = C. The kernel of 0y is principal and Gk-stable.

Fact 7.20. B, = (Ain[1/p] )zker 0y) 18 @ complete DVR with maximal ideal ker iy and has a I'-action.

Definition 7.21. B = Frac(Bé“R). It has a Z-grading by powers of the maximal ideal of B(J{R and a
G i-action.
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8 The p-adic Riemann-Hilbert correspondence, lecture 2. Speaker:
Alexander Petrov. Notes by Yifei Zhang.

Recall the complex Riemann-Hilbert correspondence. Given a complex manifold X and a C-local system L,
we get RH(L) := (L ®c Ox,1®d) € MIC(X). Now let U C X be open; what is RH(L)(U)? Let f : U - U
be a universal cover; then

RH(L)(U) = RH(L)(U)" ) = (DU, f"Lly) @c O(U))™

where the m-action on T'(U, f*L|y) ®c O(U) is diagonal.

Motivation 8.1. Notice that I'(U, f*L|y) is the representation of m(U) associated to L|y and O(U) is
an ”interesting” ring with a 7, (U)-action (as Bqr is an ”interesting” ring with G-action). Moreover,
RH(LL)(U) is an O(U)™ V) = O(U)-module.

Now let K be a discretely valued p-adic field. We want to study the category C of étale Q,-local systems
on Spec(K) which is equivalent to the category of finite-dimensional continuous Q,-representations of G-
As a first approximation to the Riemann-Hilbert functor in this setting following the motivation above, we
have

D .
C ——*—— FilVeckd

Vi —m8— (V ®Qp BdR)GK.

Think of Baqr as a humongous representation and Dar(V) = (V ®q, Bar)“* ~ Homg, (VV, Bar) as
detecting how often V'V appears in it. Its filtration is Fig (V) := (V. ®q, F'Bgr)“%. However this Dgg is
unsatisfactory because it kills many representations.

Example 8.2. Let x : Gk — Z, be the cyclotomic character, a € Zj, such that x* makes sense (for example
a can be any element of Z, whenever K has p-th (or 4-th if p = 2) roots of unity). Then

K,F-* =K F =0 aq€cZ

Dar(x") = {O ¢z

Fact 8.3. dimg Dyr(V) < dimg, (V).
Definition 8.4. V is de Rham if dimgx Dgr (V') = dimg, (V') (for example, étale cohomology is de Rham).
To “improve” Dgr, consider Ko, = K((p~). We want to define a functor

finite free Ko [[t]]-modules M equipped with
+ . V:M—=MRK[[t] 4s.t.
RHT :C { V(am)=aV(m)+m®da
for any a in Koo [[t]] and any m in M.

We can further compose RHT with the inverting ¢ functor

V:M—M®K o [[t] 4ts.t.

finite dimensional K ((t))-vector spaces M equipped With}
V(am)=aV(m)+m®da

connection with regular singularity

finite free Ko [[t]]-modules M equipped with
—1

to get RHT[1/¢]. RH* preserves rank and is a tensor functor that satisfies’
Dar(V) @k Koo = RHT(V)[1/1]V=0.

In this language, V is de Rham if and only if RH*(V)[1/4] is isomorphic to (Ko ((t))4™Y d), i.e. is trivial

as a bundle with connection on the ”punctured disc”.'®

9This immediately explain the dimensional inequality, as in the MIC case, dimension of flat sections is less than the rank of
the bundle.
10This means the module is generated by flat sections

27



Recall that Bqr has a separated exhaustive decreasing Z-indexed filtration whose i-th graded piece is
C(i). What if we try other things? In view of the ”universal cover” analogy, taking K and C as O(U)
respectively, we have the following

Example 8.5. o (V®q, F)GK - UL/K finite Galois(V ®Q, L)GK =, VGL ®q, K =vectors in V @ K
acted-on through a finite quotient of G . For the second equality, we L ~ ©,cq(r/x)Ko as Galk-
module (follows from normal basis theorem), so (V ®q, L) ~ ®seq(r/Kx)V ®q, Ko. Hence (V ®q,
L)Ox = ((V &g, L)%r)EE) = (VO g, L)TEE) = (@,cqw )V @, Ko)9E/K) Tt’s readily
verifiable that it consists of elements in the form of > o(v)o for v € VO ®q, K.

e What about (V ®g, C)“%? Consider Hx = G(K/Ku) = ker(x : Gx — Zy) and I'x == Gk /Hg <
Zy.
p

Theorem 8.6 (Tate-Sen). Let W be a f.d. C = C-vector space with an H g -semilinear continous action
(e.g. W=V ®q, C). Then W ~ CmW) s ¢ (semilinear) H -representation.

. —_— —dimg, V .
Remark 8.7. On the contrary, for V' a Q,-representation of Gk, V ®q, K ~ K %" as semilinear G-
modules only if the G g-action on V factors through some finite quotients.!* Indeed, one can verify that if the
Gk-action on V' does not factor through some finite quotients, then V' ®q, K does not have a G'kx-invariant
basis.

To see the theorem, we use the following two results. In fact, these two results powers the p-adic hodge
theory.

Lemma 8.8 (special case of étale descent). Let R — S be a finite Galois étale map of rings. Mg a projective
S-module equipped with a semilinear action of G := G(S/R). Then Mg ~ M ®gr S for some R-module M
as modules with S-semilinear G-action.

Theorem 8.9 (Almost Purity, Tate-Faltings-Scholze). Let L/K, be a finite extension. Then Ok — Of
is almost étale: Qo /0, 15 annihilated by mp,. 12

Remark 8.10. The almost purity is true for K/ = K(p'/?™) as well. Moreover, upto p-adic completion,
perfectoid fields are exactly those for which almost purity holds.

Example 8.11. For an odd p, let K = Q,, L = K ,(,/p). Note Z, C Zp[\/p] is not étale: Qgz [ )z, is
Zp|\/pldp/(v/pdy/p = 0).

Note that O, 3 p/(2P") = pl/2(p1/P")=(P"=1)/2 Thus we get
dp'/? = d(p1/2p" (pl/p")(p"—l)/2) = (pl/p")(p"—l)/2dp1/(2p").

dp'/(?P") is annihilated by p'/??", hence so is dp'/2. This shows dp'/? is annihilated by element with
arbitrarily small valuation, hence by my. Similar argument shows that dp'/??" is annihilated by m, for any

n, which means Qp, /0,., is annihilated by my,.

A formal argument takes care of Tate-Sen using almost purity and étale descent: specifically, one gets

Tate-Sen for modules over O¢ /p™, then one takes the limit.
dim V'

Now V ®q, C ~ CP4mV as an Hy-module, so (V ®q, C)7x ~ Koo as I'k-modules. To turn this into
a Ko[[t]]-module, the first step is

Decompletion: there is a I'x-module H (V) over Ko such that H(V) @k Koo ~ (V ®g, C)x as a T'k-
module, and we make the following

11The converse of this statement is true as well, which is a special case of Lemma 8.8. Alternatively, it follows from Hilbert
90: If the G k-action factors through G(L/K) for finite Galois L/K, then the Hilbert 90 (H'(G(L/K),GLn (L)) = 1) is saying
V ®q, L ~ L% Y a5 modules with semilinear G(L/K)-action.

12The almost purity theorem and the étale descent lemma are used to show the vanishing of the H!(H,GL4(C)) which
proves the theorem.
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Definition 8.12.
¢:H(V)— H(V)

is defined by differentiating the I' action:
v) = lim ———.
AR ey
¢ is a Ko-linear operator because for any x € K., every «y close enough to 1 will fix x.

Goal 8.13. We want to define a functor RH™ from C to the category of K [[t]]-modules with V : RHT (V) —
RH" (V) ® Ko[[t]] 4 s.t. V(am) = aV(m) +m @ da. What we defined so far is RH* (V) /t = H(V) and tV
mod t is ¢.
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9 Rigid local systems. Speaker: Jake Huryn. Notes by Jake
Huryn.

This talk takes place in the following setting, the notation of which we use throughout.

Setting: Let X be a smooth connected quasiprojective scheme over C, fix a point € X(C), and set
I':==m(X,z). Let X < X be an embedding into a smooth connected projective scheme over C such that
D = X \ X is a normal crossings divisor, and let D1,..., D, be the irreducible components of D. Finally,
for each 4, let T; € " be a “counterclockwise loop around D;”.

To describe T explicitly, let D%"8 be the singular locus of D, and put U := X \ D*"8, Fix an open ball
A; in U(C) meeting D;, but no other D;, and a point x; in the “punctured ball” Af := A; \ D(C). Then
w1 (A, z;) 2 Z, and there is a “counterclockwise” generator determined by the orientation on A¥; let T; be
the image of this generator under the map m (A}, z;) — I' induced by choosing a path in X(C) from z to
x;. It is important that the conjugacy class of T; does not depend on the choices.

9.1 Rigidity

The goal of this section is to formalize the following “definition”: a local system p is rigid if it cannot be
deformed to a non-isomorphic local system while its determinant and “local monodromy” (the conjugacy
classes of the p(T;)) remain fixed. To do this, we define “representation varieties” which parameterize local
systems on X.

Definition 9.1. Fix the data of

e a positive integer r and a field K.
e a finite set © of homomorphisms I' — K*.

e a tuple C = (Cy,...,C,) of locally closed subschemes of GL, x which are finite unions of conjugacy
classes.

Define a functor Rep(T', 7): Ring — Set by sending R to the set of homomorphisms I' — GL,.(R). This is an
affine scheme of finite type over Z because T is finitely generated:'3 if {71,..., 7} is a generating set of T’
closed under inverses, then Rep(T', r) is isomorphic to the closed subscheme of GL]! cut out by the equations
Hj gi; = 1 whenever Hj 7i; = 1in I'. (Since GL;' is a Noetherian scheme, finitely many such equations
suffice to define Rep(T',r).)

Define Rep(T, r; ©,C): Ringy — Set to be the functor which sends R to the set of p € Rep(T, r)(R) such
that det(p) € © and, for each ¢ € {1,..., N} and K-algebra morphism ¢: R — F with F a field, one has
©(p(T;)) € Ci(F). This is a locally closed subscheme of'* Rep(T', )k, which we call a representation variety.

Observe that Rep(T', r; ©, C) has an action of GL, x by conjugation. Also, it is independent of the choices
made in defining the T;.

Definition 9.2. Assume that #60 = 1 and each C; is a conjugacy class. A local system p € Rep(T,r;0,C)(K)
is rigid if its orbit under the action of GL, x (i.e. the set-theoretic image of the morphism GL, x —
Rep(I',7;0,C) given by g — gpg~ 1) is a connected component of Rep(I",7;©,C) for some compactification
X as above.

Remark 9.3. (For an exposition of items (4-6) below, see [KP22, §4].)

1. In the context of Definition 9.2, if p is rigid, then its GL, gx-orbit is a connected component in any
representation variety obtained by finitely enlarging the set ©.

13Indeed, it is well known that the complex manifold X (C) admits a finite triangulation. Alternatively, one can show using
Morse theory that X (C) is homotopy-equivalent to a finite CW complex [Mor78, p. 137].

MGince C; is open in C;, if we let Z and Z’ be, respectively, the closed subschemes of Rep(T',;©) (where we impose a
determinant condition but no local monodromy condition) defined by the identities p(T}) € C;(R) and p(T;) € (C; \ C;)(R), then
Rep(I',7;©,C) = Z \ Z’; indeed, its R-points are the morphisms Spec(R) — Z whose image does not meet Z'.
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2. In the context of Definition 9.2, if p is rigid and semisimple, then its GL, g-orbit is a connected
component in the representation variety Rep(I',;©,C) obtained by replacing each conjugacy class C;
with its closure C;. This follows from the fact that Rep (T, r; ©,C) is open in Rep(I", 7; ©,C) and that the
orbit of p in the entire parameter space Rep(T',r) is closed by [Ric88, Theorem 3.6] (which requires
semisimplicity).'®

3. The “connected component” condition in Definition 9.2 (or in items (1-2) of the present remark) may
be checked on geometric points endowed with the Zariski topology.

4. An actual moduli space (i.e. parameterizing isomorphism types) of local systems on X is obtained by
taking a quotient of a representation variety by its GL, g-action. This can be done using a stack
quotient or a GIT quotient. In the latter case, the C; must be closed, so the representation variety
is affine, say, Spec(0); the GIT quotient is then Spec(O%Lr%), which is a coarse moduli scheme for
semisimple local systems. From these perspectives, the orbit of a local system is a connected component
of a representation variety if and only if it is an isolated point of the corresponding moduli space.

5. The reformulation of rigidity in terms of isolated points of a moduli space leads to the following
notion: a local system is cohomologically rigid if it is a smooth (i.e. reduced) isolated point of the
appropriate moduli space. In other words, it has no infinitesimal deformations. The terminology is
due to the fact that if M is the moduli scheme of Rep(T, r; ©,C) where each C; is a conjugacy class,
and p € Rep(T',r;0,C)(K), the tangent space of M at [p] is

TiM = Ker (res: HY(T,sl,(K)) — @HI(TZZ,slr(K))>
i=1

where sl,.(K) is a representation of I' via 7y - Z = p(7)Zp(y) L.

6. One can (and it is interesting and useful to) generalize the above discussion by replacing GL, with
other connected reductive groups. Much of what is said below extends beyond GL,..

9.2 Simpson’s conjecture

Example 9.4. For the purposes of the rest of the talk, it suffices to consider representation varieties of
the following form. Set K = Q, fix an integer d > 1, and assume each C; is a conjugacy class of quasi-
unipotent matrices (meaning some power is unipotent). Let © be the set of all homomorphisms I' — K*
of order dividing d (i.e. satisfying % = 0), and let C := (Ci,...,Cy). Then we write Rep(T',r;d,C) for
Rep(T',;0,C), which is closed in Rep(T, 7)g- By Remark 9.3(1-2), the rigidity of a semisimple local system
p € Rep(T', r;d,C)(K) can be checked in this larger representation variety.

The following is an elaboration of [Sim92, p. 9, Conjecture].

Conjecture 9.5. Let p: I' = GL,.(C) be an irreducible rigid C-local system on X. Assume that
1. p has quasi-unipotent local monodromy.
2. p has finite-order determinant.

Then p is of geometric origin in the sense of Definition 4.1.

Remark 9.6. A local system of geometric origin satisfies the properties (1) and (2) above. Indeed, (1) is
the quasi-unipotent monodromy theorem (see e.g. [sga72, Theorem 1.2]; the case when X is a curve was
explained in Corollary 3.13 above) and (2) is [Del71, Corollaire 4.2.8.iii(b)].

15To see this, use the fact that the orbit (being the continuous image of the irreducible scheme GL,. i) is irreducible. It is an
easy exercise to give a counterexample if p is not semisimple, or if one replaces C; by a more general finite union of conjugacy
classes including C; (even when p is taken to be irreducible).
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Remark 9.7. We outline some evidence for Conjecture 9.5. Let p be as therein; then p “looks geometric”
in the following ways:

1. pis a C-direct factor of a Q-VHS. This was proven by Simpson for X projective [Sim92, p. 56, Theorem
5] and T. Mochizuki in general [Moc06, Lemma 10.13].

2. p is arithmetic in the sense of Definition 4.5. This was essentially proven by Simpson for X projective
[Sim92, p. 55, Theorem 4] and Esnault—Groechenig in general [EG18, Proposition 3.1]. See §9.3 below.

3. if p is cohomologically rigid, then it is integral, i.e. conjugate to an Og-local system for some number
field K. This was proven by Esnault—-Groechenig [EG18, Theorem 1.1]. See Daniel Litt’s Lecture 3
(810) below.

These facts should be compared with the statements of Simpson’s non-Abelian Hodge conjecture (Conjecture
6.12) and the relative Fontaine-Mazur conjecture (Conjecture 4.8).
Also, there are some X for which Simpson’s conjecture is known to hold:

4. p comes from geometry if X is open in P!. This was proven by Katz using his method of “middle
convolution” [Kat96, Theorem 8.4.1].

5. p comes from geometry if X = Ay, is the moduli space of principally polarized Abelian varieties of
dimension g > 2. In this case, every local system on X is rigid and of geometric origin. See §9.4 below.

The rest of this talk will be devoted to explaining some details of (2) and (5) above.

9.3 Arithmeticity

Fix p as in Conjecture 9.5. Let d > 1 be an integer satisfying det(p)? = 1, and for each 4, let C; be the
conjugacy class of p(T3). Let R be a finitely generated subring of C such that X < X spreads out to an open
immersion X < X g over R with X g again smooth projective and X g \ Xg a normal crossings divisor.
Let k be the fraction field of R.

Since Rep(I',7;d,C) is defined over Q (see Example 9.4), each of its connected components contains a
Q-point, so by rigidity, we may conjugate p to have image contained in GL,(Q). Since I is finitely generated,
p further factors through GL,(Og[1/N]) for some number field K and positive integer N. Let A be any

finite place of K not dividing N. Since GL,(Ok, ) is profinite, the composition
r % GL,(K) < GL.(Oxk,)

factors through the profinite completion of ', which we identify via Riemann’s existence theorem (Corollary
3.7) with the étale fundamental group 75 (X, z); this we in turn identify with 7$*(X, ), using that ¢ is

invariant under base-change between algebraically closed fields. Thus we obtain a representation
px: T (X7, @) — GL(K))
for any such A, i.e. an étale local system on Xz.

Theorem 9.8. There exists a finile extension k(X)) of k such that p extends to a étale local system!©
Wft(Xk()\),.T) — GLT(K,\) on Xk(A)-

Proof. We give a proof in the case when X is projective, i.e. D = &, so any condition on local monodromy
is vacuous (but see Remark 9.9 below). We may assume X (k) # @ and moreover (by choosing a suitable
étale path between geometric points) that x lies above an element of X (k). This splits the exact sequence

1 — 78 X7, x) — 78(X,2) — Galy — 1.

6By a standard argument using the Baire category theorem, any continuous representation 7r§"t (X k(M) x) — GL,(K) takes
values in GL,.(L) for a finite extension L/K}.
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Given o € Galy, define p$: 7" (X7, z) — GL,(K\)) by v = pa(oyo~!), where we identify o with its image
in 7$t(X, x) via a fixed section of the short exact sequence. This induces a map Gal, — Rep, (T, d)(K))
given by ¢ + p{|r. This is continuous for the A-adic topology on the target since Galy acts continuously
on ﬂ'ft(XE, k), and it sends 1 to p, so there is an open neighborhood of 1 in Gal; which maps into the
Zariski-connected component of p. Replacing k by a finite extension, we may assume all of Galy is sent to
the connected component of p; then for any o € Galy, rigidity implies that p$|r is GL, (K )-conjugate to p,
hence (by the density of I' in m$*(X¢, z)) that p§ is GL,(K\)-conjugate to py.

For each o € Galg, let P, € GL,.(K)) be a matrix such that p{ = P,pP,'. Let P, denote the image of
P, in PGL,.(K)). Then, since p, is irreducible, Schur’s lemma implies that P, does not depend on the choice
of P,. The function ¢ — P, is a therefore a homomorphism and is, by a simple argument, continuous. Now
let A be the image of 1+ a"™" in PGL,.(K)), where a is an ideal of O, small enough that 1+ a contains

no roots of unity of order < r. Then the canonical map (1 + a”*") N SL,.(K,) — A is an isomorphism

of topological groups, so after enlarging k such that P, € A for all o, we may lift each P, uniquely to

(1+ a"*") N SL,(K,), and thereby assume that o +— P, is a continuous homomorphism Galy — SL,.(K)).
We claim that, after making these enlargements, k(\) = k works. Indeed, define

Xy, 1) > GL(K)), 70— pA(7)Ps (2)

for all v € 7' (X, ) and o € Galy. One checks, using the isomorphism 7$%( Xy, 2) & 7¢*(Xz, z) x Galy and
the definition of P,, that (2) is in fact a continuous homomorphism. O

Remark 9.9. (Not included in the talk.) Let Dy g, ..., D, r be the irreducible components of X g\ Xz. The
difficulty in generalizing the proof to the quasiprojective case lies in showing that p§|r remains in the same
(appropriately chosen) representation variety as p. In other words, one has to study the local monodromy
of pS|r. To do this, one has to identify the local monodromy of p$|r (defined topologically as above) with
the image of

mdt (Spec (Frac (OA

Y?DT))) = w8 (X, 1) 25 QL (K))

(cf. the statement of Corollary 3.13). See e.g. the proof of [EG18, Lemma 3.2], which begins by reducing to
the curve case.

9.4 Superrigidity

Let H, be Siegel’s upper half space, the set of g X g complex symmetric matrices with positive-definite
imaginary part. Let I'y(n) be the kernel of the reduction map Sp,,(Z) — Spa,(Z/n). Then I'y(n) acts on
the complex manifold H,; let A, , be the (topological) quotient I'g(n)\H,. If n > 3, then Ay, has the
structure of a smooth quasiprojective variety, is the moduli space for principally polarized Abelian varieties
of dimension g with level-n structure (i.e. a symplectic basis of n-torsion), and I'y(n) acts on H, in a
sufficiently nice way that m(Agn) = I'y(n). (The last two statements hold in general if one instead takes a
stack quotient.)

Example 9.10. Here are some local systems on Ay ,. There is a “tautological” local system coming from
the inclusion I'y(n) < GLag(C). If f denotes the universal family of Abelian varieties over A, ,,, then R! f,C
is a local system on A, ,,. (Actually, it can be shown that these are the same local system.)

The following is a version of “superrigidity” for I',(n), which gives us a source of rigid local systems.

Theorem 9.11. Suppose g > 2. For any field K of characteristic 0 and representation p: I'y(n) — GL,(K),
we have H*(Ty(n), p) = 0. Consequently, every local system on A, ., is cohomologically rigid.

Remark 9.12. A stronger version of superrigidity allows one to prove that, if g > 2, any p: I'y(n) —
GL,(C) as above is isomorphic to p; ® p2, where p; is the restriction to I'g(n) of an algebraic representation
Sp,(C) — GL,(C) and ps factors through a finite group. Since the category of algebraic representations
of Spy,(C) is generated by a single faithful representation, and finite-order local systems are of geometric
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origin, it follows that every local system on A, is of geometric origin. For an exposition of this, see [Put],
which treats the analogous question for SL,,, n > 3 (though the same argument works for Sp,,, g > 2).

The statements above can be derived from the solution to the congruence subgroup problem for Spy,
(9 > 2) by Bass—Milnor—Serre [BMS67]. However, they are special cases of very deep “superrigidity” theorems
of Margulis which apply to general irreducible lattices in semisimple Lie groups of rank > 2. For example,
Theorem 9.11 is a special case of [Mar91, Chapter IX, Theorem 6.15(ii)].
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10 Nonabelian cohomology and applications, lecture 3. Speaker:
Daniel Litt. Notes by Kyle Binder

Let X be a smooth, projective variety over a finitely-generated field k and ¢ # char k.
Sasha discussed the similarity between the Tate Conjecture and the Relative Fontaine-Mazur Conjecture.

Conjecture 10.1 (Tate Conjecture). An element & € H* (X}, Qy(i)) is in the image of
cl: Z' (Xg)g, = H* (X5, Q(0))
if and only if the orbit Galy -£ is finite.
Analogously in the non-abelian case we have the following conjecture.

Conjecture 10.2 (Non-abelian Tate Conjecture, Relative Fontaine-Mazur /Petrov Conjecture). A contin-
uous, semi-simple representation o

p: 7" (X5) — GL, (Q)
is of geometric origin if and only if Galy -[p] is finite (equivalently, by Jake’s talk, p is arithmetic).

What we now have is two conjectural characterizations of representations of geometric origin: being a
direct factor of a Z-VHS and having finite orbit Galy -[p]. Conjecturally, these two characterizations should
be equivalent, and this is also an open problem.

One piece of weak evidence for the equivalence is the following.

Proposition 10.3. Suppose we have the Cartesian diagram

X — X
ﬁl [J m|smooth, proper
[ — S

untv.cover

of varieties over C and V a Q-local system on X such that Vivery general fibre of  underlies a Z-VHS. (Very

general here means on the complement of a countable number of analytic closed subvarieties of §)
Then V@ Qp (viewed as a local system on Xm) has finite orbit over Galc(s)-

Proof. We want to show that 71(S, s) - [V‘ﬁbre] is finite. Consider f~1(s); for all s’ € f~1(s) we get a local
system Vg on X,. This is because we get local system on X which is isomorphic to X by base-change. By
assumption, V, underlies a Z-VHS. By unwinding definitions, the family {V } is precisely m (.5, s) - I:V‘ﬁbre] .
Using the following theorem of Deligne, this implies the orbit is finite.

Theorem 10.4 ([Del87, Théoreme 0.5]). The set of isomorphism classes of rank r Q-local systems on a
smooth, quasi-projective variety over C which underlie a Z-VHS is finite.

O

10.1 Some Predictions

1.

Conjecture 10.5 (Simpson’s Conjecture). Rigid local systems are of geometric origin.

As Jake explained, this conjecture makes many predictions. If we take any property satisfied by a
local system of geometric origin, we can try to verify that rigid local systems satisfy the property. For
example, take the property of being a direct factor of a Z-VHS. Jake explained that Mochizuki showed
in the quasi-projective case that rigid local systems are direct factors of a Q-VHS. In order to conclude
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the rigid local system is a direct factor of a Z-VHS, we are left to show that the rigid local system is
integral, i.e., that the monodromy is defined over O for a number field K.

The main goal of this talk is to prove this statement for cohomologically rigid local systems.

Theorem 10.6 ([EG18, Theorem 1.1]). Irreducible, cohomologically rigid local systems with finite-
order determinant are integral.

Remark 10.7. Implicit in the statement of cohomological rigidity is the group GL, but it is natural to
ask similar things for a different connected, reductive group G. By [KP22, Theorem 1.2], the analogue
of Esnault—Groechenig’s integrality result holds for G-cohomologically rigid local systems.

Remark 10.8. One can ask if Esnault—Groechenig’s theorem implies Simpson’s Conjecture, viz. are
all rigid local systems also cohomologically rigid? In this simplest phrasing, de Jong, Esnault, and
Groechenig construct a rigid but non-cohomologically rigid local system ([dJEG22]). However, one
may ask the sharper question of whether all rigid local systems are G-cohomologically rigid (here G is
the Zariski-closure of monodromy); the answer to this question is unknown.

. Another property of representations of geometric origin in our context is the relation between choices
of the prime number /.

Conjecture 10.9 (Deligne). Let X/F; be a normal variety and ¢ # charF, a prime. If £ is an
irreducible Q,-sheaf on X with finite determinant, then there is a number field E C Q, such that:

(a) For all closed points « € | X| we have det(1— Fyt | ;) € E[t], where F; is the geometric Frobenius
of the point z.

Why is this predicted? The fact that the local system is defined on X/F, means the corresponding
representation is extended from 7y (XTJ to m (X]Fq). In particular, the representation is arith-

metic, so we expect the representation to come from geometry and the cohomology of a family
of varieties. But in this case, the characteristic polynomials of Frobenius count points on the
various fibres. So if we take the total cohomology, the characteristic polynomials should live in
Z[t]. However, our conjectures only assume this is a direct summand of the total cohomology, so
the coefficients of these characteristic polynomials live in some number field.

(b) For all places X" of E not above char Fy, there is an E)y/-sheaf £ with
det(1 — Fpt | &) = det(1 — Fyt | €).

As the local system conjecturally has geometric origin, this predicts the choice of prime ¢ (the
place A corresponding to a different choice) when taking cohomology doesn’t have much effect,
as it is still just counting points in some fixed family of varieties.

(¢) Roots of det(1 — Fit | £) should be integral over Z [m]

This is some property that is satisfied when £ comes from geometry. It is saying that the Frobenius

eigenvalues of the sheaf should behave like the Frobenius eigenvalues acting on cohomology.

(d) & is pure of weight 0.

This conjecture is actually mostly known, as we will see in the following two results.

The first is a result coming from Lafforgue’s proof of the Langland’s Program for Function Fields for
GL, [Laf02]. Via this proof, Lafforgue proves the Relative Fontaine-Mazur Conjecture (Conjecture
10.2) for curves over finite fields, as he is able to realize that arithmetic local systems on some curve
come from the cohomology of a stack of shtukas.
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Theorem 10.10 ([Laf02, Théoréme VIL.6]). If dim X = 1, Conjecture 10.9 holds.

The second result proves Deligne’s conjecture when the normality assumption is replaced with the
stronger condition of the variety being smooth.

Theorem 10.11 (Lafforgue, Deligne, Drinfeld, see [Dril2]). If X is smooth (and dim X > 1), Con-
jecture 10.9 holds.

The proof works by a reduction to the theorem in dimension 1. For each curve on X, we can find some
local system £’ as in part (b) of the conjecture. Then the job is to show that these local systems glue
together, and this is non-obvious.

Remark 10.12. One way of thinking about the characteristic polynomials of Frobenius is in terms
of the Weil Conjectures. Another way of thinking about these is that the characteristic polynomials
det(1 — F,t | £) determine £ at least up to semi-simplification by the Cebotarev Density Theorem, so
the & in part (b) of the conjecture is unique. However, this relation between Q,-local systems and
Qg-local systems is not functorial. In fact, this bijection should not be expected to be a functor, as in
one category, the morphisms are Q,-vector spaces, while in the other they are Q,-vector spaces.

Remark 10.13. In Deligne’s Conjecture 10.9, we restricted to the case of X over a finite field. However,
the Relative Fontaine-Mazur Conjecture 10.2 is stated for any finitely-generated field, so we should
expect Deligne’s Conjecture to also be true in this case.

Conjecture 10.14 (Non-abelian Variational Conjecture). Suppose X — S/C is a smooth and proper
map and that V is a local system of geometric origin on a fibre X,;. Then the Relative Fontaine-Mazur
Conjecture gives a prediction when the local system Vg on a nearby fibre is of geometric origin.

Specifically, suppose the 71 (S, s) - V orbit is finite.
Then:

(a) There is a dominant étale map S’ — S such that V extends to Xg-.

(This part is proven and is just a way of rephrasing that the orbit 71 (.5, s) - V is finite. It makes
no mention of V having geometric origin on Xj.)

(b) The local system Vgeneral fibre of X4 —s 15 Of geometric origin.

Let us briefly say why the Relative Fontaine-Mazur Conjecture predicts this. Assuming the conjecture,
what one should check in verifying the local system V general fibre of x4 -5 15 0f geometric origin is that
this local system has finite orbit under the Galois action of the generic point of S over some finitely-
generated field. Roughly, this Galois group is composed of the Galois group of S and the Galois group
of the finitely-generated field. The Galois group of S by assumption induces a finite orbit, while the
Galois group of the field should be independent of fibre; hence if it holds for one fibre it should hold
for nearby fibres.

Some predictions coming from this conjecture are known. For example, if the local system on one fibre
in this family underlies a Z-VHS then the same is true on all fibres. This is a theorem of Katzarkov,
Pantev ([KP02]) and Jost, Zuo ([JZ01]). One may also use Mochizuki’s work in [Moc06] to derive the
result using parabolic Higgs bundles.

10.2 Integrality

For the rest of this talk we will explain how the Theorem of Lafforgue, Deligne, and Drinfeld (Theorem
10.11) implies the result of Esnault—Groechenig (Theorem 10.6).
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Lemma 10.15 (Simpson). Let X be a smooth, projective variety over C, and suppose V is rigid. Then V
is defined over Ok [%] where K is a number field and N € Z~y.

Proof. By assumption, [V] € Mp(X,r) (C) is an isolated point of the character variety (which is a finite-type
Q-scheme), so the residue field of this point is finite over Q. Then by some algebra the representation can be
defined over a slightly larger number field. To show we only have to invert finitely many primes, we use the
deep result that 71 (X) is finitely generated. Therefore the representation can be defined by finitely many
matrices and hence only finitely many numbers. O

In order to prove the result of Esnault—Groechenig, all we have to do is remove the % appearing in the
lemma. To do this we utilize Lafforgue, Deligne, and Drinfeld’s result about switching between primes.

Proof of Esnault—Groechenig. (For more details, see [EG18, Theorem 1.1]). Let L(r,d) be a set of irreducible,
cohomologically rigid, complex local systems on X, of rank r, with determinant of order dividing d, one for
each isomorphism class. This is a finite set, so Simpson s Lemma implies the existence of an integer IV such
that every local system in L(r,d) is deﬁned over Ok [+ ]. Choose primes £{ N and ¢ | N. For an element
V € L(r,d) take the associated representation

pv: m1(X) — GL, ((’)K HD .

For a place of K, X\ | £, we can then take the A-adic completion

pva: m(X) — GL, (OK “7]) — GL, (OK [ZH M) .

As GL, ((’) K [%] M) is a profinite group, this map factors through the profinite completion of 71 (X), which

is 7$*(X). So we have the commutative diagram

By rigidity, Jake explained how this representation can be extended to a model of X over a finitely-
generated QQ-algebra. A similar argument shows the representation can be extended to a smooth model over
R which is finitely-generated over Z.

m(X) — GLy (Ok [#]) — GLy Ok [#]™)
\ / Tarithmeticity
————— 7{"(Xr)
Now suitably pick a closed point p in Spec(R) which is not above ¢, then reduce mod p. 7

This gives the commutative diagram

17Added by the note-taker: The closed point p | p must satisfy the following conditions, with p uniform across all represen-
tations from L(r,d) (see [EG18, Bottom of p. 4285]).

1. p is prime to the order of the image of the residual representation

AX
7t (X) = GLy, (OK {%} /m) .
2. ptl.
3. pfN.
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Note that X, := Xg xg R/p is now a variety over a finite field.
By Part (b) of Theorem 10.11 (see 2b of Section 10.1), there is a representation

ppe: mS(Xp) — GLy (Qp)

which is a companion to py . This yields, by “unspecializing” the representation, a Qg -representation of
7§® (X) and therefore of 71 (X) which we call py p. 18

If we have chosen the ¢ and p sufficiently nicely, we claim we have constructed a bijective map from
the isomorphism classes of irreducible, cohomologically rigid, rank r, with determinant of order dividing d,
Q-representations to the isomorphism classes of those Q, -representations. In fact, it is enough to show this
mapping is an injection: Q, and Q, are isomorphic as fields, so there are the same number of isomorphism
classes of irreducible, cohomologically rigid, rank 7, with determinant of order dividing d representations of
m1(X) over either field.

Assuming the claim, we will have shown that for any ¢/ | N there is an integral model of the representation
py. This is because 7¢* (X) is a profinite, compact group, so any representation factors through a maximal
compact subgroup of GL,, (@g/). Using the integrality criterion of [Bas80, Corollaries 2.3 and 2.5], this is
enough to show the result.

In order to verify the claim, we need to check two things:

1. We need the representation py ¢ (and py p ) to be irreducible, cohomologically rigid, rank 7, with de-
terminant of order dividing d, in order to have a map between the appropriate class of Q-representations
and the appropriate class of Q,-representations.

2. We need this map to be injective.

The obstruction to cohomological rigidity is

H' (X5,End’ (py pe)) .1

4. p is prime to the order of the determinant of the representation

pvi m(X) — GLy, (OK [%D .

18 Added by the note-taker: Let us explain how this yields a @[/-representa‘cion of m1 (X). Let p be a geometric point of
Spec(R) over p.
We consider the companion to py p x,
PVp0 - st (Xp) = GLyp, (QZ’) .
It is easy to check that py , s has finite determinant. Then we pull back py y A to a representation of Wft (X;)7 then to a
Qy-representation of wft (X) via the surjective specialization map

sp: (X)) - 7St (Xp) -

Finally, we pull back again to get a representation of 71 (X).

19 Added by the note-taker: The verification of the other properties of py ¢ follows from first verifying the representation
pv,x factors through py p x, and this is where the assumptions on p are necessary. Let p be a geometric point of Spec(R) over
p. Recall the specialization isomorphism

. ’ o 4 ’
sp: ﬂ'ft’p (X) — ﬂft’p (Xg) s
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The second part on injectivity has obstructions
H° (X, Hom (py, o))

for each pair of distinct representations pq, p2: m1 (X,) — GL, (@5/).

By Part (d) of Theorem 10.11 (Part 2d of Section 10.1) both of these obstructions are cohomology groups
of pure local systems; hence, the obstructions are pure. Therefore the dimensions of the obstructions can be
read off from the respective L-functions. In particular, the dimension of the obstructions are independent of
the prime A and therefore vanish.

O

2 /
where Wit’p denotes the prime-to-p quotient.

We first want to show the representation
. 1 AX
pva: it (X) = GLn | Of {ﬁ} )

2 ’
factors through ﬂ‘;t’p (XF)' By the prime-to-p specialization isomorphism, it is enough to show we have the factorization

i ot 11/
(X)) — WT“»P (X) —» GLn ((’)K {N] > .

This is done in two steps. First, the condition that p is prime to the order of the image of the residual representation
. 1 AX
7§ (X) = GLy, | Ok [ﬁ} /m|.

ensures the factorization

) o, 17/N
73 (X) = 7P (X) = GLy, ((’)K {N} /m> .

17N 17AN
GL, | Ok | = GL, | Ok | —=
(ox[3)") = (e 5])
is pro-¢, so the assumption that p t £ yields the factorization
) o, 17/N 17/
st (X)Hﬂ-it’p (X) = GLy, | Ok [N] — GLn, | Ok |:N:| Jm .

Using the assumption that p is prime to the order of the determinant of the representation

Second, the kernel of the residue map

pv: m(X) — GLn (OK {%}) ,

L 1 AX
”it’p (Xﬁ) — GL,, (OK [N] )
is finite.

o o
By replacing p with a point with larger residue field, one can show this representation of w‘ft’p (XF) factors through W(ft‘p (Xp)
and the resulting representation, which is py , x, has finite determinant. (This is [EG18, Proposition 3.1].)

one similarly shows the determinant of

40



11 Rigid-Analytic Geometry. Speaker: Zeyu Liu.
Notes by Mehmet Basaran

11.1 Rigid analytic space

Definition 11.1. A nonarchimedean field is a field K that is complete with respect to a non-archimedean
absolute value | - |, i.e. | - | satisfies

(i) |z|=0if z=0
(ii) [zy| = |z[ly|
(iil) |z 4 y| < max (Jz],]y|)
Example 11.2. K =Q,,F,((T)),C((T))

From now on we fix a nonarchimedean field K with ring of integers O = {z € K: |z| < 1}, maximal ideal
myg = {z € K: |z| <1}, and residue field k = O/mg.

Definition 11.3 (naive definition). X/K is called an n-dimensional compact manifold, if
(i) X is an analytic variety over K,
(ii) X is compact, and

(iii) dim X = n.

Theorem 11.4 ([Ser65, Théoreme (1)]). Assume that K is discretely valued and q = |k| < co. Then there
are only ¢ — 1 many isomorphism classes of compact n-dimensional manifolds over K.

Because of this theorem, the naive definition of a compact p-adic manifold is not very interesting. There-
fore we need new ideas to work in rigid analytic geometry. Mimicking the setup in algebraic geometry outlined
below, where polynomial algebras are the building blocks, we start working in rigid analytic geometry by
first defining Tate algebras, which will serve as building blocks in this case.

Classical algebraic geometry Rigid analytic geometry
schemes/C rigid spaces/K
U U
affine schemes affinoid rigid spaces
! !
finite type algebras affinoid algebras
U U
polynomial algebras Tate algebras

11.1.1 Tate algebras

Tate algebras can be thought of functions on the unit disk.
In the complex case C, holomorphic functions on the open unit ball are given by power series f(z) =
> apz™ with restrictions on the coefficients a,,.
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In the nonarchimedean case K, we consider power series f(T) = Y a,T" with coefficients a,, € K. This
power series f(T) converges on the closed unit ball B if and only if |a,| — 0. This is true, since restricting
to B gives

oo
g apT"| < max |a,T"| < max |ay| .
"ok n>k n>k

Definition 11.5. For n > 1, the n-th variable Tate-algebra of K is
T, = To(K) = {ZaJXJ; lay| — 0, for ||J| — oo} :
J

where J = (j1,. .., jn) € N* is a multi-index, ||J|| = 327, ji, and X7 = 2" -- - xdn. Tt will also be denoted
by K (X1,...,X,). So T,,(K) is the subring of formal power series that converge on B™.

Example 11.6. e Q,(X1,...,Xy)
° C<X1,...,Xn>,whereC:(Cp: @p

In both of these examples, elements of the Tate algebras can be viewed as functions on the unit ball B™ (C') =
{(x1,.. . xn) s @ € Cylzy] <1}

e Q, <X,X*1> = {Zfi_oo a; X% lim|a;| — 0 as |i| — oo}.
Elements in this Tate algebra can be viewed as functions on the unit circle {a € C: |a| = 1}.

Definition 11.7. Given a function f = Y a;X”7 € T,(K), we define its GauBl norm || f|| to be ||f|| =
max |ay|.

Lemma 11.8. T,,(K) with the Gaufl norm is a Banach algebra, i.e. for all f,g € T,,(K) and ¢ € K we have
(1) |IfIl =0 if and only if f =0,
(ii) |If + gl < max{||f]l, g},

(i) llcf |l = lell[ £l

(w) [l fgll < [If1lllgll, and

T,.(K) is complete with respect to this norm.

For any point z € B" (K) and any function f € T,(K), we get a point f (z) € K. So for fixed z € B" (K)
we can define a norm

I lle: To(K) — K ‘LR
fr= 1 (@)
Then (see [Bosl4, Section 2.2 Proposition 5])

ax. d. incipl
Ifll="suwp  [fle= sup |f(2)] ™ ™= max |f ()]

zeB"(K) zeB"(K) zeB"(K)
Proposition 11.9. The Tate algebra T,,(K) has the following properties:
(i) It is Noetherian, regular, and a UFD.
(i) Every ideal I C T, (K) is closed with respect to the Gaufi norm.
(i4i) For all mazimal ideals m € T, (K), the residue field T, (K)/m is finite over K.
(iv) The map B" (K) — M (T,,(K)) := {mazimal ideals of T,,(K)} is surjective.
Proof. See [Con, Theorem 1.1.5]. O
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11.1.2 Affinoid algebras

Definition 11.10. A K-algebra A is an affinoid K-algebra, if there is a surjective maps « of K-algebras
a: T, (K) — A.

Remark 11.11. (i) Any affinoid K-algebra A is Noetherian.

(ii) Given a surjection «: T, (K) — A we can define a norm on A as follows: For x € A we set

Tl = inf .
el = _int vl
a(y)=z
This norm depends on the choice of «, but the topology defined by it does not.

Definition 11.12. Let A be an affinoid K-algebra and write X = M(A). Let f1,..., fn,g € A such that
(f1,--+, fn,g9) = A. Define rational subdomains as sets of the form

X <f1fg"> —{we X: | @) < |g(@)| for all i} C X,

g
where f(x) denotes the image of f in the residue field A/x of the maximal ideal z, and the norm || - | on
A/z is the unique extension of the norm on K. Moreover, if (f1,..., f,) = A, we define

fl fifl fi+1 fl
Xis X<fz R f>

Then X = UX;, and this is called a rational cover. We define a Grothendieck topology on M (A) to be the
one generated by these Xj;.

One can define a structure sheaf O on X = M(A) that sends X to A and any rational subdomain
X<%,... > to an affinoid algebra A< ,...,%> = A(Ty,...,T,) / (gT; — fi) (see [Bosl4, Chapters
3-5] for detaﬂs).

To any affinoid K-algebra A we can associate the space Sp(4) = (X = M(A), Ox) consisting of the topo-
logical space M(A) with its structure sheaf. Such a space Sp(A) is called an affinoid rigid space. More
generally, a rigid space over K is one that locally looks like an affinoid rigid space

The goal now is to associate to an algebraic variety over K a rigid space over K. Pick ¢ € K with |¢| > 1
(e.g. ¢=1/p for K = C), and define the affinoid K-algebra

T =T, (|c|i) = K<)§1)§">

can be viewed as functions on the n-dimensional closed ball of radius |c|*. Then

Elements in Tr(f)
TO > TW o TR o K [X,. ., X,

and
B" = Sp (T7SO)) < Sp (T;})) .

Each of these are affinoid rigid spaces and we define

(AR) USp (1)

to be the rigidification of the n-dimensional affine space. If instead the algebraic variety is of the form

Spec (K [X1,...,Xp] /), we can repeat the above process with T,Si)/a in place of 7", and we get the
rigidification

(Spec (K [X1,. .., X,] /a))"® = USP (T@ )
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This rigidification process gives a well-defined functor from the category of algebraic varieties over K to the
category of rigid spaces over K independent of the choice of ¢ and the choice of « (see [Bosl4, Section 5.4
Corollary 5] for more details).

11.2 Raynaud generic fiber functor

Let O be a discrete valuation ring with uniformizer = € O. The goal is to define a functor
{admissible formal schemes/O} — {Rigid spaces over/K}
Definition 11.13. A topological O-algebra A is called admissible, if
(i) A is topologically finite type over O, i.e.
A~O0(Xq,...,Xp) /o,
where O (X7,..., X,,) is defined as Tate algebras were defined over K before; and
(ii) A has no m-torsion, so A is flat over O.

We realize the desired functor above by sending an admissible formal scheme Spf (O (X1,...,X,) /a) to
Sp (T, /), where T, = (O (X1, ..., X,)) [£] (see [Con, Section 3.3] for details).

™

Example 11.14. Let X = Sp (C'(T")). To show that X has many nonsplit finite étale extensions, we show
that H}, (X, p,) is very large. To see this, consider the Kummer sequence

0 Hp Gm Gm 0,
T +—— xP

which is exact in the étale topology ([Sta24, Tag 03PL]). Therefore we get a sequence
0 —— C(I)*/(C{T)*)’ —— H} (X, pp) —— H} (X,Gp).

Since X has no nontrivial étale line bundles, the latter part H}, (X, G,,) vanishes, and thus H}, (X, u,,) ~
C(T)*/ (C{T)*)?, which is nontrivial. For example it has the nonzero element 1 + p!/1000000000" " Thig can
be seen by looking at the coefficients a,, of any p-th root. They satisfy the recursive relation

m—1)p—1
( )p pl /1000000000 am
pm

Ay = — -1

and since

(m—1)p— 1p1/1000000000 >1
pm

i

the coefficients a,, do not tend to 0. In contrast, if we did the same computation with Spec (C[X]) in place
of Sp (C' (T)), then we get
0= CT)*/ (CT)*)" ~ H}, (Spec (C[T], 1)) -
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12 The p-adic Riemann-Hilbert correspondence, lecture 3. Speaker:
Alexander Petrov. Notes by Stefan Nikoloski.

We continue with our notation from earlier where Koo = |, K (pn ), Hx = Gal(K /K ) and Ty = G /Hk,
which is realized as an open subgroup of Z; via the cyclotomic character xcyc. We recall that we defined a
functor

. J Q,—representations Koo —vector spaces M
H{ " et Gk — T gM—M (%)

as follows: Starting with a Qp-representation V' of G, we consider (V ®q, C)Hx | which by the almost
purity theorem is a vector space over K, with the same dimension as V. We also had a decompletion H(V),

a vector space over K, such that H(V) ®x__ Koo =~ (V @, C)Hx. This was a functorial construction and
H(V) comes with a K.-semilinear I'r-action. We then define a K-linear operator?’ on H (V) by:

o qv) —w
= lim W —Y
¢(v) ’7611):1( chc(’y) -1

The purpose of ¢ is to capture the I'i-action, although we remark that ¢ could lose a bit of information.
For example, if I'x acts through a finite quotient on H(V'), then any v close enough to 1 will act trivially
on H(V) and hence ¢ = 0.

Example 12.1. Let V = x¢,. = (e), where a € Z,, is close enough to 1 that we can make sense of the power

of the cyclotomic character. Since Hg acts trivially on V we have that (V ®q, C)¥* = (e® 1) - Ko and
from this H(V) =(e®1) - K. Now

. Xeye(y) =1
dle®1) = lim 2/~
(col)=ln -1

From this we deduce that ¢ acts on H(V') as multiplication by a.

(e®1)=ale®1)

Definition 12.2. The eigenvalues of ¢ acting on H (V') are called the Hodge-Tate weights of V.

Motivation 12.3. The motivation for this definition comes from the Hodge-Tate decomposition. We recall
that for X/K smooth and proper and V' = HZ (X3, Q,) we have the decomposition

V@g, C~@H"(X,0%) ®K C(—i)

Therefore, V ®q, C looks like a direct sum of cyclotomic characters. By the same computations as in Example
12.1 we get that

H(YV)= EB H"(X,0Q%) @k Koo
with ¢ acting on the graded piece indexed by 7 as multiplication by —i. In other words, ¢ remembers the
Hodge numbers on the n-th cohomology.

As we want to study the functor Dqr we instead consider (V ®q, BS{R)HK . We recall that B:R has
a filtration whose associated graded ring is a direct sum of Tate twists of C. Therefore, on the associated
graded pieces the action of H is same as the action on C. Moreover, after a choice of a system of compatible
roots of unity there is a canonical element ¢ € B(TR such that g € Gk acts on t by g(t) = Xcyc(g)t. We note
that the filtration on B(TR is given in terms of power of ¢, i.e. F‘iB(TR = tiBIR.

200n an element of Ko, ' acts via a finite quotient. Hence every « close enough to 1 will act trivially on this element,
giving us the Koo-linearity of ¢.
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Given the de Rham comparison theorem we can easily see the existence of such ¢. Consider the projective
line Pi. We have Hg (PL) ®q, Bar =~ Hig(Py) ®x Bar. By Serre’s duality Hig(Pj) is isomorphic to
K, so the right-hand side is isomorphic to Bgqr. The image of 1 under this isomorphism has to land in
the Gg-invariants of HZ (PL) ®x Bar, which is isomorphic to (Q,(—1) ®q, Bar)“*. After a choice of a
generator of Q,(—1), the image of 1 will be of the form 1 ® ¢, which gives us the desired element ¢ of B:{R.

As before there is a decompletion RH* (V) such that RH* (V) @ (Big) " ~ (V ®q, Big)"*, where
RH™(V) is a free K [t]-module of rank dimg, V, which is also equipped with a I'k-action. We remark
that K [t] maps into (Bj)7%, as Hy acts trivially on both K., and t. Moreover, the projection onto the
zeroth graded piece gives rise to the commutative diagram

RHH(V) @k (Bip)¥x ————— (V XQ, Bip) s
H(V) ®x. Koo = (V ®q, C)Hx

We want to study the I'k-action on RHT(V). To do that we can define an operator ¢ on RHT (V)
which will be compatible with the action on ¢ on the base ring K [t], which in turn is given by the
earlier derivative formula. To see how ¢ will interact with the K [t]-module structure on RH*(V), we first
compute its action on K [t]. As Gk acts by the cyclotomic character on t we get that ¢(t) = ¢. Therefore,
as ¢ is a Koo-linear? derivation on K [t] we get that ¢ = td; on K [t]. Now generalizing the construction
of ¢ on H(V) we can construct an operator ¢ on RH™ (V') such that

¢(am) = ap(m) + t0:(a)m

for all a € Koo[t] and m € RH (V). We can then equip RH (V) with a connection V : RHT(V) —
RHY (V) @k Koo [t]% defined by V = ¢ ® 9. We now have that

Dar(V) @k Koo =~ RHY(V)[1/t]V=°

Proposition 12.4. V is de Rham if and only if RH*(V)[1/t] is spanned by flat sections as a K ((t))-vector
space.

Example 12.5. We revisit our earlier example. As in Example 12.1 let V' = x¢,.. Since Hy acts trivially
on V, as above we can immediately see that RH* (V) is a free Ko [t]-module of rank 1. Moreover, as in
Example 12.1 we get that ¢ will act by multiplication by a on a basis element ¢ of RHT (V). We remark that
¢ is a Ko-linear operator, but not a K [t]-linear operator. It will satisfy the derivation rule mentioned
above and therefore for f € K [t] we have:

p(fe) = fole) +10i(f)e = afe+10,(f)e = (af +t0:(f)) - e

Hence, after identifying RH (V') with K [t] we get that ¢ acts on K [t] as a+td;. From here V = d+a%.
Now, since RH"(V)[1/t] ~ K ((t)) is a 1-dimensional vector space, by Proposition 12.4 xg . is de Rham if
and only if K ((t)), equipped with the connection V = d—l—a% has a non-zero flat section. As this differential
equation has a solution in Ko ((t)) if and only if a € Z ?!', we get that x& . is de Rham if and only if a € Z.

12.1 The Relative Setting

Let X be a smooth variety over K. Our goal is to define an analogue of the de Rham functor for local
systems

21 If @ € Z, obviously t—¢ is a non-zero solution. Conversely, let f = PN a;t* be a non-zero solution to V = 0. Then,
0=df +a% =32 yvai(i+a)t’"ldt. As ay # 0 we must have a = —N € Z.
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. - 1
. Qp—local with flat conncctlopV:EﬁE@QX
DdR : {systems on X and filtration ---CF'ECF"1EC...

vector bundles E on X }
such that V(F'E)CF'~'E@QL

satisfying the following:
Properties 12.6.
1. If X = Spec K, then Dgr(V') = (V ®q, Byr)®x

2. If f: Y — X is a morphism of smooth varieties and L is a local system on X, then f*Dgr(L) =
Dar(f*L)

Definition 12.7. A local system L is called de Rham if rankg, Dqr (L) = rankg, L.

Theorem 12.8 ([LZ17, Theorem 1.1]). Let X be a smooth connected variety over K. Let L be a Qp-local
system on X. Suppose there exists a point x € X (K) such that the G -representation L, is de Rham. Then
for any finite field extension L/K and every y € X(L), L, is de Rham.

Proof. The proof follows rather formally from Properties 12.6. L, being de Rham is equivalent to the
equality dimg Dgr(L,) = dimg, (L) being satisfied. By the properties mentioned above this equality
becomes rankg, Dgr (L) = rankg, (). Applying this equivalence in the reverse direction for any y € X (L)
we get the result.

O

12.2 p-adic Simpson and p-adic Riemann-Hilbert

Let X be a smooth variety over K. To construct the relative dR functor, the first step is to build relative
versions of the functors H and RH*. There is a functor

Higgs bundles M/ Xk
0:M— M@0k,
—linear endomoprhi(:m ¢:M—M
such that fop=(¢p—1)00

. Qp—local
H: {systems onX Oxye

satisfying the following:
Properties 12.9.

1. For every x € X(K) and local system L. on X we have H(L), = H(L,), where the functor H on the
right is the one defined in (x).

2. The functor H preserves ranks, i.e rankg, (L) = ranko,,  H(L).

3. The characteristic polynomial of ¢ has constant coefficients.

Example 12.10. Let f: Y — X be a smooth proper morphism of varieties and . = R" f,Q,,. Then
HL) =@ R .9/ x 9k Ku

Moreover, the Higgs field is 0 : R”’if*Qg,/K — R”*i“f*ﬁif/k ® Q%. On the i-th graded piece ¢ acts as
multiplication by —i. This means that § maps the (—i)-eigenspace of ¢ to the (—i + 1)-eigenspace of ¢,

which gives us the relation § o ¢ = (¢ — 1) 0 6.

Remark 12.11. The relation § o ¢ = (¢ — 1) 0§ implies that 6 is nilpotent in the sense that this bundle has
a filtration such that on the associated graded module 6 acts as 0 22. Additionally, the relation implies that
(M,0) ~ (M, \0) for any A € KX, as in the setting of variations of Hodge structures.

22 One such filtration is given by the eigenspaces of ¢. The relation o ¢ = (¢ — 1) 0§ means that § will map the \-eigenspace
of ¢ to the (A — 1)-eigenspace of ¢, which we already saw to be the case in Example 12.10.

47



Remark 12.12. If X is over C' and not over K, then we get neither ¢ nor the nilpotence of . However,
there is a more general p-adic Simpson correspondence over C'.

Let X [t] be the locally ringed spaces whose underlying topological space is Xk and whose structure
sheaf is Ox,_[t]. We also have a functor

vector bundles E on Xg_[t]
systems on X

RH™T : { Qp—local } ———— { with a flat connection V:E-E®+ (Q)l(Kwﬂt]]@OXKoo[[t]] dt)
satisfying the Leibnitz rule

Example 12.13. We consider the same example as above with the local system L. = R"f,Q,. We then
have

RHY(L) =Y Foage Hir(Y/X) @t Ox, [t] C Hir(Y/K) ®0x Oxic (1)
and the connection is V = Vg ® d, where Vg is the Gauss-Manin connection and d is the usual derivation.

We can now decompose the connection V appearing in the definition of the RH™ functor as
V = Veeom . yarithm - where V8™ ig the projection to the summand Q}(Kw[[t]] and V&ithm js the pro-
jection to the summand Oy, [t] dt. Moreover, since V is flat, these two will have to commute with each
other. With this notation we remark that the target category of RH™* is equivalent to

vector bundles E on Xk [t]
with a connection Vgeom:E%E(@%Q}(Kw [e]
and OXKxflinear endomorphism ¢:E—FE
such that ¢(tm)=td(m)+m and [VE™ ¢]=0

where ¢ = t - V&hm  From this equivalence we can connect the two functors and in particular we get
H(L) = RH*(L)/t 6 = VE™  (mod t) ¢ =t VI (mod ¢)

Remark 12.14. The functors H and RH™ are far from equivalence of categories. Indeed, for any finite
image representation as explained at the beginning the endomorphism ¢ will be trivial. Hence, any such
representation will be sent to the trivial object.
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13 Algebraic differential equations in characteristic p > 0. Speaker:
Ziquan Yang. Notes by William C. Newman.

13.1 Algebraic de Rham Cohomology

Definition 13.1. Suppose 7: X — S is a smooth morphism of schemes. For (£,V) € MIC(X/S), define
the complex?3

. i Vi i
Vx/s Qox €= (- = Dy/s Qox € —H WL Qo €= ..)

where )
Vilwee)=dw®e+ (—1)'wA V().

Define the (relative) algebraic de Rham cohomology

HI-(X/S,(E,V)) = Rim (Q% /s ®oy ).
These are quasi-coherent sheaves on the base S.

Remark 13.2. Alternatively, one can define for Hi, (X/S, (€,V)) as the gth derived functor of
MIC(X/S) — QCoh(S)

(E,V) = 1 (EVT0)

These definitions are shown to be equivalent in [Gro68]. Note that an element of MIC(S/S) is a pair (€, V)
with £ € QCoh(S) and V: & — £ ®o4 Qg/s = 0. Hence, the natural map MIC(S/S) — QCoh(S) is an
equivalence of categories. We sometimes will write MIC(S/S) instead of QCoh(S).

We focus mainly on
Hir(X/S) = Hir(X/S,(Ox,d)).

Remark 13.3. For S = Spec(k), Hir(X/k) satisfies some usual cohomology properties, including Poincare duality,
Kunneth property, and a cycle class map Z*(X) — H?"(X/k). When k has characteristic 0, X + Hjr(X/k) gives a
Weil cohomology theory ([Sta24, Tag 0OFWC]).

Lemma 13.4. Let A be an abelian category with countable direct sums and enough injectives. Given a left
exact functor T: A — B and a complex K*® of objects in A with a filtration

oD FZ’([(‘) ) F”l(K‘) Deen,

whose graded pieces gr' K™ = 0 for |i| sufficiently large, we have a spectral sequence EY'? converging to
RPTIT(K*®), where
Ef’q — RerqT(grp K')

and differential d: EP* — EPYM coming from the boundary map in the long exact sequence coming from
applying RT to
0 — grP™H(K®) — FPK®*/FPT2K® — gr’(K®) = 0

We get an induced filtration on R*T(K®) by setting F'R"T(K*®) to be the image of

Rirm,(F'K®) — Rim,(K*).

23Note this complex is not simply the tensor product of the de Rham complex Q;(/S with &, as the differentials depend on

the connection V.
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Definition 13.5. For any complex K*®, one can define the so-called “stupid filtration” by

meF,?<?

K7 j>1

The Hodge-to-de Rham spectral sequence is the spectral sequence EP*¢ computing R'r, (Q% / g) via Lemma

13.4 using the stupid filtration. The induced filtration F on Hig(X/S) = Riw*(Q;(/S) is called the Hodge
filtration.

We can compute the Fi-page of the Hodge-to-de Rham spectral sequence explicitly:
EPY = RV (gr?(Q% j5)) = RV (O g[-p]) = RO (% )-

In our setting, we cannot take the complex conjugate of the Hodge filtration F' to obtain another filtration
of R, (0% ). However, we do have the following notion:

Definition 13.6. The conjugate spectral sequence is the “second spectral sequence of hypercohomology”
conEg’q = RPW*(H(I(Q;(/S)) = Rp+q77*(93(/s)

The induced filtration Fro, on RPT97, Q% / ) is called the conjugate filtration.

We will see later why this is some sort of analogue of the complex conjugate of the Hodge filtration in
the complex-analytic setting.

13.2 Gaufi—Manin Connection

In the complex analytic setting, given a smooth map 7: X — S and (£,V) € MIC*(X), there is a connec-
tion on R'm,E called the GauB-Manin connection. We describe an algebraic analogue of the GauB-Manin
connection and prove that it satisfies Griffiths transversality.

Suppose we have smooth maps

The Gau-Manin connection Vgy on Rim,.£ will give a commutative diagram of functors

DMIC(X/S)

l wjvcm)

DMIC(X/T) DMIC(S/T)

R(rof) i /

DMIC(T/T)
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where DA denotes the derived category of A. As a special case, we obtain a “Leray” spectral sequence
EP® = Hip (S/T, (HiR(X/S), Vam)) = HAR"(X/T).
To construct Vg, recall the exact sequence
0= 7 Qg = Uy )p = Qx5 = 0. (3)

Exactness on the left follows from smoothness of X — S ([Sta24, Tag 06B6]). We define the filtration
GiQ;l(/T to be the image of

Qs Box QT)L(?CZF — Q%
Using (3), one can show that graded piece of this filtration is
gre Wy = Qg Qo Q?&g
Now, the spectral sequence induced via Lemma 13.4 by this filtration has F;-page

EPY = RP i, g, Q% ) = Rp+q7r*(7r*Qg/T R0y Q;{/g) = Qg/T ®os RIm.(Q%/s) = Qg/T Ros Hig(X/9),

where the middle isomorphism is the projection formula (which is allowed because 7*QF /T is locally free).
The Gaufi—-Manin connection Vgy is defined to be the map

d
Hig(X/S) = EYT S By = QAIS‘/T ®os Hig(X/9).
In fact, the associated de Rham complex QE/T ®og Hi (X/S) is equal to the complex E}7.
Theorem 13.7 (Griffiths transversality). We have Vom(F'Hig (X/S)) € Qg,p @0, F' ' Hig (X/5).

Proof. Recall as stated in Lemma 13.4 that the differential Vgy = d: E?’q — Ell’q is obtained by taking
the boundary map in the long exact sequence coming from applying Rni to

00— gri(K*) —— GOK*/G?K* —— g1%(K*) —— 0

0 — W*Qg/T R0 Q;{/g SN GOQ}/T/GQQ;(/T — Qg — 0
We have the following subcomplex of the above complex:
0 = 7* Qg /1 Qo Fi—lﬂgg/ls — FYG°Q% )7/ G*Q%/r) = F'Q% /5 — 0.

Applying R4m, and looking at the connecting homomorphisms, we get the commutative diagram

FHY (X/S) —2 QL 7 ®0y FIm R (X/S)

J !

Vaem
HgR(X/S) — Qé’/T ®os chiR(X/S)~

This gives the desired result. O
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13.3 Characteristic p

We now work exclusively in characteristic p. Suppose S is a characteristic-p scheme, i.e. pOg = 0, and
let m: X — S be smooth and proper. Recall that for any characteristic-p scheme 7', we have an absolute
Frobenius morphism Fp: T — T, defined by taking the underlying map of topological spaces to be the
identity, and defining the map on Or to be a — aP.

Define X®) o, () to be the fiber product

xX® o, X
ﬂ.(p)i ™
s 1,9

Fx

s .3

commute. When writing X/S, we mean the morphism 7: X — S, and when writing X /S, we mean the
morphism 7 : X(®) — g
While the complex F,Q% /s & priori only has Og-linear maps, note that for f € Ox, we have

(o™ (flw) = d(fPw) = d(f*) Aw + fPdw = fPdw = o™ (f)dw,

and so F*QB(/S is a complex of Oy )-modules. Moreover, we can explicitly describe Hi(F*Q;(/S) via the
Cartier isomorphism:

Theorem 13.8 ([Kat72, Proposition 2.1.1]). For each i, there is a unique isomorphism
ct: Q}(p)/s — H"(FiQ%/s)

called the Cartier isomorphism, such that

cH =1
CHwnr)=Ctw)rC ()
C Hdo ! (x)) = [xP ' dx]
Using this, we are able to give a different form of the Es-page of the conjugate filtration:

Corollary 13.9. The Cartier isomorphism C induces an isomorphism of Og modules
conlly" = RUmH (@ s5) = BT (070 )
Proof. Using that F' is a homeomorphism, we have the following isomorphisms:
Rom HY (R j6) = R (rP FOH (2% )
R HY (PO 5)

1

R

Raﬂ&p)ﬁl&(m/s
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If Fg is flat or the R, (5% / ) are flat, flat base change and the above give
conBy" = R 0" QY g = FEROm, QY .

Theorem 13.10 ([DI87, Corollaire 3.7]). Assume S lifts to S flat over Z/p? and X®) lifts to a smooth
morphism over S. Then T<pF*QB(/S is decomposible. Each choice of X®) — S induces a quasi-isomorphism

% . EJ i . E °
P o jsl-il = PH (FQ%5)[-i] = F.0% s

i<p i<p

In the statement of the Theorem, the 7, refers to the truncation of complexes, defined for a complex
K* with differentials d® by

K? i<n
Ten(K®) = {ker(d") i=n
0 1> n.

From this result, one obtains the following on degeneration of the Hodge-to-de Rham spectral sequence in char-
acteristic p:

Corollary 13.11. If S = Spec(k) with k perfect, dim(X) < p, and X lifts to Wa(k), then the Hodge-to-de Rham
spectral sequence EY*? = H(X, Q% ;) = HP*9(X,Q%/,,) degenerates at the E1 page.

We also have a theorem on the degeneration of the conjugate spectral sequence:
Theorem 13.12 ([Kat72, Proposition 2.3.2]). If R®f«(Q2x,g) is locally free of finite rank and the Hodge-to-de Rham

spectral sequence degenerates at the Ei-page, then the conjugate spectral sequence ConE;’b = Ra+b7r*(Q;(/S)
degenerates at the Ea-page.

Assume that S = Spec(k), k a field, and that both spectral sequences degenerate. The degeneration of the Hodge

spectral sequence gives
gr (H"(X,Q%/s)) = H" (X, Q%)
and degeneration of the conjugate spectral sequence gives
8leon (H" (X, Q%/5)) = FyH (X, Q% ;).
Hence
grtclon Hn(X7 Q;{/k) &= F/: grn_a Hn(X7 Q;{/k)

Viewing F} as an analogue of complex conjugation, we see that the conjugate filtration in this setting behaves like
the conjugate of the Hodge filtration in the complex analytic setting.

One can also use the degeneration of the Hodge-to-de Rham spectral sequence in characteristic p to show degen-
eration in characteristic 0:

Theorem 13.13. Suppose S has characteristic 0 and w: X — S is smooth and proper. Then the Hodge-to-de Rham

spectral sequence EY*? = H(X, Q% o) = HP*(X,Q%)s) degenerates at page 1.

This was originally proven using complex analytic techniques.

13.4 p-curvature

Suppose f: S — T is smooth and (£,V) € MIC(S/T). A connection V: & — Q,IS‘/T ®o4 € can equivalently
be thought of as a map V: Der(S/T) — End;-10, (€) satisfying

V(D)(fe) = D(f)e+ V(D)e

for f€ Og,ec & and
V(gD) = gV(D),

for g € Og. This is done by setting V(D) equal to the composition

€5 QL r o, € 22L €.
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Definition 13.14. Assume pOp = 0. We define the p-curvature associated to a connection V as the map
Yy : Der(S/T) — Endo (€)
given by D — V(D)P — V(DP).
Note that v (D) is indeed Og-linear as
be(D)(fe) = V(D) (fe) — V(DP)(fe) = DP(f)e + V(DY (e) — (DP(f)e + fV(D)(e)) = fibw (D) (e).
Remark 13.15. The map ¢y itself is not Og-linear, but one can compute that
Yv(gD) = V(gD)" = V(g" D) = g*¢v (D).

Thus, the p-curvature can alternatively be thought of as a map ¢y : F¢Der(S/T) — Endog (€) or ¢y : € —
F5(Qg)7) ®E.

We say that the p curvature of (£, V) is nilpotent if there exists a filtration of £ such that the p-curvature is
0 on the graded pieces. It is a fact that the Gau-Manin connection Vgy on eon S = RO, (?—Lb(ﬂ}/s)) =
Ra+b7T*QS( /s has p-curvature 0 [Kat70, Theorem 7.4]. When the conjugate spectral sequence degenerates,
such as in the hypothesis of Theorem 13.12, this then says that the Gaufi—-Manin connection has p-curvature
0 on the graded pieces of the conjugate filtration, and is therefore nilpotent.

Now in this same setting, because

/l/}VGM (Fg)an’/T*QTX/S) g Fg' (Q}G'/T) ® FéloTlan,/T*QX/Sa
we get an induced map

a n L) w * a n
8reon BT (%/5) e F§(Qg)7) © grog! R m(Qx/s)-

con

Theorem 13.16 ([Kat72, Theorem 3.2]). Assuming the hypothesis of Theorem 13.12, one has a commutative
diagram

YoM

8reon ' (Q%/5) F§(Qgr) ® gred! R (/)

Fi(Rom,Qoa) — 150

s Fs(Qh)7) ® F§(R™ 'm0 57")

X/S

where p is the Kodaira-Spencer mapping, and the vertical isomorphisms are induced by the Cartier isomor-
‘o 24
phism.

24Note that in [Kat72, Theorem 3.2], the bottom arrow is (—1)"~%+1F%(p), but there seems to be a sign error.
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14 Nonabelian cohomology and applications, lecture 4. Speaker:
Daniel Litt. Notes by William C. Newman.

The following is the analogue of the Hodge conjecture/Tate conjecture for algebraic de Rham cohomology:

Conjecture 14.1 (Ogus Conjecture). Suppose R C C is finitely generated over Z. Let K = Frac(R). For
X/R a smooth proper scheme, we have that the image of the cycle class map Z"(Xk) ®z K — Hip (XK /K)
is

span (€ € Hin(X/R)|€ mod p € Fl H2L (X, /k(p)),p € U, U C Spec(R) a dense open}

Now, we set up a nonableian version of the Ogus conjecture, due to André. Suppose k has characteristic p
and X/k is smooth. For a vector bundle £ on X with connection V, the condition that V is flat is equivalent
to the associated map

V:Tx — Endk((‘:)

respecting the Lie bracket, where the Lie bracket on the right is the commutator of composition. In char-
acteristic p, raising a derivation to the p-th power gives another derivation. As p-curvature is defined to
be

wv : F;;»TX — Endox (5)

v V(v)? = V(vP),

(see Remark 13.15) we can view p-curvature as a measure of the failure of V to respect the p-th power
operation.

Conjecture 14.2 (Non-abelian Ogus Conjecture, André). Suppose R C C is finitely generated over Z. For
X/R a smooth proper scheme, and (£,V) € MIC(X/R), we have that (£,V) is of geometric origin if and
only if for all p € U C Spec(R) a dense open, the p-curvature of (£, V) mod p is nilpotent.

Remark 14.3. The forward implication is true because the p-curvature of Vg vanishes on grp

con (€3 V)
Remark 14.4. Asin the case of the Non-abelian Hodge conjecture and the Non-abelian Tate conjecture, one
can give an equivalent statement of the Ogus conjecture that makes it look very similar to the non-abelian

version.

The following conjecture describes when (€, V) € MIC(X/R) is not just of geometric origin, but when it
trivialized on an a finite étale cover, i.e. when it is a summand of 7,0y, for finite étale 7 : Y — X.

Conjecture 14.5 (Grothendieck-Katz p-Curvature Conjecture). Suppose X/R is smooth, for R C C is a
finitely generated subring, and (£,V) € MIC(X/R). Then (£, V)¢ is trivialized over a finite étale cover if
and only if for all p € U, U C R a dense open, the pullback of (£, V) along Spec x(p) — Spec(R), (£,V)y,

has zero p-curvature.

Remark 14.6. We have that (£, V) € MIC(X/C) is trivialized on a finite cover exactly when the solutions
to the corresponding differential equation have finitely many branches, i.e. are algebraic functions. Thus,
this conjecture predicts exactly when the solutions to linear differential equations over C are algebraic.

Example 14.7. We consider the differential equation (% —9)f=0o0nAg\O, for a e C.
Take a € C, and set R = Z[a], X = AL\ {0}, and consider £ = Ox, V =d — a;ﬂ. The complex solutions
to V = 0 are constant multiples of z%, so (€, V)¢ is trivialized over a finite étale cover if and only if a € Q.
Next, we compute the p-curvature. Take p € Spec(R)® lying over p € Spec(Z). Using that (d—dz)p =0in
characteristic p, we have

VDY) = VL) - 0= (S~ Lye(p)
Evaluating at f = 2", we get
wp(diz)(z") =n—-a)(n—a—1)...(n—a—p+1)z"""P



For this to be 0, we must have n —a — k mod p to be zero, for some k € {0,...,p—1}. In other words, since
a generates [F, /I, this is zero if and only if F, = F,,.

If a were transcendental over Q, the only primes p € Spec(R)°! where F, = F, are those of the form
(a —i,p) for i € Z, so no such open dense U C Spec(R) exists. For a algebraic over Q, we can assume a is
integral by multiplying it by an appropriate integer N € Z. Note the Chebatarov density theorem restricts
the density of primes for which F, = [, for all primes p over p for deg(a) > 1. Hence, if the p-curvature is
zero at closed points of a dense open U C Spec(R), we must have deg(a) =1, i.e. a € Q.

Here are some known cases of this conjecture:
e (Katz) In the geometric setting, i.e. for (£,V) = (Riw*Q;//X,VGM), for 7 : Y — X smooth and

projective (though this is still open for summands of (R'm.Qy,/x,Vam))-

e (André, Bost, Chudnovsky-Chudnovsky) When (£,V) has solvable monodromy (think V = (& —
A)f(z), where A is upper triangular.

e (Esnault—Groechenig) Rigid Z-local systems

e (Farb-Kisin) True for certain locally symmetric varieties in the superrigid regime.

14.1 (Non-abelian) GM Connections
We discuss Katz’s aforementioned proof of the geometric case, as it will help motivate what follow.

Theorem 14.8 (Katz). Suppose R C C is finitely generated over Z, X/R is smooth, and w : Y — X s
smooth and proper. Then the p-curvature conjecture holds for (Riﬂ'*Qy/X, Vam)-

Proof Idea. Write (Riw*Qy/X7VGM) = (£,V). This comes equipped with the Hodge filtration, F. We
consider the induced map on the associated graded

gr'V:gr'€ = ar' € ®p, Q.

We claim that it is enough to show that this map is zero. Using either non-abelian Hodge theory or using
polarization with the fact that Vg preserves the Hodge filtration under these hypotheses, one sees that
(€,V) has unitary monodromy. So the corresponding representation lands in a compact group. We also
know that the monodromy is discrete: it factors through GL, (Z) because it has the structure of a Z-local
system. Thus, the image of the monodromy representation is finite.

To see that gr; V = 0, recall that, mod p we have the diagram

Yv * a
grgon(gp) $> FS(Qﬁ(p/K(p)) & grcS:ll (EP)

* Fobs () X
Fing(&p) ——— Fans(Qx, () @ Faps(Ep)

a

By hypothesis, the top map is zero, and so the bottom map must be zero as well. This bottom map is
essentially the pull back of gr, Vam mod p. Since we have that gr, Vam is zero mod p on an open dense
subset, it must be identically zero. O

We now define relative versions of moduli spaces of local systens. Given 7 : X — S a smooth and proper
map of complex manifolds, s € S, and a universal cover S — S, define

Mp(X/S) := (Mg(X,) x §)/m1(8,s).

Note this is independent of s € S, because all fibers of 7 are diffeomorphic.
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Definition 14.9. Let Y — W be a smooth map (either in the algebraic or analytic setting). A horizontal
foliation on Y/T is a subbundle F C Ty closed under the Lie bracket, such that F — 7*Tyy is an isomorphism.
A leaf of Fis a map f : Z — Y such that the induced map df : Tz — f*Ty factors through f*F, with
Ty — f*F an isomorphism.

Remark 14.10. Horizontal foliations should be thought of as non-linear differential equations, and leaves
should be thought of as solutions. If Y/W is a vector bundle, a foliation satisfying some mild hypothesis is
the same as the data of a connection.

IfY =W xY’, we can view 7*Ty as a sub-bundle of Ty, giving a horizontal foliation. Thus, we have
a foliation on Mp(X;) x S — S. This foliation descends when quotienting by 7 (.5, s), giving a horizontal
foliation on (the smooth locus of) Mp(X/S) — S.

We also have a relative Mygr(X/S) — S, which works in either the algebraic or analytic setting. Its
fiber over s € S parameterizes (£,V) € MIC(X;). By the Riemann-Hilbert correspondence, in the complex
analytic setting, this space should be isomorphic to Mp(X/S) — S, giving rise to a horizontal foliation (on
the smooth locus). It is a fact that this horizontal foliation always exists on Mqg(X/S) — S in the algebraic
setting as well. It is called the Gauss-Manin foliation, denote by Faum-

Remark 14.11. The more correct way of saying the above is that, viewing Mar(X/S) — S as a stack, it
is a crystal.

The p-curvature conjecture predicts when the solutions to a linear differential equation are algebraic. We
can ask the analogous question in this setting:

Question 14.12. When are the leaves of a foliation algebraic?

Example 14.13. Consider P{_ ;. ey \D — Conf™(P!). Inside of the associated Mgr, we have the locus of

Fuchsian ODES, which are those of the form (0", V) with V=d+ )", z?;i d. On this locus, Fgu is given
by the Schlesinger equations (see Answer 2.6).

Conjecture 14.14 (Ekedahl-Shepherd-Barron-Taylor, [ENSBT99]). All leaves of a horizontal foliation are
algebraic if and only if the foliation is closed under taking p-th powers mod p for almost all p.

Remark 14.15. This conjecture has been studied by Menzies and Papaioannou.

Instead of asking for all of the leaves of a horizontal foliation to be algebraic, one could instead ask when
the leaf through a particular point of a foliation is algebraic. The following conjecture addresses this question
for the foliation on Myg(X/5S).

Conjecture 14.16. Let R C C be finitely generated over Z, S/R smooth, s € S(R), and 7 : X — S
smooth and proper. Take (X,,&,V) € Mar(X/S)(R). The leaf through (X, &, V)¢ is algebraic if and
only if the formal leaf through (Xs, &, V) is p-integral to order w(p?) (i.e. if the formal leaf has the form
(X rparitt, ..., Y ey ant') and the function f(p) is defined to be the smallest i such that a;; has a p in
the denominator for some j, then f(p) is eventually greater than ep? for all € > 0).

Theorem 14.17 (Lam-L). This is true if (€,V) = (Riﬂ'*Qy/Xs,V) for some Y — X smooth and proper.

Proof Idea. We have (€,V) € MIC(X), which we know has a Z-variation of Hodge structure. We want to
show that (€,V) extends to a Z-variation of Hodge structure on a general fiber of . To do this, we show
that the filtrations F, F., extend to a formal neighborhood. This is done iteratively, using the characteristic
p version of non-abelian Hodge theory due to Ogus-Vologodsky. O
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15 More on variations of Hodge structures, period maps. Speaker:
Andy Jiang. Notes by Kyle Binder

15.1 Polarized Variation of Hodge Structure

Definition 15.1. A C-Variation of Hodge Structure (C-VHS) of weight n on a complex manifold S is a
C-local system H whose associated vector bundle E := H ®c¢ C* has a Hodge decomposition of smooth

bundles
- @
p+q=n

satisfying the following: Writing the associated integrable connection
V:E—EoA

into its holomorphic and anti-holomorphic parts

V=0+20,
1. The filtration
FPE = E
a>p

must be holomorphic (i.e., it is d-stable).

2. The filtration
F'E=gE
b>q
must be anti-holomorphic (i.e., it is d-stable).
3. The following version of Griffiths Transversality holds:
9: FPE — FP'E@ A
9:F'E—TF"'Ex A
Remark 15.2. If H is an irreducible local system which underlies a C-VHS, then the integers
{a: E*® £ 0}
must be a set of consecutive integers.

Proof. Suppose for contradiction we have a C-VHS coming from H with E*? = 0 even though E*~7:0%7 £ ()
and E2tk0=k £ for some j, k € N. This means we have the decomposition

D Eafl,bJrl @ O o) Ea+1,b71 D

E, = P Ee

p>a+l

Then the subbundle

is O-stable and moreover is d-stable because of Griffiths Transversality and the vanishing of E%?. Therefore
(E1,V|g,) is a submodule with integrable connection of (£, V).
The same proof shows for
Ey= @ E"

p<a-—1

that (Eg, V E2) is a submodule with integrable connection of (E, V).
But this shows (E, V) decomposes non-trivially as the direct sum of (El, V‘El) and (Eg, V|E2) which
contradicts the irreducibility of H. O
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Definition 15.3. A polarization of a C-VHS is a map of C-VHS
Y¥: H®c H — C(—n)

such that
D P @ ClR
is a hermitian metric.

Here we recall C(—n) is a weight 2n VHS concentrated in the (n,n)-th component where it is (277)"C.
The fact that ¢ is a map of C-VHS implies the smooth bundles EP'? are pairwise orthogonal with respect
to this metric:

EP9 1 ygce EPd for p#p.

Note that on each fibre v induces a non-degenerate hermitian form; this is not necessarily positive definite.

Real variations of Hodge structures (R-VHS) are defined similarly. They are the C-VHS which are
invariant under conjugation. Then a polarization of an R-VHS is a polarization of C-VHS which respects
this conjugation.

Remark 15.4. Polarizations come up in the geometric case by way of the Hard Lefschetz Theorem: multiply
the two things together and multiply by enough powers of the Kahler form to integrate. Specifically the
Hard Lefschetz Theorem allows one to define the primitive cohomology; then the Hodge-Riemann relations
on the primitive cohomology shows how this integration yields a hermitian metric.

15.2 Theorem of the Fixed Part

For the following theorem, we restrict to the case of quasi-projective varieties even though the theorem holds
in the slightly more general context of a compact complex analytic space with some closed complex analytic
subspaces removed.

Theorem 15.5 ([CMSP17, Theorem 13.1.10]). Let S be quasi-projective and (H, EP?,4) a polarized C-VHS
on S. Suppose s € H(S) is a global flat section of E. Then writing s = ) s”9, where sP? = s|gp.a, each
sP4 is flat.

We omit the proof, but the idea is to verify it using induction on p by making an analytic argument using
plurisubharmonic functions.

Corollary 15.6. On a quasi-projective S, any irreducible C-local system H may be enhanced into a polarized
C-VHS in at most one way (up to tensoring with a C-VHS on a trivial local system,).

Proof. If H underlies two different C-VHS, we will construct the internal hom between them and produce a
flat section of this which is in a pure Hodge component.

Suppose H; := (H,EP9,4¢) and Hy := (H, E'P9,4’) are two different polarized C-VHS. Consider the
internal hom of polarized C-VHS

i

flom (H,, Hy) = (ﬁ?ﬁc (H, H),%(@Ep’q,@E’p’q)p Y ®1//).

This internal hom has an obvious non-zero flat section, id, given by the identity map on the underlying
local system H. Using the Theorem of the Fixed Part, we have

id =" (id)"?

with (id)”? € Hom (@ F, @ E’)”? flat. Flatness and irreducibility ensures there is only one non-zero
component id”’?. This yields a polarized C-VHS on the trivial local system C and a map

C— ITI_B_I’/H(H17H2)
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of C-VHS, because id is concentrated in a single Hodge component. This gives a non-zero map
C® Hl — H2

which is an isomorphism due to the irreducibility of local systems. O

15.3 Period Domains

A period domain is roughly the moduli space of (polarized) Hodge structures on a fixed C-vector space with
fixed weight and Hodge numbers (and polarization). For details of the following, see [CMSP17, Section 4.4].
We restrict our discussion to the case of period domains for polarized C-VHS. For a vector space H,
weight n, polarization
Y: H® H— C,

and Hodge numbers, there is a complex analytic space D such that a map
S—™D

from S a complex manifold is the data of a polarized C-VHS (minus the condition of Griffiths Transversality)
with underlying trivial local system H with prescribed weight n, polarization ¢, and Hodge numbers.

For a rough idea of why such a space exists, once we fix ¥, the EP? of a VHS must be orthogonal to one
another, and this says the FPE and F""E are orthogonal complements to one another. Therefore the data
of the F"' "E is determined by that of FPE. This also determines the data of the EP9. So the data of the
C-VHS is completely determined by the data of the flag {F' pE}p with the correct rank given by the Hodge
numbers. For an open subset of flags, this will give rise to a polarized C-VHS. The only condition such a
flag may break is the condition for the Hermitian metric, but its failure is a closed condition. Therefore this
period domain D will be an open subset of a flag variety DV. This gives D a complex structure.

For the case of R-VHS, we can also define a period domain. After complexification, we are in the case
of a C-VHS invariant under conjugation. So for the associated complex period domain D there is a real
analytic automorphism whose fixed points give the real period domain. Hence for the real period domain
we have to impose a closed condition (for being fixed under the automorphism) and then an open condition
(for satisfying the bilinear metric), while for the complex period domain we only have to impose the open
condition on the flag variety.

Note that the flag variety DV is the quotient of GL,, (C) by a parabolic subgroup. Moreover, the unitary
group corresponding to the Hermitian form 1 acts transitively on the space of flags in D that gives rise to
a polarized Hodge structure. Therefore the period domain is a unitary group modulo the stabilizer of this
action.

Remark 15.7. This definition of period domain is only for trivial local systems. In the general case, even
the moduli space of local systems involves some stackiness. If we have a non-trivial local system, we can
pass to a cover where it is trivialized. Then this gives a map to the period domain. To remove ambiguity,
we can then get a map to the period domain modulo the image of 71 (.5).

15.4 Griffiths Transversality

Suppose x € D C DV = GL,, /P for some parabolic subgroup P. At this z, the tangent space of GL,,, which
is the Lie algebra gl,,, maps to the tangent space T, DV, and the kernel of this map is the Lie algebra 3, of
the parabolic subgroup P. Then because D is an open in the flag variety DV,

T,D = gl(H) /%, = End(H)/F* End(H),

where F°End(H) is coming from the Hodge structure given by = € D.
To satisfy Griffiths Transversality, a map
S—D
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must have derivative
TS — F~'End(H)/F°End(H).

From the data of the holomorphic part 0 of the connection V on E, we get a Higgs field by restricting
to the associated gradeds of the Hodge structure, and the Higgs field is equivalent to the data of the map of
tangent bundles if you have a variation of Hodge structures.

Recall V = 9 + 0. Then

9: EP1 —s (EPTHIT g BP9) @ AN

This implies the projection
o: BP9l ppLatl o gL0

is a Higgs field on (gr F) (E).
For a map S — D, this Higgs field encodes the data of the derivative of the period map. For a precise
statement, see [CMSP17, Lemma 5.3.2].

15.5 Finitude of Local Systems

Theorem 15.8 ([Del87, Théoreme 0.5]). For a fized smooth variety S and integer N, the number of iso-
morphism classes of dimension N Q-local systems which admit a polarized Z-VHS is finite.

Proof. For fixed Hodge numbers, polarization, and o € 71(.5), there is a bound on coefficients of the matrix
of the monodromy action of o which is uniform across the variation of Hodge structures ([Del87, Corollaire
1.8]). To see this, take a universal cover of S endowed with a metric so the map of the period domain
decreases distance. This yields the bound on coefficients.

Then one needs to show that the period domain (i.e., the choice of Hodge numbers) doesn’t matter for
this uniform bound ([Del87, Corollaire 1.9])%5.

These bounds on entries of the matrices yield a bound on the trace ([Del87, Corollaire 1.10]).

Then we show we can choose finitely many o € m1(S) that determine a bound on the traces for all
elements of m1(S) ([Del87, Théoreme 2.1]). As the traces are integral, this gives a finite number of traces
which can occur. For each choice, as these local systems are semi-simple, there is a unique local system
which has these traces.

O

Remark 15.9. The bounds this theorem gives depends on the variety .S, but for fixed S, the proof gives an
effective way to get the bound.

25For given N, restrict to irreducibles, and use Remark 15.2 to show the non-zero Hodge numbers must be a consecutive
interval of integers. Then twist the weight so this interval begins at 0, whence it is obvious there are only finitely many choices
of Hodge numbers, so the bound can be made uniform across period domains.
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16 The p-adic Riemann-Hilbert correspondence, lecture 4. Speaker:
Alexander Petrov. Notes by Min Shi.

This talk will cover some relative p-adic Hodge theory (Faltings, Brinon, Scholze, Liu-Zhu, Diao). In the
following, K will denote a complete discrete valued field of characteristic 0 with a perfect residue field with
characteristic p.

16.1 Description of the relative de Rham functor
Let X be a smooth variety over K. We will sketch some ingradients in the construction of the relative de
Rham functor.
Dyg : {Qp —local system on X} — {filtered vector bundle with flat connection on X'} .
Assume X is proper, with rigid analytification X2* = USp(R;). Then there are equivalences of categories:

{vector bundles on X} 2 {vector bundles on X*"} = {vector bundles on Sp(R;) and some gluing data},

where the first isomorphism is rigid GAGA (using that X is proper).
Remark 16.1. The vector bundles on Sp(R;) are just projective modules over R;.

Example 16.2. X = PL = Spec(K[X]) U Spec(K[X~1]), and the analytification X" = Sp(K(z)) U
Sp(K(z™1)).
Let L be a Q, local system. Then L|s,(r) is a representation of 7{'(R). Let R be the colimit of R; where

R; is a connected finite étale cover of R, and let R be the completion of R. The relative de Rham functor is
defined as

Dar(L)s := (LX) OBgr(R))™

for a suitable "period sheaf’” OBqr. OBgr(R) carries a 7¢*(R) action.

To understand Dgr, we will roughly sketch some properties of OB4g(R). The first property is that

OBg4r(R) has a filtration with gr® = OC(i) for another period sheaf OC, and this filtration is compatible
with the action of 7{*(R).

Remark 16.3. If R = K, s0o R = C, then OC = C.

First guess: OC(R) = R, but it is not suitable, since it will not capture the following periods:

Example 16.4. Consider Kummer local systems over R = K(xfl, . xl:iﬂ), i.e. extensions:

0-Q,(1)-»L—-Q,—0 (4)

They are classified by EXt}TT’t(R) (Qp, Q,(1)) = H}(R,Qpu(1)). We recall this identification: suppose
(e1,€0) is a basis for L, where e; is the image of a base element in Q,(1), and the image of e is a base
element for Q,. Then g.e; = x(g)e1, with x the cyclotomic character and g.ep = ae; + e for some a € Q,,.
Then g — ais a 1-cocycle in H}, (m1(R), Q,y(1)) = H},(R,Q,(1)). Denote the boundary map in the long exact
sequence induced from the Kummer sequence by k : R* — H gt(R, Q,(1)). Denote by L; one representative
of the class [L;] such that [L;] = k(x;).

Remark 16.5. These are of geometric origin, but they are not seen by our “first guess” for O.
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Correct answer: O(C(ﬁ) = R[v1, ..., vq], where the action of 7§*(R) on v; is defined such that (e; @ v; +
eo®1) € (L; @ OC(R))™" () where (eq, 1) is a chosen basis for L; as in the discussion below (4).
Remark 16.6. This is the construction of OC in local coordinates. It glues and can be made functorial

and independent of coordinates. Then grOBygr sees the periods of all local systems of geometric origin. For
more details on OC, see [LZ17, Remark 2.1] and [Sch13, §6].

We do not construct OBgr.

16.2 Automatic de Rhamness of p-adic local systems

We return to the disccussion of the first lecture.

Conjecture 16.7 (The relative Fontaine-Mazur conjecture). Let S be a smooth variety over C. For a

semisimple @p—local system L on S(C), L is arithmetic, i.e., there is some L on Sy/F, where F is some
finitely generated subfield of C, extending L, if and only if L is of geometric origin.

A basic question here is for arithmetic L to try to recover an integral variation of Hodge structure (a
Z-VHS). This question is wide open.

Remark 16.8. If L is irreducible, then for all other I’ on Sy such that f[:|57 = ]]_V,’|Sf, L' =Ly for
some x : Gp — @X7 since we can look at the G action on Homy, (s (H:,I[j’) >~ Q,. Thus the topological
monodromy group mostly sees all Galois representation obtained by specializing a descent to F-points of Sy.
Theorem 16.9. [Pet23, Theorem 1] Let X/K be a smooth variety and let L be a Q, local system on X such
that | x,. is irreducible. Then there exists a character of the Galois group x : Gx — @X such that L& x
is de Rham.

Let L be a de Rham local system on X. Then Dgg (L) is a vector bundle with filtration and flat connection.
To approach finding a Z-VHS in the setting of conjecture 16.7, we face a question of compatibility between
C-Riemann-Hilbert correspondence and p-adic Riemann-Hilbert correspondence.

Question 16.10 (Diao-Lan-Liu-Zhu). Choose K < C. Is (Dgr(L)2")V=0 ~ L|x. ®@p Cc?

This question has a positive answer when L is of the form R’f.Q, for some i, where f : X — S is a
smooth proper family of varieties. However, for general local systems L, this question is open, and it is
unclear whether this should hold for arbitrary de Rham L.

16.3 Some ideas in the proof

Let L be a Q,-local system on a smooth variety X over K. In lecture 3 we discussed the functors:

Higgs bundles M on Xg__ with
Higgs field 6 : M — M @ Q%
and an operator ¢ on M such that

Bog=(p—1)00

vector bundles £ on Xx__[[t]]

with V&eom . & —» £ %Q&Km [N

and an Ox,_-linear operator ¢ : £ — £ commuting with V&eom
and satisfying: ¢(am) = ag(m) +tdi(a)m, a € Ox,_[[t]], m € &

H : {Qp-local systems} —

RH™ : {Q,-local systems} —

These two functors are related to each other by RH'(L)/t = H(L).
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Now, L is de Rham if and only if rko, — RHTL[1/t]*=" = rkg,L. If this holds, then the following
condition holds:

the action of ¢ on H(L) is semi-simple and has integer eignenvalues. (5)

This condition is slightly weaker than than the condition that L is de Rham, because even in classical
p-adic Hodge theory, condition 5 is the Hodge-Tate condition, which is weaker than the de Rham condition.

Theorem 16.11 (Shimizu). det(Idyq, — ¢ T) € H(Xk_,Ox,_)[T] has constant coefficients, i.c., it is
an element of K|[T].

This implies that H(IL) admits a generalized eigenspace decomposition: H(L) = @, H(L)x. By the
condition on ¢ and ¢, 6 maps H(L)x to H(L)x+1 @ U,

For the rest of this notes, we explain how a local system can be twisted so that the condition (2) holds.
For simplicity, assume that X/K is a proper variety. Let Ly, Ly be two @, local systems. Then

Homx (L1, Ly) Q) C = Homx, _ o(H(L1), H(Lz2)) X) C
Qp Koo

naturally. Assume L is a Q, local system such that L &g Qplx, is irreducible. Then by Schur’s
lemma, Endy_IL = Q, - Id. By the natural isomorphism above, Endx, ¢H(L) = K - Id. Therefore the
eigenvalues of ¢ belong to a single coset of K /Z, because otherwise this will contradict how @ interacts with
the generalized eigenspace decomposition. Denote this single coset by a + Z, for some a € K. The next step
is to find a character x : Gx — @X such that the associated Higgs bundle H(x) bears a ¢-action such that
¢ acts by —a. x can be a suitable power of xcyc. A little more linear algebra shows ¢ is also semisimple and
has integer eigenvalues.

Remark 16.12. Compare the above discussion with that in Andy’s talk. A refined version of this argument
also gives the de Rham result.
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