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1 Motivation on zeta functions and the Weil conjectures

1.1 Lecture 1, 8/24

A natural motivation for our course is given by Zeta functions. The first Zeta function one
always comes up with is the function given by the series

+00
Cis)=Y o= ] (-p=7" (1)
n=1 peN prime

which converges absolutely and uniformly on compact subsets of {s € C : Re (s) > 1} (this
is easily seen by the identity |[n=%| = n~ Re(s)) and thus defines an analytic function over

+o0
that set. The equality Z n %= 1_[ (1 — p_“”)_1 is given by unique factorization and
n=1 peN prime
1 +®© . +o0 1\°%
the identity (1 —p~°)" = 2 (p~*)' = 2 (l> _
1=0 =0

This function has some remarkable properties. We define & (s) := 72T (§) ( (s), where
I' is the Gamma function

+a0
I'(z):= J t*~le7tdt for all z € C such that Re(z) > 0.
0

Recall that I' has a meromorphic continuation to an analytic function whose poles are
exactly Zg<p, and these are all simple. Moreover, I' has no zeros, thus % is an entire

function.

Theorem 1.1 (Riemann) £ has a meromorphic continuation to C with only two poles: one
at 0 and the other at 1, both simple. Moreover, for all s € C\{0,1} we have & (s) =& (1 — s).

Proof. See https://people.reed.edu/~jerry/311/zeta.pdf. B

From the product formula in (1) we see that ¢ (s) # 0 for all s € C such that Re (s) > 1.
But if Re (s) < 0 then Re (1 —s) > 1, thus ( (1 — s) # 0 and therefore Theorem 1.1 and
the fact that I" has no zeros give

= gp (52

N

~~

#0

We know that T" (%) € C* because Re (%) > %, S0 % is not a pole of I'. Thus, since I'
has all its poles in Z<o and they are all simple, then ¢ (s) = 0 if and only if § € Z<o, and
since s # 0 is excluded from our analysis, then s = —2k with ke N = Z~;.

We have found all zeros of ¢ in the set {s € C: Re(s) > 1} (there are none) and in the
set {s € C:Re(s) < 0} (strictly negative even integers). These are called trivial zeros of
¢. It remains to study zeros over the set {s€ C:0 < Re(s) < 1}. These are called the

nontrivial zeros of C.

Conjecture 1.2 (Riemann) If s € C is a nontrivial zero of ¢ then Re(s) = %


https://people.reed.edu/~jerry/311/zeta.pdf

Analogously, given a number field K, we can define the Dedekind Zeta function

Ce(s)= >, [Ok:17°,

. nonzero_
ideals IS0k

where for each nonzero prime ideal I of Ok, [0k : I] is the group-theoretic index of I in

O (which is always finite; see [ , Theorem 14, p. 56]). We denote this by N (I).
Since N is multiplicative (see [ , Theorem 22a, p. 66]) and nonzero ideals factor
uniquely as the product of prime ideals in O (see | , Theorem 16, p. 59]), then the
identity
+00 B
(1—N(p)_5)71 = Z ( l) for all s € C such that Re (s) > 1
20\ N (»)

(where p is a nonzero prime ideal of O ) immediately gives the product formula

w®= [ a-Nv@™)".

ideals p < Ok

We can then formulate an analogous theorem and conjecture for this more general case.

Remark 1.3 Let K be a number field. Since every nonzero prime ideal of Ok is maximal

(see [ , Theorem 14, p. 56]), then we can rewrite
ey -1
r(s)= >, (1=N(@)7)",
zeSpec(Ox ),

where for each scheme X we denote by X the set of its closed points. Observe that
N (x) = [OK : po], where p, is the maximal ideal corresponding to x € Spec (Of) where
[OK : pz] = |OK/ps| is the cardinality of the residue field at x.

We prove the following lemma.

Lemma 1.4 Let X be a scheme of finite type over Z. If x € X, then x € X if and only
if tk (x) < 00, where k (x) is the residue field at x.

Proof. Remember that X being of finite type over Z means that it is quasi-compact and
locally of finite type over Z (this last property is local). Fixing z € X and taking an
affine open cover of X, we may consider an open affine subscheme where x belongs and
assume that X is affine (affine schemes are quasi-compact). Thus X = Spec (A4) for some
unital commutative algebra A of finite type over Z. The morphism X — Spec (Z) then
corresponds to a ring homomorphism Z — A making A into a finitely generated Z-algebra.

If z € X then x corresponds to a maximal ideal m of A, thus k (z) = nf‘T“:“ ~ A/m
is a field which is finitely generated as a Z-algebra. It is a well-known algebraic fact
that such fields are finite (see https://math.stackexchange.com/questions/148745/
fields-finitely-generated-as-mathbb-z-algebras-are-finite). Conversely, if k (x)
is finite, let p be the prime ideal of A corresponding to x. Then there exists a prime
number p € N such that F, < A/p — k(). Since & (x) is finite then x () is an algebraic
extension of F,,. Since every subring of an algebraic field extension containing the base
field is again a field, then p must be a maximal ideal, meaning that x is a closed point. B


https://math.stackexchange.com/questions/148745/fields-finitely-generated-as-mathbb-z-algebras-are-finite
https://math.stackexchange.com/questions/148745/fields-finitely-generated-as-mathbb-z-algebras-are-finite

Remark 1.3 and Lemma 1.4 allow us to give the following generalization of Dedekind
Zeta functions:

Definition 1.5 Let X be a scheme of finite type over Z. We define

C(X.s)= ] A-N@™)",

(EEXCI

where for each x € X we let N () be the number of elements in the (finite) residue field
of X at x.

Given a scheme X of finite type over Z, the set {z € X : N (x) < M} is finite for all
M e R. This can be seen by reducing to the case where X is of finite type over F, where
p € N is prime, where we will see that the result follows from the finiteness of X (F,-) for
all r e N.

Thus, we can formally expand ¢ (X, s) to a Dirichlet series

+o0
Z anpn”?
n=1

(see | , Chapter VI] for a quick introduction to Dirichlet series).

Lemma 1.6 ( (X, s) converges absolutely and uniformly over compact subsets of {s € C : Re (s) > dim (X)}.

This can be easily verified by reducing to the affine case where X = Z [Ty, -+ ,T,] or
X =F,[Th,---,Ty], for some n € N and a prime number p € N, and then reducing again
to the classic zeta function (.

Question 1.7 Given a scheme X of finite type over Z, it is natural to ask whether we can
find a meromorphic continuation and a functional equation for ¢ (X,s), as well as giving
an analysis of the resulting zeros and poles.

When X = Ok for a number field K, for each prime number p € N we can consider the
base-change

1%
Xr, = Spec (0K ) xz Spec (F,) = Spec (O ®z Fp) = H " )Spec <pe(pﬁ0> ,
K

peMaxSpec
plp

where the last isomorphism follows from the Chinese Remainder Theorem isomorphism

Ok Ok Ok

pﬁK H pe(p|p) a peMaxSpec(Ok ) pe(p|p) .
peMaxSpec(Ok) plp
plp
We then get
e\ —1
CKeps) = ] (=NG)T)
peMaxSpec(Ok )
plp



which is a finite product and therefore induces a rational function in p~%. Using this, it is
easy to answer Question 1.7.

But for a general finite type scheme X over F,,, where p € N is prime, { (X, s) is already
very interesting and will take the whole course to say much about.

The reinterpretation in this case is the following: If X is a finite type scheme over [Fy,
where ¢ = p/, f € N and p € N is prime, then for all x € X, we set deg (z) := [k (z) : F,],
and define .

Z(X[Fq,t) = [] (1 - tdeg(x)) €1 +tZ[t],
reX (]
so that ¢ (X,s) = Z (X /Fq,q7%).

For any n € N consider X (Fyn) = Homgg, /i, (Spec (Fgn, X)), which is in bijection with
the set of pairs (z,:) where z € X and ¢ is a field-embedding of « (z) into Fy» fixing F,.
The bijection is given by sending each o € X (Fy») to the pair formed by « ({0}) € X and
the corresponding map on residue fields.

From field theory, we know that there are deg (x) many embeddings of  (x) into Fy»
fixing F;, when deg (x) | n, and none otherwise, thus we have shown:

Lemma 1.8 Let X be a finite-type scheme over Fy. Then, for all n € N,

HX (Fgn) = Y d-f{z € Xq : deg (z) = d} .
dn

Lemma 1.8 allows us to prove the following result, which makes use of the formal
logarithm log : 1 + tQ[t] — Q[¢t] (see | , Ch. IV.2-1V.5] for a quick introduction).

Lemma 1.9 Let X be a finite type scheme over F,, where q € N is a prime power. For
each n € N let Ny, := $X (Fgn). Then

log (Z (X /Fy, 1)) ZN—

neN

Proof. For each d e N call Cy :=t{x € X : deg (z) = d}. We have

log (Z (X /Fq,t)) = log ( 1 <1 _ tdeg(az))_1> = ) —log (1 —tdeg(@) =

zeX ] reX (]
O ydm
:Z Z —log <1—tdeg(x)> :2 2 Z — =
deN  zeXq deN zeXy m=1
deg(z)=d deg(z)=d
—ZZCd*—ZZCdd* 2, #X (Fy
deNm=1 neNd|n neN

Lemma 1.8

This completes the proof. B

Applying exponentials to the identity in Lemma 1.9 we get Z (X /F,,t) = exp (Z Nn%).

neN



Remark 1.10 Let X be a finite type scheme over Fgn, where n € N and ¢ € N is a
prime power. The canonical embedding Fq — Fgn gives a scheme-theoretic sequence
X — Spec (Fgn) — Spec (F,). Hence we get Z (X [Fgn,t) = Z (X /Fq,t").

As an example of an application of Lemma 1.9, fix n € Ny and a prime power ¢ € N.
We know that A™ (F,m) has (¢")" = ¢™" elements for any m € N, thus

T $m +00 pm
Z(&"[F,.) = exp (Z LA (Fym) m) - exp (Z qmnm> _
m=1

m=1

1
€ t).
o 0
Now, assume X and Y are finite-type schemes over IF,. By the universal property of
the categorical product, § (X xg, Y) (Fgn) = #X (Fgn) - Y (Fgn). In particular, setting
Y := A"/, and using the above, we get

= exp (—log (1 - ¢"t)) =

Z (X XF, A”/Fq) = exp (Z 1 X (qu)qm”i:) =Z(X/Fq,q"t).

meN
Again, assume X and Y are finite-type schemes over F,, and assume that there is a closed
embedding Y — X. If U := XY, then X (Fgn) = §Y (Fyn) + U (Fyn), and therefore
Z(X/]ant) = Z(Y/ant) Z(U/Fq,t),

which follows from the fact that exp transforms sums into products. Applying this
recursively to P"/F, = [ J, A"/F, and using our first example, we get

n
Z (B /Fq,t) =[] (1 —g't)
=0

1.1.1 Weil Conjectures (1949)

Recall that if X is a finite type scheme over F,;, where ¢ € N is a prime power, then
Z (X /Fq,t) € 1 +tQ[t]. The first Weil Conjecture says something more.

Conjecture 1.11 Let X be a finite type scheme over Fy, where ¢ € N is a prime power.
Then Z (X /Fq,t) € Q ().

Observe that Conjecture 1.11 implies that ¢ (X, s) = Z (X /F,,¢®) has a meromorphic
continuation.

Conjecture 1.12 Let X be a finite type scheme over Iy, where g € N is a prime power,
and assume X /I, is smooth, projective, and geometrically connected. If d := dim (X), then

1
(X/FQ7 dt) = idaXtXZ (X/]FQ7t>7

where x is the Euler characteristic of X (which is defined as the number of self-intersection
of A, where A — X x X is the diagonal).

Thus, ¢ (X,d —s) = idaXq_SXC (X,s). (this is a reflection on Poincaré’s duality.)



Finally, the third Weil Conjecture is the Riemann Hypothesis in this context.

Conjecture 1.13 (Riemann Hypothesis) Let X be a finite type scheme over F,, where
q € N is a prime power, and assume X /F, is smooth, projective, and geometrically connected.
If d .= dim (X)), then for each i € [0,2d] N Z there exists p; € Z[t] such that:

o po(t)=1—1 and py(t) =1—q%

e Ifi€[0,2d] nZ, then for each j € Ncdeg(p;) there exists an algebraic integer ai; such

that |aj| = q2 and p; (t) = H (1 — ay t).

TN <deg(p;)

i+1
Z (X [Fy,t) = Hp £

Under the appropriate translation of ¢ (X, s) we can see that Conjecture 1.13 is equiva-
lent to asking that the zeros and poles lie on certain vertical lines.

Exercise 1.14 Verify the Weil Conjectures for P™ (here x =d + 1).

In general, for each r € [0,2d] N Z we set b, = deg (p,), and then

2d
X = Z (=1)" b,

Weil also conjectured that if X is the reduction modulo a prime ideal p of a smooth
projective scheme Y over a number field with good reduction at p, then

deg (pr) = dimg (Higuar (Y (C)*,Q))

where Y (C)™ is a classical topological space.

Weil’s (presumed) heuristic was the following: a "cohomology space theory” for varieties
over finite fields governs these conjectures with the intimate relation between Conjecture
1.12 and Poincaré duality, the one between the given decomposition in Conjecture 1.13 and
Lefschetz fized point, and between Conjecture 1.13 itself with Serre’s "Kahler” analogous of
Riemann Hypothesis (which was proved by Serre after Weil’s statement of his conjectures).

Conjecture 1.11 was proven by Dwork and redone by Grothendieck et al. Conjecture
1.12 was proven by Grothendieck et al. in the 1960’s, and Conjecture 1.13 was proven by
Deligne et al. in the 1970’s. Weil had already proven these for abelian varieties, while
Deligne had previously proved these for K3 surfaces.

1.2 Lecture 2, 8/29

Recall: For all X — Spec(Z) finite type, we defined ((X,s) = [[,cx (1 — Hr(z)=%) L
For X /F,, set Z(X/IF,pt) = [Toex, (1 — t48@) =1 ¢ Z[t]. We found that Z(X/Fy,t) =
exp (o1 #X (Fgm)L>), and we stated the Weil conjectures for X /F, smooth projective.



1.2.1 Comments on the Global Case

Let X/F be smooth projective for a number field F'. Then, X spreads out to a smooth
projective model
X+— X

| l

Spec OF[+] +—— Spec F

for some N € Z.

We get a partial zeta function ¢%(%,s) = [Loexe, (1 — #k(x)~%)"! where S = {p | N}
which converges to a holomorphic function for Re(s) » 0. We have a similar conjecture
as before: there should be a meromorphic continuation satisfying a suitable functional
equation which relates s with dim X — s = dim(X) + 1 —s. The structure of this conjecture
is clearer “one degree of cohomology at a time” (using étale cohomology in the formulation).

For example, let E//Q be an elliptic curve with good reduction outside a finite set S of
primes. Then,

1-2s

s ) — ST i @p+p
¢°(&/Z]1/5]; s) IEC(@‘a/Fpa ) Ig(l_p_s)(l_p_l)-

The 1—a,p~*+p* =2 will come from H! while the (1—p~*) term will come from H® and the
(1 — p'=*) term will come from H?. We denote L°(E/Q,s)™" = [L[pes(l —app™® + pl72).
This form suggests that we should replace the away from S term with the usual completed
L-function. When you do this, you get a completed zeta function of E/Q given by

§(s)€(s — 1)
AME/Q,s)

where £(s) = C(s)-m*?['(s/2) and A(E/Q, s) = L% (E/Q, 5)-Hpes(1—app_s)_1-(QW)_SF(S).
+1 (split) mult. reduction
0  additive...
Shimura-Taniyama conjecture) A(FE/Q,s) has analytic continuation and A(E/Q,s) =
+N; *A(E/Q,2 — s) where N is the conductor (note 2 = dim E + 1). Therefore,
3(E/Q,s) = +Ng '3(E/Q,2 — s). (Note that £(2 —s) = £(1— (s = 1)) = &(s — 1))

A very general hope (the Langland’s conjecture) is that general zeta functions of
(smooth projective) varieties over number fields can be written as some alternating product
of “automorphic L-functions”.

3(E/Q,s) =

Forpe S, ap, = . Note that £(s) = £(1 — s) and (granted the

2 DMotivation on Cohomological Formalism

2.1 Lecture 2, 8/29 (cont)

To any smooth projective variety X /C — P¢ we obtain a compact complex manifold
X" — P*(C)(= CP").

This has various cohomological realizations:

e singular cohomology, H,,(X*",Z or Q or...),



e sheaf cohomology, H*(X*",Z or Q or...) where Z,Q are constant sheaves,
e de Rham cohomology, H7r(X*",R or C).
For varying X, these come with natural (in X)) comparison isomorphisms: for example,
H*(X C) ~ Hjp(X™, C).
Key structures (for our purposes) that they share include
e Kinneth isomorphisms
e Poincaré duality

e “cycle class maps” associating to suitable subvarieties/manifolds cohomology classes
(think fundamental class in homology).

Our goal is then to explain how an analogous formalism for smooth projective varieties
over Fy implies much of the Weil conjectures (rationality and functional equation). To
precisely define the cycle class map, we need to digress to the discussion of Chow ring a
little.

We will introduce Chow Ring here as concisely as possible. To do so we first need the
notion of k-cycles on a variety X. We use variety to mean a finite-type separated integral
scheme over a field, and use subvariety to mean an integral closed subscheme.

Definition 2.1 The group of k-cycles on variety X, denoted by Zy(X), is the free abelian
group on symbols {[Z]|Z is a subvariety of dimension k in X}.

The Chow Group of k-cycles on X CHy(X) is the quotient of Zx(X) by the rational
equivalence. One can define this rational equivalence in the following way. For a subvariety
W of dimension k£ + 1 and a further subvariety Z of codimension 1 in W, let f be in Ow 7
(Ow,z is the stalk of Oy at the generic point of Z), we decree

Ordwjz(f) = lengthﬁw’zﬁwjz/fﬁm/’z

. For a non-zero rational function f on W, we can write f = g/h for g, h € Ow, z, and we
define

ordw, z(f) := ordw,z(g) — ordw, z(h)

. The principal divisor associated to a rational function f on W is

diviv (f) == Y ordw, 2 (/)[Z]
Z

where Z runs through all codimension 1 (equivalently, dimension k) subvarieties of W.
General theory of commutative algebra guarantees that ordy, z(f) is finite for all codimen-
sion 1 subvarieties Z and for a fixed f there only exists finitely many such Z such that
ordw z(f) # 0. In other words, we can view divyy (f) € Zp(X).

Remark 2.2 In addition, in the same setting, if W is reqular at the generic point of Z,
then Ow.z is a valuation ring and ordw, z(f) = val(f). Therefore if W is normal, the

divisor we just defined coincides with the Weil divisor on W . Alternatively, we can write
Z (W) = div(W).

10



Definition 2.3 For a variety X and a closed subscheme Z in X, we also define the k-cycle
associated to a closed subscheme Z [Z]i as follow. Let Z; run through the irreducible
components of Z of dimension k, and we define

[Z]k =] (lengthg, , 02,2, Zi] € Zi(X)

i

Definition 2.4 Two k-cycles o, o’ are rationally equivalent if o — o’ is in the subgroup
generated by {divw (f)|W k + 1-dimensional subvariety and f € K(W)*}, in which case
we write o ~pqr . We define Chow group of k-cycles CHi(X) := Zk(X)/ ~rat-

We proceed to define Chow ring out of Chow group on a smooth projective X.

Given o = X, n;[W;i] € Zy(X) and B = };;m;[V;] € Z,(X), we say this two cycles
intersect properly if, for each i, j, W;, V; intersect properly (W; n Vj is equidimensional
with codimension codimx (W;) + codimx (V')). For such two cycles, we define

(Wil - [V3] := D i(Wi Vi, Y X)[Ya] € Zayr—dimx
k

where [Y}] runs through the irreducible components of W;.V; and the coefficients are the
intersection multiplicities, and we define a.8 from "distributivity". Not every pair of cycles
intersects properly, but luckily we have the following lemma.

Lemma 2.5 Chow’s moving lemma For cycles o, B on quasi-projective smooth variety
X, there exists o ~,qr « such that o/ and 3 intersect properly.

This lemma gives rise to the group morphism
CHy(X) x CH.(X) — CHgir—dimx (X)

where (class of «, class of 3) is sent to class of /.3 such that o/ and 8 intersect properly
and o ~.q a. Should we define CH®(X) := CHgimx—c(X), the above morphism is
rewritten as
CH*(X) x CHY(X) — CH*(X)
imX
. Let CH*(X) denote d@—) CH?(X), the collection of morphisms {CH*(X)x CH'(X) —
i=0
CH*(X)}1., extended by "distributivity", gives a binary operation on CH*(X). One
can check its commutativity, distributivity and associativity (the only non-trivial one), and
it clearly has an identity which is the class of [X] € CH°(X); hence we upgraded CH*(X)
to a graded commutative ring, which is the Chow ring of X.
We now discuss the functoriality of Chow rings: for morphism f: X — Y, do we get
a reasonable graded ring morphism f*: CH*(Y) — CH*(X)?
For f : X — Y proper morphism of varieties, and let Z — X be a subvariety of
dimension k. We let f.([Z]) = 0 if dim f(Z)<k, otherwise we set f.([Z]) = d[f(Z)] where
d=[K(Z): K(f(Z))] is the degree of the (generically finite) induced morphism

f:Z2— f(2)
. Extending it by linearity we get the proper pushforward

fot Zp(X) — Z(Y)

11



which is compatible with rational equivalence; hence we get

fe 1 CHR(X) — CHi(Y)

For f : X — Y flat morphism of varieties and let r = dimX — dimY and Z be a
subvariety of dimension k. We define f*([Z]) = [Z xy X]kx+r where Z xy X is considered
as a closed subscheme of X and use definition 2.3. Extending it by linearity we have the
flat pullback

52 Zk(Y) — Zjyr(X)

. Some work can show that it’s also compatible with rational equivalence; hence we have
f7 i CHR(Y) — CH(X)

or
f*: CHMY) — CH*(X)

. Now we can define the pullback for general morphism of smooth projective varieties
f:X — Y. For a e CH¥(Y) (note that now « is not a cycle but a cycle class), we set
(@) = prx«([Tg] - pri()) to get f*: CH*(Y) — CH*(X) where prx and pry are the
projection from X x Y to X and Y respectively and [I'f] is the cycle associated to I'y. Note
that pr, is proper because being proper is stable under base change and Y — Spec(k) is
proper; similarly pry is flat because flatness is stable under base change and X — Spec(k)
is flat. Therefore we have defined prx. and prj- as the proper pushforward and flat pullback
respectively in the previous discussion.

As usual we upgrade f* to morphism of graded abelian group f* : CH*(Y) —
CH*(X), and about it we have the following lemma which establishes the functoriality of
Chow ring and more.

Lemma 2.6 let f : X — Y be a morphism of smooth projective varieties, then the
followings hold.

(1) f*: CH*(Y) — CH*(X) is a graded ring morpism.
1 (fog)t =g*of*

2. The projection formula: fi(a) - = fu(a.f*(5)) holds (note that f proper so fy is
defined).

3. If f is also flat then f* agrees with the flat pullback previously defined.

This concludes the discussion of Chow ring for our cohomology formalism.

Let k = Fy, k= Fq. Let V be the category of smooth projective varieties over k.
Assume there exists a characteristic zero field E and a functor

VP — {Zso — graded commutative E — algebras of finite dimension}

where “graded commutative algebra” means A can be decomposed into A = @,,5 An
and has multiplication which plays nicely with the grading A, x A, — A, satisfying
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a-B=(=1)"p -«aif a € A, B € A,. So H*(X) is an E-algebra, and we’ll denote
the product H(X) x H/(X) — H*(X) by -, (a, 8) = a — (. This must satisfy three
properties:

I. Kiinneth. For X,Y €V, the graded E-algebra homomorphism

H*(X)®p H*(Y) - H*(X x Y)

given by a® 8 — p*a u ¢* is an isomorphism where p: X xY - X andg: X xY - Y
are the natural maps.

II. Poincaré duality. Let X € V be connected of dimension d. Then there are trace
isomorphisms try : H?¥(X) => E and for all i € Z, the E-bilinear pairing given by the
composition

HY(X) x H¥i(X) 5 H2(X) 2 F

is non-degenerate (so, in particular for i > 2d, H*(X) ~ H??¥~(X) = 0 since H<°(X) = 0).
Moreover, we require for X,Y connected, p: X xY — X, ¢: X xY — Y the natural
maps that try .y (p*a < ¢*3) = trx(a)try (8) for a € H24™(X)(X), g e H2AmY)(v),
Note that I. and II. together give a covariant functoriality for H*(—). Let X,Y
connected be in V, and let f: Y — X be a morphism. Then, for all r € Z, we have

f*H (X)—> H"(Y).
Since H"(X) ~ H?3™(X)=7(X)* and H"(Y) ~ H24mO)=7(YV)* we get a map
H2dim(X)—r(y)_)H2dim(X)—r<X)’

i.e., for ¢ = dim(X) — dim(Y), we get a map fx : H'(Y) — H""2¢(X) which is usually
called the Gysin map. The map f, is characterized by trx (fsa « ) = try (a —« f*3) for
= HT(Y), Be H2dim(X)fr72c(X)‘

Exercise 2.7 We have (fog)x = fxogs and for all f:Y — X, fu(a~ f*B8) = faa — 8
(“adjunction”).

A key example of f, lets us construct “cycle classes”.

Definition 2.8 Let t: Z — X be a closed immersion with Z, X connected in V and let
c = codimyxZ. Then, we get v, : H(Z) — H""2¢(X), and so in particular, we get a
map H(Z) — H*(X). Thus, since HO(Z) ~ H>3™(Z)(Z)* js a 1 dimensional E vector
space, the E-algebra structure map E — H°(Z) is an isomorphism. The image of 1 gives
(1) € H*(X) which is by definition clx(Z) = 15x(1) € H?**(X), the cycle class of Z — X.

If Z is reduced with irreducible components Z1, ..., Z,, each of which are smooth, and
t: Z — X is a closed immersion, we set

n

cx(Z) =) clx(Z)

i=1

ITI. We will need cycle classes compatible with intersections, i.e. ¢lx induces a (graded)
ring homomorphism CH*(X) — H?*(X) where, for a subvariety Z, [Z] € CH®(X) is sent
to clx(Z) € H**(X) which is defined in the definition 2.8; by abusing of notation, we also
call this ring morphism clx. In addition, we also need the following 3 conditions:

13



1. (functoriality) If f : X — Y is a morphism of projective smooth varieties, then the
following holds
[Hely = clx f*

; notice that f* on the left and f* on the right are different things!

2. (multiplicativity) clxxy(Z x W) = clx(Z) ® cly (W) if we identify H*(X) ® H*(Y)
with H*(X x Y) by Kiinneth formula.

3. (non-triviality) If P is a point, then
clp:CH*(P)~7Z — H*(P)~FE
is the usual ring homomorphism.

All we'll need for now is that if Y, Z < X intersects properly (codimY n Z = codimY +
codimZ) and transversally, and Y n Z is still smooth, then clx (Y xx Z) = clx (Y n Z) =
clx(Y) < clx(Z). We'll only use the case now where Y, Z are half-dimensional and their
intersection is a finite collection of reduced points.

Remark 2.9 A nice and more fully-developed discussion of the formalism of a “Weil
cohomology theory" appears in Yves André’s (excellent) book Une introduction aux motifs.
There is also an old article of Kleiman, Algebraic cycles and the Weil conjectures, as well
as a discussion in the Stacks Project. (Different references present the theory slightly
differently.)

2.2 Lecture 3 8/31

Recall from the last time we assume there is a "nice” cohomology theory: We recall its
definition and properties briefly.

Let V be the category of smooth projective varieties over an algebraically closed field ,
FE a field of characteristic 0. By a "nice cohomology theory", we mean a functor

H* : VP — {Z>¢-graded commutative F-algebras of finite dimension}

satisfying the following properties:

I. We have Kunneth isomorphism: For X,Y € V, there is an graded F-algebra isomor-
phism
H* (X))@ H*(Y) > H* (X xY), a®pB—p av s
where p: X xY - X and q: X xY — Y are projections.
II. For a connected X € V with dim X = d, there is an isomorphism of E-vector spaces
try : H*4(X) = E,
called the trace map, inducing Poincaré duality: For all ¢ € Z, the E-bilinear pairing
Hi(X) x H¥i(X) 5 HY(X) 25 B

is non-degenerate. (Reminder: we also stated the product compatibility trx .y (p*a —
q*p) = trx(a)try(B) last time, and we do require this.)
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Using Poincaré duality, we can define the Gysin map f,. associated to any morphism
f:Y — X in V which is covariant in spaces. More precisely, a morphism f:Y — X
induces a map

f* . HT(Y) N HT+20(X)
where ¢ = dim X —dim Y, and r € Z. In particular, if f is a closed immersion, then
we obtain a map

f* . HO(Y> N H2codimXY<X).
Note HO(Y) =~ (H2?9mY(Y))* ~ E. We define the cycle class of Y in X to be the
image of the image of 1 € E in H(Y) under f:

cx(Y) := fu(ly) € H?odmxY (X)),

ITI. We need the cycle class map cly : CH*(X) — H?*(X) with 3 prescribed condition.
Details are in the last lecture.

We make one more formal observation: For any X € V and p € X, with dim X = d,
the cycle class of p in X has degree 2d in H*(X) because codimyxp = d. In particular,
trx(clx(p)) is defined. One can show that

try (clx (p)) = 1.
To see this, we note that 1x € H%(X) is the multiplicative identity in H*(X), and that

trx(clx(p)) = trx(clx(p) « 1x) = trx(ix(1p) v 1x) = trp(1, — i*(1x)) = trp(1p,) = 1.

Frobenius Morphism Let k = F, and k= E. For a smooth projective variety X over
k, we write X for X Xgpeck Speck. We define the Frobenius morphism F : X — X as
follows:

First, we describe this map locally on X. By replacing it with an affine open subscheme,
assume X = SpecA where A is a finitely generated k-algebra. Then, we define the absolute
g-Frobenius to be the map corresponding to the k-algebra homomorphism

Frobg,: A— A, aw~ a’

Define Frosz ¢ = Froby 4 ®x id;. We can glue this morphism to a k-morphism F =
Froby’q : X — X. In terms of coordinates (once we choose coordinates by choosing a
closed immersion SpecA — A}), it is given by (a1, ...,an) — (af,...,a%). Therefore, for
all r € Z>1,

X(Fy) € X(k) = X(F) = X

is identified with the set 757 fixed points of X under F". This gives a geometric
interpretation of F,r-points of X.
The scheme-theoretic version of the set of fixed points of F' is given by the closed

immersion 'p " A —> X x X. Since X (F,) = X" s finite, the underlying set of points of
I'r n A is finite as well.

Lemma 2.10 If X is smooth, then T'r N A is reduced.
Proof. See the proof of Lemma 2.13.

Recall that for a closed point p, trx(clx(p)) = 1. As I'r n A consists of a finite number of
closed points, we conclude that
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Lefschetz Fixed Point Formula Assume we have a nice cohomology theory H* on V as
described above where V is the category of smooth projective varieties over an algebraically
closed field k. For X € V, (d = dim X), and a morphism f : X — X, we will compute the
intersection number (I'y - A). The intersection number is yet to be defined precisely. But,
when I'y n A is a finite set of reduced points, we have

(FF . A) = #(Ff N A) = tI‘XX)((Clx(FX N A))
In general, the precise formulation is
Ty - A) = deg([I'y] ~ [A]) = trxxx (clx ([I'y] ~ [A]))
where [I'y] « [A] is an element of degree 0 cycles on X x X modulo rational equivalence.

Theorem 2.11 Keeping the same notations as above, we have

2dim X
(Tp-A)= > (=1 Tr(f*mrx)
r=0
Proof. Let {e[} (r=0,...,2d,i =1,...,dim H"(X)) be a basis of H*X and let {ijd_r}
be the Poincaré-dual basis so that

_ 1 ifr=si=j
trx<ffd5vez>={0 - .

Equivalently, if we let ¢2? € H?¢(X) be try'(1), then we have
2d

s ot e if7"=s,i=j‘
J ! 0 else

We compute clxxx(I'y) as follows: Note that clxxx(I'y) € H*(X x X). Using I. Kunneth,
we can write it as

cxxx(I'y) = Zp*cﬁ < ¢*f  where a} € H*(X).

1,7
Now we first prove the following lemma.

Lemma 2.12 Forany f: X - Y and € H*(Y), we have

F5(B) = px«(clxxy (Tf) ~ py«(B)).

Proof. The lemma follows from the commutative diagram

X
idy X x@ Y
\lpx
X
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Indeed, the projection formula applied to

clxxy (Ly) ~ py«(B) = Tre(1x) ~ py«(5)

yields
cxxy(Tf) ~ py«(8) = Dpe(1x ~ TPV (B))) = Tx(1x ~ f*(8)).

Therefore,

pxx(Clxxy (Tf) ~ py«(8)) = pxx (T (1x ~ f*(8))) = idx(f*(8)) = f*(8).

By Lemma, we have
f7(€3) = pa(clxxx (T'y) ~ q%€j)

((Xpal —a"ff) ~ q*‘f?)
@7
_ p*(p*QQd L q*62d) ?d—s

where the last equality is due to II. Therefore,

CIXXX Ff Zp f A \_/q*ffd—'r.

Since A =Tq, we also obtain the following by taking f = idx:
ClXxX(A) _ Zp*ez o q*fiQdfr _ Z(_l)rp*ffdfr o q*elr
where the last equality follows by applying the formula using instead the dual bases
{(=1)7f24"} and {e}}. Therefore,
01Xxx([Ff] ~ [A]) = clxxx ([I's]) ~ clxxx ([A])
Zp f AN q*fiQd—r) o (Z(_l)sp*szd_s o q*ej)
7,8
_ Z r+ (2d—r 2d77‘)p* (f*ez' o fi2d—r) o q*eZd.

Write f*ef = >, bj;ej. Then, f*ef - f27T = pr(—1)"e?® and thus

SIFrer o F = () T e,

Therefore, the last expression in the above computation is equal to

Z(_l)r Tl"(f* |HTX)p*€2d o q*62d.

r

Taking trx« x, we conclude that

(Ty - A) = trxsx (cxx ([Tg] = [A]) = D=1 tr(f*|arx).

T

For the last equality, recall that tr is multiplicative in spaces.
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2.3 Lecture 4, 9/7

Continue to assume that we are in the presence of a nice (“Weil”) cohomology theory H*
on ¥ = SmProj Iz Recall that for X € ¥ connected of dimension d and f: X — X, we

have
2d

(Ff A) = Z(—l)r Trf*|HT(X)
r=0
by Lefschetz’s trace formula.

We wish to apply this back to the Weil conjectures, and to do so we will henceforth
assume k = F,. For a k-scheme X, we will write X := X xj, k. We defined the “relative
g-Frobenius” F: X — X by base-changing the “absolute g-Frobenius” on X (given affine-
locally by a +— af) to k. We stated (in slightly less generality) but left as an exercise the
following lemma, which we will now explain.

Lemma 2.13 Assume X is of finite type over k. Then I'r n A is reduced and is a finite
collection of closed points. Consequently, the intersection number (I'p - A) is the number
of closed points of the intersection.

Proof. We first reduce to the case of affine X. Recall that I'r n A is characterized by the
pullback square

l'pnA — X

l JA (2)

X " X xX.

For U < X affine open, clearly U < X is I'p-stable, so taking the preimage of U x U in
the above square shows that (Trp " A)n (U xU) =T Fiz 0 Ag. Now since X is covered
by such opens U, the diagonal A is covered by the U x U. Therefore, since the desired
property of I';r n A can be checked on an open cover, if we know the claim for the affine
opens of X then it follow for X itself.

Thus we assume X = Spec(A), so X = Spec(A), where A = A®y, k. By (2), we have
FpnA= Spec(Z®Z®Z A), where the maps A® A — A are the multiplication map id ®id
(corresponding to A) and id ® F. Some straightforward (but slightly nasty) reasoning
with tensors verifies that Ker(id ® id) is generated by elements of the form a® 1 —1® a
and that A ®4o7 A = A/(id® F)(Ker(id ® id)) A. Let us now write down a presentation
A =~ k[ty,...,t,]/I. Then

k‘[tl,. .. ,tn]

A~ —
kI + (id ® F)(Ker(id ® id))’

and by our remark above, Ker(id ® id) is generated by t; ® 1 —1®t%;. Thus A is isomorphic
to a quotient of k[t1,...,t,]/(t1 —t{,...,tn, —tZ). Since each polynomial ¢; —¢t! is separable
over k, this shows that A is a product of copies of k. o

The previous lemma allows us to apply Lefschetz’s trace formula to I'e n A in a useful
way, but before doing this, we need one more fact about the morphism F.

Lemma 2.14 Assume X is smooth projective over k and is geometrically connected of
dimension d. Then F: X — X is finite flat of degree ¢°.

18



Proof sketch. (F finite). This easy and only uses that X is of finite type over k.

(F flat). This uses the smoothness of X (i.e. that X is regular). Then the flatness of
F is an immediate consequence of “miracle flatness”, which says that a map of smooth
varieties with equidimensional fibers is flat. Alternatively, one can proceed directly by
showing that for any ring A containing [, the absolute Frobenius on A is flat (reduce to
the complete case and hence, by Cohen’s structure theorem, assume A = ([[t] for some

finite ¢|k).
(Degree of F'). One can compute the degree of F' on function fields (i.e. on the generic
fiber). Here we note that k(X)) is a finite separable extension of k(T1,...,Ty). o

Actually, what we really wanted is to know what F' is doing on H??. First, let us briefly
recall that for a closed subscheme W < X, we write [IW] for the cycle class associated to
W, which is defined to be

(W] = Z mz|Zred], my = lengthﬁx’nz OWonys
ZcW

where Z ranges over the irreducible components of W and 7z is the generic point of Z.

Corollary 2.15 Let X be as in the previous lemma. Then F acts on H**(X) as multipli-
cation by ¢°.

Proof. We know that H2?(X) is spanned over E by cls [P] for any P € X¢. By one of the
axioms of H*, we have F* cl5 [P] = cls F"*[P], which, since F' is flat, equals cls [F -1p].
But [F~'P] = ¢%[P'], where P’ is the unique closed point mapping to P under F (filling
in the details is left as an exercise). =

On to the Weil conjectures. We are now able to derive rationality and the functional
equation from the formalism:

Theorem 2.16 Assume X is smooth projective over k and geometrically connected of
dimension d.

1. We have Z(X,t) € Q(t). We moreover have

B P(t)P(t)P _ (t)
Z(X,t) = ;O(t);Q(t)”';;;d(lt) ’

where P = det(1 — F*t| . )) (which lies in E[t]). Also Py(t) = 1—1 and Pp(t) =
1 — q¢%.

2. We have Z(X,1/(q%)) = +q™X/*tXZ(X,t), where x := Zzio (=1)"dimg H"(X) (the
Euler characteristic of X, which equals (A - A) by Lefschetz’s trace formula).

Proof. (1). Write Ny, := #X (Fym) = #X™. By the lemma about I'r n A and Lefschetz’s

trace formula,
2d

Ny = (Cpm - A) = )] (=1)" Tr (F™)*| 1 0y
r=0
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Letting «j,...,as denote the eigenvalues of F* on H"(X) listed with the appropriate
multiplicity, we have Tr (F™)*| . x = Tr (F*)™ v X) = > al for each m. Then

1 1 oo el
log P,(t) = log Hz(l — tay;) - ; ~log(l ~ts) = ;mm m
- (T )
m=1
So we get
gm 2 1
log Z(X,t) Z; mZ;er <T1“ Fmy* |Hr(y)> mo 7;)(—1) log Po(t)’

which is the desired formula for Z(X,t). To obtain rationality, we observe that Z(X,1t)
lies in both Q[t] (by definition) and E(t) (since each P,(t) is in E[t]), and use that
Q[t]] » E(t) = Q(t)—a proof is given below. Finally, the formulas for Py(t) and Py4(t) are

obtained in (2) below.
(2). Under the Poincaré duality map H"(X) x H?¥"(X) — H?**(X) 5 E, we have

(F*a, F*B) = Trg(F*a u F*B) = Trg F*(a U B) = ¢ Tr(a U B)

by the properties of the cup product and the description of F' acting on H?¢(X). It follows

that if ay1,...,q.p. are the eigenvalues of F* acting on H"(X) (with multiplicity, so
that b, = dimp H"(X)), then there is an equality of multisets between a1, ..., s, and
¢*/2d—r1,- 4%/ Q2d—ppy, - Thus
by by ¢
P(t) =] [0 —awmit),  Paur(t)=]] (1 - .t> :
i=1 i=1 ™t

from which we compute that

1 br Qg LN qd
_ G _ T . _ d —b,
r (th> -11 (1 th> =11 —qt (1 amt> = (500 P Ha”

i=1 i=1

Using (a), this gives, for the zeta-function as a whole, that
1 2 1\ . 1y
Z (X, d> -1~ <d> = (=" Z2(X, ) [ Jor, |
q ¢ r=0 q ¢ 7%
To take care of the product of eigenvalues, write & = [[; a4, so that the quantity of

interest is Z:= [ [, & D™ Due to the pairing between the eigenvalues in degree r and in
degree 2d — r, we have &.£94_, = (¢%)?. The factor &4 is more subtle. Some eigenvalues in
degree d might pair with themselves, in which case we can only say that they equal +¢%2.
Thus &4 = +(¢%?)™(¢")™, where m is the number of degree-d eigenvalues which pair with
themselves; since m + 2n = by, we find that &5 = +¢%®4/2. Consequently,

Hgg(cil §r&2d—r (—1)d+1 Hr<d q br

- _ - (—=1)d+1p /2 _ _dX/2
Hr<d §T§2d—r d Hr<d qde
even even
Plugging this in above completes the proof. o
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The rationality of Z(X,t) used the following fact.
Lemma 2.17 Q[¢]] n E(t) = Q(t).
Proof. Let f(t) ==Y a;t' € Q[[t] n E(t). Then there exists an identity of the form

(xo + 1t + -+ xpt™) f(t) =yo + yit + -+ - + ypt"

for xg,...,xm € F not all zero. Consider now, putting a; := 0 for ¢ < 0, the matrices
an+1 " An+l—-m
AT, :: an42  *°° Qpi2—m
Qptr = Antr—m

Viewed as a linear transformation A, g: Em+l _ E" there exists a common nonzero
vector each Ker A, g, namely (zo,...,zy)". Conversely, the existence of such a vector
implies f € E(t) (and moreover that f can be written with numerator of degree < n and
denominator of degree < m).

We can also view A, as a linear transformation A, q: Qm*+!l — Q. This cannot be
injective, since otherwise A, g = A, g ®q idg would be injective by the flatness of E over
Q. Thus each Ker A, g is nonzero. Clearly Ker A; g 2 Ker Ay g 2 - - -, hence there exists
a common nonzero vector lying in each Ker A, . As noted in the previous paragraph, this
implies that f e Q(¢). o

Thus we find ourselves amply motivated to construct such an H*!

Remark 2.18 The Riemann hypothesis does not follow formally from what we’ve discussed,
but there does exist a still-conjectural formalism inspired by Hodge theory, known as
Grothendieck’s standard conjectures, which would imply the Riemann hypothesis. (More on
this later.)

As our very first step toward finding a Weil cohomology theory, we ask: what should
we take as the field E7 Over C, singular cohomology can use Q-coeflicients, but this won’t
work for varieties over finite fields, due to the following example of Serre:

Example 2.19 Let X be a supersingular elliptic curve over Fy, i.e. End X is an order in a
nonsplit quaternion algebra ramified exactly at p and oo (after possibly enlarging q). If H* is
a Q-valued Weil cohomology theory, then by functoriality we get an algebra homomorphism
(End X) ®z Q — Endg H'(X), the latter isomorphic to Ma(Q) by Lefschetz’s fized point
theorem (0 = (A - A) =2 —dimg H'(X)). But there is no such algebra homomorphism!

In fact, the same argument shows that there is no Qp- or R-valued theory. But, as we
will see, there is a Q-valued theory for all primes £ # p.
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3 Zeta function of a curve

3.1 Lecture 5, 9/12

See for example | |, or lecture notes on Zeta functions in algebraic geometry by Mircea
Mustata found here: https://dept.math.lsa.umich.edu/~mmustata/zeta_book.pdf

Remark 3.1 (1) For a projective smooth geometrically connected curve X /Fy of genus g,
one can show using just Riemann-Roch, that

Pi(t)
(1 =81 —qt)’

where Py(t) € Z[t] with degree 2g. The Riemann hypothesis takes more, but can be
proven using intersection theory on X x X.

Z (X /Fq,t) =

(2) The Riemann hypothesis says
29 o
) =] —a;t) Q[
j=1

where each o is an algebraic integer such that for all embeddings i: Q — C, it holds
i ()| = \/q for all j. This implies, since

Z (X/Fq,1) —eXP<Z #X (F )tT:)y

m=1
that #X (Fq) =1+ ¢™ — Z?g 1o and so

[#X (Fy) = (¢" + 1] < 29Vq™

Proof. We give a direct proof of item (1) here using Riemann-Roch. First we have the
degree map
Pic(X) — Z.

with image eZ (we will see e = 1 later). Denote degree d line bundle in Pic(X) by Pic?(X).
For each d, # Pic?(X) = # Pic®(X) for e|d, which is the size of the kernel of the degree
map, and we want to show this quantity is finite. Indeed, by Riemann-Roch, for d >> 0,
every divisor is equivalent to an effective divisor, but there are only finitely many effectivve
divisor of degree d (notice that for P a closed point, the degree of P as a divisor is exactly
[(P) : Fy], combine this with finitness of Fyn-valued points). Given this finiteness of
Pic?(X), we can view Z(X/F,,t) as generating function of effective divisors

Z(X[Fq,t) = ). i@
D=0

We further split the sum

deg(D) _ deg(D) deg(D)
Dt Dot + > gD,

D=0 deg(D)<2g—2 deg(D)>2g-1
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We now do the following calculation for .# € Pic?(X) for d = 29 — 1

WOXZ) _q  d-gt1)
h(X, & q q
#HD 2 0: 0x(D) > L} = #7,F) = —— =T —

where h%(X,.%) denote dim(H*(X,.#)) = d + g — 1. Let h denote # Pic?(X) for any el|d,
and pick minimal dy such that edy = 2g — 1. This gives

Z(X[Fqt)= Y gl 30 1 —
deg(D)<2g—2 i>dy 47
B Z tdeg(D) N h g (qt)€d0 B 7fedo
- 1 \? 1oy 11—t
deg(D)<2g—2 q q
f(t9)

(1 =2°)(1 = (q1)°)

for some f(t) € Q[t] with degree < max{dy + 1,2 + (29 — 2)/e}. Since Z(X/F,,t) has
integral coefficient, clearly so does f(t). We see that Z(X/F,,t) has a pole at ¢t = 1 of
order e. For £ a primitive e-th root of uninty,

Z(Xg. [Fge, t) = H Z(X[F,, &) = Z(X)Fy,t)°.
=1

Same argument shows the LHS has a pole at ¢ = 1 of order 1, but RHS has a pole at t = 1
of order e, hence e = 1. We also claim that

1
Z(X/Ftb ﬁ) = ql_th_QQZ(X/ant)

. g = 0 is easy, so we assume g > 1. Directly working with Zdeg(D)§2g72 tdee(D) and
Zdeg(D)>29—1 tdee(P) yields the desired result. This also implies deg(f) = 2g.

4 Review of smooth and étale morphisms

(1) In a "varieties" course, a finite type scheme over a field k is smooth, if X3 is regular.

Definition 4.1 (S1) A morphism f: X — S of schemes is smooth, if f is locally of
finite presentation, flat and for all s € S, the fiber Xy — Spec(k(s)) is smooth in the
previous sense (geometrically reqular). Here, locally of finite presentation means that
for all open affine U < X mapping to an open affine V. S, the ring homomorphism
Os(V) — Ox(U) is finitely presented.

(2) Another source of intuition from manifold theory: If f: X — S is a morphism of C'*-
manifolds, "smoothness" means f is a submersion (dfy: Tx X — Ty, S is surjective).
Locally on X, there are trivial fibrations:

for all z € X there are neighborhoods x € U < X and f(x) € V < S such that
f(U) <V and
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This is too strong for the Zariski topology, but we replace with

Definition 4.2 (S2) Let f: X — S be a morphism of schemes. Let x € X. Then f
is smooth at x (and f is smooth if it is smooth at every x € X ), if there are affine open
netghborhoods

T e U < X
b
fley e V. < S

and d € Z=o and a map

U—"— AY

f / .
proj

v

such that the diagram commutes and  is étale.

So now we need what an étale morphism is. We find our way to a definition by thinking
of what Definition 4.1 (S1) becomes if we require fibers to be zero-dimensional.

Lemma 4.3 If X — Spec(k) is zero-dimensional and smooth in the sense of Definition
4.1 (S1), what does X look like?

Locally, X looks like Spec(A) for a finite type k-algebra A. In fact, A is a finite k-algebra
(A is Artinian), and the smoothness in sense of S1 amounts to requiring Az = A®y k is
reduced.

Lemma 4.4 If k — A is finite and Ay, is reduced, then A ~ [ 17, ki, where each k;/k is a
finite separable extension.

Proof. Exercise.

This gives a first definition of étale morphisms.

Definition 4.5 (E1) A morphism f: X — S of schemes is étale, if it is locally finitely
presented, flat, and all fibers Xg — Spec(k)(s) for s € S are isomorphic to | [,.; Spec(k);,
with k;/k(s) a finite separable field extension. (It can be infinite, we only require local finite
presentation.)

(Put another way, for all x € X, Ox /M §(2)0x 2 ~ ﬁXf(z),m s a finite separable field
extension at k(f(x)).)

Via Definition 4.5 E1, the Definition 4.2 S2 now makes sense. We will see how S2 easily
gives a differential criterion for smoothness once we think about étale maps.
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Proposition 4.6 Let f: X — S be locally finite type. TFAE:
(1) for all se€ S, Xs ~ || Spec(k);, with finite separable field extensions ki/k(s).
(2) Q5 =0.
(8) Ax/g: X — X xg X is an open immersion.
Proof. Suppose (1) holds and let z € X, s = f(x) € S. Then
Dy /s Oog #(5) = D /n(s) = 0

since X ~ [ [ Spec(k); by assumption (exercise). Thus the finite type Ox z-module

(Q}(/SL = Q%ﬁx,w/ﬁs,ﬂz)) =M. f()” (Qﬁ(/s)r’

so by Nakayama’s lemma we obtain (Qﬁ( /S) = 0 for all z, which implies (2).
x

Now suppose (2), i.e. Q%(/S = 0. Then

AX/SzX ‘—>X><SX

]open
i, closed

U

One definition of Qﬁ( /s is: Let #x be the quasi-coherent ideal sheaf on U defining
ix: X — U. Then Q%(/S =% (JX/J)%)
There is an open neighborhood of A(X) in U of the form Spec(A ® A), where

Spec(A) < U

L b

Spec(R) < S

are open affines, and for the multiplication map mult: A® A — A, I = ker(mult), we are
looking at the module I/I%2. We want to show that I/I? = 0 implies that Ay /5 18 an open
immersion. Since R — A is finite type, I is finitely generated by (a; ® 1 — 1 ® a;); , where
the a; generate A as an R-algebra. Since we are given I/I% = 0, we get .%,/.#% = 0 for all
x € Spec(A) and hence .#, = 0 by Nakayama’s lemma. Since [ is finitely generated, the
quasi coherent sheaf .# on Spec(A ® A) is zero in a neighborhood of , so Z|y = 0 for
some open neighborhood V of A(X) in U.

Now suppose that Ax/g is an open immersion and let s € S and let k be an algebraic
closure of k(s). We want to show that

X5 = X, x Spec(k) — Spec(k)

is a disjoint union of copies of Spec(k). Let = € (X3), corresponding to Spec(k) = Xs.

Then

cl

Ax/s
Xg 4“ Xg XE Xg

IT (zo fg,id)T

Spec(k) —%— X5
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is a fiber product diagram, so Spec(k) = Xz is an open immersion, so X5 is a discrete
topological space. Ox_, is an Artinian local ring with residue field £, so

Spec (Ox.x ®F Ox-z)

is a singleton. Since

Spec(Ox_ ) — Spec (ﬁxg,x ®r ﬁxg,a:)

is an open immersion, it is an isomorphism, and we win, since Ox_ , ~ k.

Definition 4.7 A morphism f: X — S of schemes is called unramified, if it satisfies any
of the three equivalent conditions of Proposition 4.0.

So we have the definition

Definition 4.8 (E2) An étale map f: X — S is a flat, locally finitely presented and

n n

unramified morphism (likewise, define "étale at x", "unramified at x").

Example 4.9 (1) open immersions are étale
(2) any immersion is unramified

(3) Let A be a Dedekind domain, K = Frac(A), L/K a finite, separable extension and let
B be the integral closure of A in L. Then B is a Dedekind domain and A — B is
finite and flat. Let

q € Spec(B)

b

p € Spec(A)

be a map. To say that f is unramified at q means pBy = qBy and k(q) = Bq/qB,
is a finite separable extension of k(p). (We recover the usual algebra/number theory
notion. )

Note:
Q}3/,4 QK ~ QE@K/K = QE/K =0,

since L/K is separable, and so Q}B/A is a finite torsion B-module supported at a finite

set S < Spec(B) of maximal ideals, and Spec(B)\S ER Spec(A)\f(S) is now étale.

For X — S locally finite type of locally Noetherian,

supp (Q}(/s> =V (Annﬁx (Qk/s)) — X

is a closed subscheme and this support is called the "branch locus" of f.
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4.1 Lecture 6, 9/14

Recall: A morphism f: X — S of schemes is called étale at x € X if f is locally of finite

presentation at x, flat at z (i.e., the induced map Og y(,) — Ox ;. is flat), and unramified
ﬁX,z

at = (i.e., 510 Ox e

is a finite separable field extension of k (f (z))).

Continuing with our list of examples:

Example 4.10 If R is any unital commutative ring, a standard étale morphism X —

Spec (R) is one of the form A = R([gh, where g, h € R [t] with g monic and ¢’ (t) invertible

in A (see Figure 1).

Spec (R [t])

Spec (R)

Figure 1: ¢ is invertible in A if and only if in all fibers (away from h = 0) g has simple
roots.

Calculation: If f is standard étale, then it is étale (using that g is monic, so R[t]/(g)
is free and finite over R, so R — A is flat of finite presentation).
Remember: For all R-algebra surjections B — B/I we have

1)1 % QY ®p B/T — Q) — 0.

In our case,
R[t
a4t
Ql ~ (9)
A/R = ‘submodule gene-’
rated by dg

and since g’ is invertible in R([gh then there exist a,b € R[t], such that ag + bg' =1, thus

agdt + bdg = dt (using dg = ¢g'dt). Thus dt belongs to te submodule of R([gt%h spanned by dg.

Proposition 4.11 Let f : X — S,z € X, f(z) e V € S (where V is an affine open
subscheme of S). Then f is étale at x if and only if there is an affine open subscheme U
of X containing x such that f(U) SV and f: U — V is standard étale.
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In particular, {x € X : f is étale at x} is open.

Proof. See | , Chapter I, §3, Theorem 3.14] or https://stacks.math.columbia.edu/
tag/02GT. B

Example 4.12 o Gven X Ly % S, if f and g are étale, then so is go f.
o Given X L5 S and S" — S, if f is étale then so is X xg S' — 5.
X Xg S — X

gJ{ J{f étale=g étale

S'—

X —n"r Ly

o (Gliven \ / If f and g are étale, so is h.

Example 4.13 G,, r = Spec (R [t,t‘l]) — Gy, r given by z — 2" is étale if and only if
ne R*.
A}R — A}{ given by z — 2" is not étale forn > 1 at 0.

Example 4.14 Let f : X — S be locally of finite type with S locally Noetherian. Let

—_— ﬁ —_—
x € X be such that k (z) = k (f (v)), and let Og g4 EiN Ox 5 be the map on complete local

rings. Then f is étale at x if and only if fﬁ s an isomorphism.
Typical example: X — S a map of varieties over an algebraically closed field, and x a
closed point.

Remark 4.15 Proof not so hard but omitted. The Noetherian hypothesis is used in the
form: for Noetherian local ring A, the map A — A = lim A/m’ is faithfully flat.

Now a basic reformulation of what it means to be étale/smooth/unramified.

Definition 4.16 A closed immersion Sy < S is an nth order if & = ker (Os — 14Us,)
satisfies I = 0.

Z/p*Z
Example 4.17 Spec( (/ C) 2 Spec (c ([tg/(ﬂ)))'

Definition 4.18 A morphism f: X — S of schemes is formally smoth/unramified/étale,
if for each 1st order i : Ty — T thickening of affine schemes and any commutative diagram

T[)*>X

[ =]

T —+— S

there exists at least one lift /| at most one lift | exactly one lift u: T — X.

YT Y v
formally smooth  formally unramified formally étale

28


https://stacks.math.columbia.edu/tag/02GT
https://stacks.math.columbia.edu/tag/02GT

Example 4.19 Note that there are no finiteness hypotheses here, and Spec (C [t]) ER
Spec (C) is formally smooth.

(Exercise: see what this has to do with Hensel’s lemma).

Theorem 4.20 Let f : X — S be a morphism of schemes. Then f is smooth/unramified/étale
if and only is f is formally smooth/unramified/étale and locally of finite preentation/locally
of finite type/locally of finite presentation.

Proof omitted, but here are a couple calculations that give the flavor of étale =
formally étale.
Let R — A be a ring homomorphism, and consider square-zero thickening

Spec (B/I) —— Spec (A)

l !

Spec (B) —— Spec (R)

which is dual to
B/l +— A

T ]

B+—R

Suppose we have two lifts uy, us as in the above diagram. Then u; —us : A — [ is an
R-linear derivation (and adding an element of Derg (A, I) to any lift gives another lift), so
the set of all such lifts is a (possibly finite) torsor (principal homogeneous space) under

Derg (A/I) ~ Homy (QL/R,I).
Translate this to:

Lemma 4.21 R — A is formally unramified if and only if Qh/R = 0, and for schemes
X — S is formally unramified if and only if Q}(/S =0 (details: exercise).

To complete the proof of étale = formally étale, must show:
Lemma 4.22 IfI? =0 and f : X — S is étale, then there is a lift u making the diagram

Spec (B/I) — X

Spec(B) ——— S
commute.

Proof. Using that lifts are unique, reduce to case where everything is affine and f: X — S
is even standard étale.

R
BT/“ —
B+ R
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(here g is monic and ¢ is invertible in R([gh). Set ¢ (t) = b e B/I, lift to some b € B.
Maybe g (b) # 0, but we can look for i € I such that g(b+1i) = 0. Indeed, writing
g(b+1i) = g(b)+ig (b) (because I? = 0), then we want i = —g (b) ¢’ (b)*. Does this make
sense?

Yes: g(b) € I (use @), ¢’ (1) is a unit in 205, s0 ¢/ (b) is in (B/I)*, so ¢ (b) € B
Taking t — b — g (b) ¢’ ()" we get our lift (by "Newton’s Method"). W

To wrap up a loose end, state differential criterion of smoothness.

Definition 4.23 (S3) f: X — S is smooth (in any of the previous senses) if and only
if f is locally of finite type presentation, flat, and Q%(/S 1s locally free, with rank at any

x e X given by dim, Xf(x).]

Remark 4.24 Can’t omit the rank condition after requiring Qk /8 locally free. Example:
F, [tP] < F,[t] on Spec() is finite free and Q%p[t]/Fp[tp] is free of rank 1, but relative
dimension is 0.

5 Sites and sheaves

Motivation: Let X be a topological space, and let C = Open (X) be its category of open
singleton, U c V,
J, Udv.
sets (or valued in any category A) on C is a functor .% : C°? — Set (or A) and .Z is a
sheaf if the natural map, for any U = | J,.; U; open cver of U € C,

sets, i.e., Obj(C) = {U < X open}, Hom¢ (U, V) = A presehaf of

iel

E(U)H{sllden/ Vi, j e I (silu,nu; —s]]UmU)}
iel
is bijective.
From a categorial perspective, U; n U; = U; xy U; are fiber products in C, and we can
reformulate as follows: for all open cover U = | J,; Ui, the diagram

F (pry)
el (Ul) T} el (U] XU Uk)
T2

F U) — 1

is an equalizer in Set.
That is, & (U) — H F (U;) is injective, and its image is the set of (s;),.; with same
image under .%# (pr;) and .# (pr,). Here .# (pr;) is the map whose (i, k)-component is

[17 W) - 7 ;) 22 7 (U; xp Uy).
iel

We have used very few formal properties of Open (X) and its "covers" to formulate the
sheaf condition.

LThis number is the maximal dimension of an irreducible componen of X f(z) that passes through z.
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Definition 5.1 A site is a category C and a set (or may be sometimes proper class)
Cov (C) of families of morphisms with fixed target {Ui EiN }
An element of Cov (C) is the data:

el

(1) U € Obj(C),

(2) a set I, and

(8) objects U; € C and morphisms U; LU in C,
such that:

o If f:V > U is an isomorphism, then {V ER U} € Cov (C).

.If{Uii }

iel

€ Cov (C) and, for each i € I, {Vij ELR ,} € Cov (C) then
J€Ji

{V%U} e Cov (C).
iel,jed;

o If {Ui fi, } ; € Cov (C) and f : V — U any arrow, then the fiber products U; xy V/
€

exist, and {U; xy V — V},.; € Cov (C).

Example 5.2 C = Open (X), where X is a topological space, and {U; — U},.; € Cov (C)
if and only if | J,c; Ui = U. This is a site.

5.1 Lecture 7, 9/19

Example 5.3 Take X to be a topological space, and let C be the category whose objects

are open immersions U — X and whose morphisms are maps over X. We define a site
Xiop by taking the covers to be all families {Ui LN } ; such that | J,c; fi(U;) = U.
1€
Note that each of the f; is an open immersion because the structure morphisms to X
are.

Example 5.4 For a slight variant of the example above, take C to be the category of étale

spaces over X. By definition, objects are morphisms U 1 X such that f is locally a
homeomorphism?, and morphisms are continuous maps over X .

We then define a site X by taking the covers to be all families {Ui x, } , such that
S
Uie[ fl(UZ) =U.

Remark 5.5 Note that the sites Xiop and X¢; are not equivalent as categories. In particu-
lar, the category X¢ has non-trivial automorphisms corresponding to deck transformations
of covers.

We may define sheaves on a site.

2Recall this is local on the source.
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Definition 5.6 Let C be a site. A presheaf (of sets, or in general an abelian category or
category with arbitrary products) on C is a functor

Z: C°P — Set.

The class of presheaves of C forms a category by taking the morphisms to be the natural
transformation between the two functors defining the presheaves.

A presheaf & is a sheaf if moreover for every cover {Ui EiN } ; e Cov(C), the
1€
Ff) y(Prlg

diagram F(U) —= [1,;c; Z (Us) o [Liker F (Uj xu Ug) s an equalizer.
7 (Pra

The category of sheaves on the site C* is defined as a full subcategory of presheaves on

C.

Remark 5.7 Even though the sites Xiop and X¢ are not equivalent, the categories of
sheaves on Xiop and sheaves on X are equivalent.

When we come around to defining derived cohomology of sheaves on a site, this will
imply the cohomologies are isomorphic.

Here are some examples of sites which are associated to a scheme X.

Example 5.8 The small Zariski site of X, X, is the site Xiop when X is endowed with
the Zariski topology.

The classical definition of sheaves on a scheme is precisely the definition of sheaves on
XZHI‘

Example 5.9 The big or global Zariski site of X, denoted (Sch/X),, or Xzar, is the site
whose underlying category has as objects schemes over X and morphisms are morphisms

of schemes over X. The covers are families {Ui 1, } such that the f; are open

el
immersions, and | J,.; fi(U;) = U. This last condition is frequently referred to as the family
being jointly surjective.

Example 5.10 The small étale site, denoted Xg, is the site on the category of étale
schemes over X whose covers are jointly surjective maps to a fized target.

Note that in the category of étale schemes over X, any morphism is étale by /.12. Also,
any flat morphism of local finite presentation is open, so any étale morphism is open, so
an €tale cover is an open cover.

Example 5.11 The big or global étale site over X, denoted (Sch/X),, or Xy, is the site

whose underlying category is schemes over X. A family of morphisms {Ui 1, } , is a
S
cover if and only if each f; is étale and the family is jointly surjective.

Example 5.12 The fppf site over X, denoted (Sch/X)g, ¢, is the site whose underlying
category is Sch/X, and a family {Ui x, U} is a cover if and only if each f; is fppf and
the family is jointly surjective.

Recall that fppf is the French abbreviation of fidelement plat de présentation finite—

faithfully flat and of finite presentation. This means the morphism is surjective and flat
(faithfully flat) and locally of finite presentation.

3A category of sheaves of sets on a site is sometimes called a topos.
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The final site we define is slightly more subtle due to the definition of a fpgc morphism.

Lemma 5.13 Let f: X - Y be a surjective morphism of schemes. The following condi-
tions are equivalent:

1. There exists an open affine cover {Y;} of Y such that eachY; is the image Y; = f(X;)
where X; is a quasi-compact open subset of X .

2. For every x € X there is a quasi-compact open v € W < X such that f(W) is an
open affine.

Proof. The implication 2. = 1. is immediate from the surjectivity of f.

For the reverse implication 1. = 2., take x € X. Then there is some Y; an open affine
of Y containing f(x) such that Y; = f(X;) for some X; open and quasi-compact. Also,
there is an open affine U, € f~1(Y;) containing . Then we may take W = X; U U,.

Definition 5.14 A morphism f: X — Y of schemes is an fpqc morphism if it is faithfully
flat, and satisfies the equivalent conditions of Lemma 5.135.
We say a family {U; — U} is an fpqc cover if the induced map

HU,;—>U

is an fpqc morphism.

Definition 5.15 The fpqc site, denoted (Sch/X)g, .. is the site whose underlying category
is Sch/X and whose covers are exactly the fpqc covers.

Remark 5.16 1. Naively, one would expect to define the covers in the fpqc site to be
jointy surjective families of faithfully flat and quasi-compact morphisms.

Howewver, some open covers are not fpqc in this sense. Because we want the fpqc
site to be an enlargement of the Zariski site, we are led to this definition of fpqc
morphism.

2. Condition 1. in Lemma 5.13 may be replaced with the following:

Any quasi-compact open in Y is the image of a quasi-compact open of X.

3. We have the inclusion of sites

Zariski < étale < fppf < fpqe.

All but the finally inclusion is immediate. For this last inclusion, use the fact that an
fppf morphism is open and surjective.

4. One may ask why we do not define an fp site where covers are taken to be jointly
surjective families of morphisms of finite presentation. One may define such a site,
but it is poorly behaved. One of the key features of the fpqc site is that representable
functors are sheaves—this fails to be the case on an fp site.

For a good reference on this, see [ /

For any site C we will write Sh(C) for the category of sheaves of sets on C and PSh(C)
for the category of presheaves of sets. Similarly, Ab(C) will denote the category of sheaves
of abelian groups on C and PAb(C) the category of presheaves of abelian groups.
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6 Descent

There are two basic problems we must now attend to for these sheaves on a site:

1. For a site C, what sort of properties does Ab(C) have? Is it an abelian category?
Does it have enough injectives?

2. Can we write down any sheaves for the étale, fppf, or fpqc site? Are there analogues
of Quasi-coherent sheaves? Can we describe representable functors as sheaves?

The answer to all of these questions is “yes,” but some effort is needed to do so.

In order to verify that Ab(C) is an abelian category, we must show that it has kernels
and cokernels. Kernels of a sheaf may be defined naively, but even in the classical definition
of sheaves, the cokernel sheaf is defined through a process of sheafification. We must
develop this for sheaves on more general sites.

For the second set of questions, given a quasi-coherent sheaf .# € QCoh(X) on the
Zariski site we may define a functor

(Sch/X )P — Ab
(T ER S) — T (T, f*7).
This yields a natural definition for quasi-coherent sheaves on other sites, but we must verify

it is a sheaf on the étale, fppf, and fpqc sites.
Similarly, if we have a representable functor

hx: (Sch/S)°? — Set
(T ER S) > Homg(T, X)
this is a sheaf in the Zariski site, and a presheaf in the étale, fppf, and fpqc sites, but is it
a sheaf?

One tool that is helpful in verifying whether a presheaf is a sheaf on the étale, fppf, or
fpqc sites is the following.

Lemma 6.1 A presheaf .Z is a sheaf on the fpqc site (resp. étale, fppf) if and only if
1. F is sheaf on the Zariski site.

2. For any cover of affine schemes {Spec(B) ER Spec(A)} with f fpqc (resp. étale,
fopf), the sheaf condition is satisfied.

6.1 Lecture 8: 9/21

Question 6.2 Given a cover S — S when does a quasi-coherent sheaf on S’ arise by
pullback from S?

Given any fpqc cover {S; EiN Stier and F € QCoh(S) we obtain .%; = f*F €
QCoh(S;). When pulled back to S; xg S; then there are isomorphisms between .%; that

satisfy a cocycle condition. In what follows we will replace the cover {S; EiR S}ier with the
1-element cover S’ :=[[S; — S and formulate the cocycle condition in this setting.
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We work with 8" %> § and .7 € QCoh(S). We have a composition of morphisms:
" / ! P ! f
S"i=5"%xg 8 p:; S —— S
2
and we obtain an isomorphism

pi(f*F) = (fop)"F = (fop2)"F =~ p3(f*F)

which we label with ¢. We set §” := S’ x5 5’ x5 5. We have projections p12, p13, p23 to
S’ for any pair of the three factors. Then the cocycle condition can be writen as

p§3¢ © pik2¢ = P>1l<3¢

More precisely we have the following commuting diagram:

P30
pis(Pif*F) ———— pis(P3 f*F) ~ p3s (05 f*F)
0 | piso
P12¢

Plo(Pi f*F) ———— pla03 f*F) ~ p33(pf f*F)

Definition 6.3 Given S' > S, a pair (F',¢) consisting of F' € QCoh(S") and an
isomorphism ¢ : pF.F' = p5F' in QCoh(S") is called a covering datum. It is called a
descent datum if the cocycle condition pi3¢ o piad = pis¢ holds.

A morphism (Z', ¢) — (¢',1) of covering data is a morphism « : #' — 4’ in QCoh(5’)
such that the diagram below commutes

7 s
p’fozl ‘ psa
piY —— p59’
Thus, we can define a category of covering data for S’ Is.
Theorem 6.4 Assume S' 2> S is fogc. Then the pullback gives a functor

QCoh(S) —> {quasi-coherent S'-mods with covering data}

1. that is fully faithful.

2. that has essential image given by the descent data.
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Remark 6.5 Ezplicitly, the full faithfulness says that for F,9 € QCoh(S) the diagram
below is an equilizer

* p
Homg(7,.#) —1— Homg (f*7, *9) == Homg(¢*F,¢*¥)

Proof. We'll first show that f* is faithful. It suffices to prove that for all # > ¢, f*~y =0
implies that v = 0. We first reduce this to the affine case. For Spec(R) < S, as f
is fpqc there exists a quasi-compact V' = f~!(Spec(R)) such that V = Jg,ie SPEC(R);
and f(V) = Spec(R). As the union is finite we end up with an fpqc cover Spec(R) =
[ [ Spec(R); — Spec(R), where R := [ R; and 7|SpeC(R)/ = 0. Hence, we have reduced this
to showing that if R — R’ is faithfully flat and v : M — N is an R-module morphism, then
~ = 0, provided that M ®g R’ R Y ®pr R’ is 0. This follows by the following lemma:

#
Lemma 6.6 Let AL B be a flat ring homomorphism. The following are equivalent:

1. Spec(B) ER Spec(A) is surjective.
2. For all A-modules M, if M ®4 B =0, then M = 0.

3. For all mazimal ideals m of A, mB < B.

Proof. Assume that 2) holds. Let p € Spec(A). Then, as the residue field x(p) is non-zero,
B ®4 k(p) # 0, which tells us that the fiber of Spec(B) — Spec(A) over p is non-empty.
Hence 1) holds.

Assume that 1) holds. Given m € MaxzSpec A, then there exists n € MaxSpec B such
that f(n) = m. Thus, mB<n< B.

Assume that 3) holds. Suppose that M # 0 is an A-module. Let z # 0 € M and
N = Ax < M. It suffices to show that N ®4 B # 0. But, as N is cyclic, N ~ A/I for
some ideal I € A. Thus, N®4 B ~ B/IB. As I is a proper ideal of A, there is a maximal
ideal m of A that contains it. Thus, IB € mB < B, which implies that B/IB isn’t the
zero module. W

Next, we show that that f* is faithful. In particular, given « : f*#% — f¥ such

that p*a = pia, then a = f*(F 5 &) for some @. Again, we can reduce to the case
where both S and S’ are affine by using Zariski gluing on S. In particular, we have

reduced to the case Spec(R)" > Spec(R) being faithfully flat, M, N being R-modules and
¢: M®prR — N®g R amap of R'-modules such that pf¢ = p5¢ and we want to show
that ¢ = ¢ ® id for some ¢ : M — N, a map of R-modules. We claim that it is enough to
show that for all R-modules M, the diagram below is an equilizer:

id®1 id®id®1

/ / /
M ®r R Wi M ®r R ®r R

M

Indeed, via the identification (M ®p R')®r R'Qr R’ ~ M ®r R'®r R’ we get two maps
pio,p5¢0: M ®r R @r R — N ®r R ®r R'. Explicitly (pf¢)(m®@a®b) = p(m®@a) @b
and (p5¢)(m®a®b) = p(m ®b) ® a. Then we get a commutative diagram
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id

M— M®pR M R R
R 2id ®r R ®r
Pio||p5e
1d®1
N— N®rR _ N®pr R ®@r R
®id

with the horizontal rows being equilizers by the claim. Using the fact that pf¢ = pi¢ and
chasing the diagram we get that ¢|M maps to eq(N ®r R 3 N ®g R’ ®r R'), which is
exactly N. Then, ¢| 1y 1s the desired morphism of R-modules ®.

Now, we claim that the equlizer property of the previous claim holds. By the properties
of faithful flatness it is enough to show that for a faithfully flat R — A, the base-changed
diagram for M ®r A and A’ = R’ ®g A is an equilizer. This enables us to assume that
Spec(R)" — Spec(R) has a section. Indeed, we can take A = R’ and then Spec(R)'®r R’ —
Spec(R) ®r R’ = Spec(R)’ has a section induced by R’ 19, pr@r R 24 R,

Thus, given R > R’ % R such that so 7 = id, if > m; ® i satisfies >, m; @ri® 1 =
> m; ® 1 ® 7} by applying id ® id ®s we get:

Nom; @7 = (id®id®s) (Zmi@)rg@l)
= (id®id ®s) (Zmi®1®r§>
=2 mi @ s(r)
= mis(r) ®1

Therefore, >, m; ® r; is in the image of M — M ®pr R/, which proves that the diagram
is an equilizer. This gives us the faithfulness of f*.
We'll prove that the essential image is the descent data in the next lecture. H.

Corollary 6.7 For any .% € QCoh(S), the functor (Sch /X)? — Ab given by (T ER
S) — I(T, f*F) is an fpqc sheaf.

Proof.
(T, f*#) ~ Homg, (Or, f*F) = Homg, (f*Os, f*F)

Then the equilizer diagram in Remark 5.21 is exactly the equilizer condition for an
fpqc sheaf. B

Let f: S — S be a morphism. We get a functor f*: (Sch/S) — (Sch/S) given by
(X =5 8) = (5 xg X — 5'). As before, we have a commuting diagrams of fibered squares

S” g S/ S
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We get canonical isomorphism ¢ : pfX — p5X in Sch /S’ satisfying the cocycle
condition p33¢ o piad = pis3¢.

Definition 6.8 A descent datum on X' € Sch /S" is an S’-isomorphism ¢ : pi X' tp p5 X’
satisfying the cocycle condition. A morphism of descent data (X',¢) — (Y' ) is a
S’-scheme morphism o : X' — Y’ such that the diagram below commutes.

st 2 e

* *
o by

ER Vel *V\//
Y —— P

Theorem 6.9 Let S %> S be fpgc. Then:

1. f*:(Sch/S) — {descent data on Sch /S'} is fully faithful.

2. Let (X', ¢ : pi X' — p5X') be a descent datum for schemes over S’ such that X' can
be covered by opens U; with U; — S’ an affine morphism such that ¢ restricts to
piU; ~ p5U;. Then (X' — S, ¢) arises as the pullback of some X — S.

Remark 6.10 The hypothesis in 2) is used via the equivalence of categories:

(w dfine, S’} — {quasi-coherent Os/-algebras}

T — T Oy

Corollary 6.11 For all X € Sch /S, hx is an fpqc sheaf.

6.2 Lecture 9: 9/26

Proposition 6.12 f* is essentially surjective.

Proof. As with full faithfulness, we reduce to the case S’ and S are affine. Start there, and
let f:S" = Spec(R) — S = Spec(R). Let M’ be an R'-module with a descent datum

¢ pIM' = ps M’

as R’ ® R'-modules, where p;: Spec()(R' ® R’) — Spec(R)" are the projection maps, and
psM' = M' ®r (R ®r R') ~ M' ®g R', where R" acts on R’ ®pz R’ by 1 ®id. Then ¢ is
an isomorphism M’ ®g R’ — M’ ®g R’ of R”-modules, where on the source R” acts in the
usual way, and on the target by

(a®b)(m®r) =bmar,

i.e. ¢ gives an isomorphism M’ ®r R’ ~ R' ®r M’ of R”"-modules with the usual action.
We obtain two maps M’ — M’ ® R’, namely id ® 1 and ¢! (1 ®1id), so we can form

M :=eq (M =3 M'®p R') € R—Mod

of these two maps, so we get a canonical map of R'-modules M ®p R’ — M.
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General calculations interpreting the cocycle condition:

e M ® R — M’ is injective:
Suppose Y,m; ® a; — 0, i.e. > a;m; = 0 in M’. By definition it holds
M = {m’ eM:m'®l= <p*1 (1®m’)}

0= cp_l <Zl®aimi> =Zmi®ai.

(We did not use the cocycle condition here.)

and thus

e Recall that for the projection maps p;;: Spec()(R” = R' ®r R’ ®r R') — Spec()(R")
the cocycle condition on ¢ is

P33 0 Piaw = Pl

We have isomorphisms of R”-modules
Phe: (M ®r R) ®prps RY —— (R ®p M') @p . R
(M'®p R)®r R —2—— R ®p M'®R R,

where (M' ®gr R/) Ry p, R” means that R” acts as id ®id ® 1 on R”. Similarly,

p§3g0: (M/ ®R R/) ®R”,p§3 R/” E— (R/ ®R M/) ®R",p§3 R”/
(M'®@r R)®r R ——2*  R'@z M'®p R’
and

pT?)QDI (M, ®R R,) ®R”7p>1k3 R”/ —_— (R/ ®R M/) ®R”,p;k3 R”/

] :

(M'®r R)®gr R R ®@r M'®gr R,

where the lower horizontal map is given by
meIl— Y a®le,

if p(m®1) => a; ®x;. So P33 0 pia = pi3p becomes:
Ifom®1l)=>3,aQx and p(z;®1) = Zj bij ® i, then

P3p o PT2p(M @ 1@ 1) = pagp <Z a; ® wz) = >, 4 @by ®yyj,
i ij
whereas
Pisp(mM®1®1) = Zai®1®xi.
So we have

Zai®bij®yij22ai®l®$i (3)
ij
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Now assume Spec(R)" — Spec(R) has a section o: Spec(R) — Spec(R)’. Applying
o ®id®id to (3) gives

gp(Za(ai)xi@)l)=Zo’(ai)bij®yz’j = ZU(CM)@%’
Zl@a a;) 1—1®<20 )

ie. >, 0(a;)x; € M (the equalizer from above). Now apply id ® o ®id to (3) and compose
with the action map R’ ® M’ — M’ to get

ZCL’LZ zj yzg Zaz z] Z/z] = Zail‘i e M.

%/_/
eM

We want to show that the left-hand side lies in im (M ® R’ — M’). This will be done by
showing > a;z; = m. This last point is easier. Consider

/ c S/l/

\ W

S//

| |aws
S/
l

S.

We have a quasi-coherent sheaf .#’ on S’ corresponding to M’ and ¢: pf. %" = p3.%'.

Also
P33p 0 Plap = Pisp: ¢f F' — 3T’
on S”. Pull back along As:
A opl = (pijo A3z)" = A3
for all 4, j and pullback of the cocycle condition is
AjpoAjp = Ajp,
and hence A5y = id g/, so Ay is an idempotent isomorphism. In our affine coordinates
em®1) = > a; ®x; (after A%) gives m = > a;x;. This finishes the affine case with a
section.

Without a section, we still constructed M and M ® R’ — M’. To show this is an
isomorphism, it suffices to do so after a faithfully flat base-change on R. As last time, use
the fpgqec R — R’ to reduce to the case where we have a section.

Now we reduce to the affine case:

Knowing the result that there is a descent on a Zariski open cover of S, we win by
Zariski glueing. So we may assume that S is affine ( yet cocycle condition using full
faithfulness in the general case, since the intersection of open affines in .S might not be
affine). Then we reduce to S’ affine by applying the definition of fpqc morphisms to find a
quasi-compact open U’ < S” with f (U’) = S open affine. Replace U’' = | s, U/ affine open
with [ [ U] is affine. Details are an exercise.
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7 n’existe pas

8 Categories of (abelian) sheaves on a site

Let C, Cov(C) be a site. We have the full subcategories Sh(C) < PSh(C) of sets and Ab(C) <
PAD(C) of abelian groups. We want to find left adjoins: the functorial sheafifications.

Cech construction:
Let .# € PSh(.), U = {U; — U},.; € Cov(C).

Definition 8.1

[:[0 (u,y) = {(SJ € Hﬁ(Uz) : 3i|Ui><UUj = 8j U;xyUj fOT' all i,j € I}

1€l
with its canonical map .F(U) — HO (U, F).

Definition 8.2 A morphism x: U — V of coveringsU = {U; —> Ul,c;, V ={V; >V}, _;

is
1. amapXx: U -V, and
2. aset map a: I — J, and
3. maps x;: Ui — Vi) for alli € I, such that the diagram

U; L Va(i)

]

X
—

~

commutes

When X =idy: U - U(=V), we call x: U — V a refinement. When we have U — V, we
get a map 5 5
H° V,7F) — H° u,7), (Sj)jeJ — (Xf (Sa(i)))ieﬁ

where x¥: F (Va(i)) — Z (U;) is given by the presheaf structure.
Lemma 8.3 This map is well-defined, i.e. for all i1,i0 € I
X'zkl (Sa(il)) ‘Uil ><UUiQ = X:; (Sa(’iz)) |Ui1><UUi2’
and for a fired x: U — V, it is independent of the choice of o and (X;),c;-

Proof. We have a commutative diagram

Ui, xu Us, Ui,
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The first claim follows by pulling back along two paths. For the second claim suppose that
we have p: U — V = (y,,@’: I — J: U — Vﬁ(i)). The diagram

V)
U, Vv
V()

comimutes, so we get

and for s = (s;) € HO (V, %) we get
U7 (s) = (V7 (3500))ses = (@705 (3500)))ses = (@7PT (5a)) i = (X7 (Sa)) iy = X* (5)-

Definition 8.4 Consider the category Iy, whose objects are covers {U; — U} of U and
whose morphisms are refinements. Then we have a functor

H° (=, F): Iy — Set.
This diagram in sets is filtered, i.e.
1. it is not empty.
2. Given two maps A - B, A — C, we can find maps B — D, C' — D such that

commutes.

3. For maps a: A — B, b: A — B there exist a map h: B — C such that ha = hb, i.e.

g a X
- h
A\ ; B ---=- i(C



commutes.
Proof. 1. {U — U} € Iy, so it is not empty.

2. Two covers have a common refinement, because :

Given U, V, form U x V = {U; x V; — U}.
3. last lemma.

This makes colimits over Z;P very explicit.

Definition 8.5
H(U, Z) :== F*(U) := colimgor H'(U, F),

i.e. any element of F T (U) is represented by some sy € FIO(Z/{, F) and two sy, sy represent
the same element of F*(U) if and only if there is a common refinement

o
T~

v,

u
T

where sy|T = sy|T.

Theorem 8.6 1. F* is a separated presheaf.
2. F# .= (F1)" is a sheaf.

3. F — F is the desired left-adjoint to Sh(C) = PSh(C) and Ab(C) = PAb(C).

8.1 Lecture 10: 9/28

Last time we had a site induced by a pair (C,Cov (C)) and we had .# € PSh(C). We
constructed .#* € PSh (C) given by

FrU)= cglim HU, 7).

U ofUu
—

I;p
Theorem 8.7 The following hold.
1. F* is a separated presheaf.

2. Get canonical maps F — F+ (use U = {U 1, U})

3. If F is separated, then F 7 is a sheaf, and F — FT is injective.

4. F — Ft = FF is a left adjoint to Sh (F) < PSh (C); i.e., we have functorial isos
Homgy,c) (F*,%) = Hompgyc) (F, %)

for all # € PSh(C) and ¢4 € Sh(C).
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Proof. Left as exercise, but we will give one sample argument, showing
F separated = .Z 7 is a sheaf.
e 7 — Z 7 is injective (exercise).

e Next claim is that for all refinements & = {U; — U},_; Sy = {V; = U}, (that is,
that we have a function o : I — J such that for all i € I the diagram (4) commutes),
the map H° (V, %) — H° (U, F) is injective.

U;

:

X Va(i)

l (4)
U

N

—a

Indeed, assume (s])]ej (s )]eJ e H° (V, F) are mapped to (X;ksa(i))ie[ and (X;"s;(i)>id

respectively, and (Xi Sali ))zel (Xz So(i ))iel.
Fix j. By site axioms, {U; xy V; — V;} is a cover.
By definition of HO, Sa(i)|Va(i)><UVj = Sa(j)‘va(i)XU‘/j’ SO

* | = S| _x | L F /|
Xi Sj1UxV; = Xi Sa(i)|UixV; = Xi Sa(i)|UixV; = Xi 851U xVj-

Since {U x Vj =— Xixid } € Cov (C) and # is separated, s; = s for all j € J. Now let

{U; - U} € Cov (C), s; € FT (U;) are compatible on U;, xy U;,. Each s; locally comes
from sections of .7: i.e., there exist covers {U;; — Ui}, ;. and s;; € F (Uy;) such that s;|u,,
is the image of s;; under # — Z .

Claim: the collection (s;5) jer € H° ({UZ] - Ui, i ) — F1(U) is the desired

jed;

gluelng of the s;’s. Check that the sij’s are compatible on all U;, j, Xy U, j,: compatibility
of s;’s means that for all i1, 19,

Siy ‘Uil xyUi, = Siz |Ui1 xyUiy s

so for all ji, jo,

Siy |Ui1j1 xuUiqgjy = Si2|Uilj1 XuUigjy *
v o

~" Y
(image of) (image of)
$i131 Uiy gy <Uig $i252 Uiy gy <Uiyjy

. O‘\ 6\+ . . . . . . . .
Since & — Z ™ is injective, we actually get s;,;, ‘Uiln XUsysy = 312]2|Ui1j1 XUy -

Remark 8.8 Similarly, the same construction § gives left adjoint of Ab (C) < PAb (C).

Remark 8.9 The previous construction required a colimit over I;¥, which should have
a set of objects for the colimit to make sense. In our strict sense of “site”, C is a small
category and Cov (C) is a set, so this is OK.

This does not literally hold in our key examples (C = Sg), e.g. for any set I,

(Spec (k) — Spec (k)),o; € Cov (Se).
There are various workgrounds, the most direct being:
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Lemma 8.10 Fiz a scheme U. There exists a cofinal set of covers in the (proper) class
of all étale covers of U (apply the lemma to any object in (Sch /S),, to replace Cl(l)hm by

all étale
covers

colim ).
cofinal
set

Proof. First note that any cover (U; — U) can be refined by a cover with all U;’s affine
and mapping into affines in U.

U has a set of affine open subsets. Fix open subschemes W; representing all of these.
We can write down a set parametrizing up to isomorphism all finite presentation & (W;)-
algebras (with cardinality a countable union of card (¢ (W;))). B

This lets us do Etale Cohomolohy in ZFC.
Same idea works for fppf covers, and we get fppf sheafification as well. The analogue
does not hold for fpqc covers.

Lemma 8.11 Let k be a field (same will hold for any nonzero ring). Then there is
NO cofinal set in the proper class of all fpgc covers of Spec (k) (SO DO NOT FPQC
SHEAFIFY).

Proof. Consider for any set I the fpqc cover Spec (k (t;),.;) — Spec (k). Suppose there
exists a set A of covers of Spec (k) cofinall in all of these. For all « € A, U, =
{Ua, — Spec (k) }jeja. Then by assumption, for each I some U, refines Spec (k (¢;);c;) —
Spec (k), so there exists j € J, such that U,; # & and there exists Ua; — Spec (k (£;);c7),
so any point = € Uy, has k(z) < k(t;);c;, so | (z)] = |I|. So get a contradiction by
picking I such that |I| > sug |k (x)]. W

ae

el

jeda
meUaj

In any case, for C = S, (Sch/S),,, (Sch/S) F — F*tis OK.

fppf>

8.1.1 Categories of abelian (pre)sheaves

Lemma 8.12 C-site. PAb (C) is an abelian category, withker (% — 4)(U) = ker (# (U) - ¢ (U)),
coker (# — ¥4)(U) = coker (Z (U) — ¥4 (U)). More generally, PSh (C) has all (small) lim-
its and colimits, defined pointwise.

Proof. Exercise. B

Lemma 8.13 Sh(C), Ab(C) have all limits: the presheaf limit is already a sheaf and it
gives the limit in Sh (C).

Proof. Exercise. B

Lemma 8.14 Sh(C), Ab(C) have all colimits: for any F : I — Sh(C) write Sh(C) <>
PSh (C) and set colim = (colim w o F)*.

Proof. Let 4 € Sh (C).
Homgy,(c) ((colim wo F)* ,g> =

45



= HOmpSh(C) (collimw o F, w (g)) = lzlenll HOmPSh(c) ((JJ oF (’L) , W (g)) =

<

Y
two lemmas ago

= hm HomSh(c) (F (Z) ,g) .
el

Lemma 8.15 In Ab(C), a sequence F# % 4 B, # with Boa =0 is exact' if and only
if for allU € C and all s € 4 (U) such that 5 (s) = 0 (i.e. se€ (ker(B))(U)) there exists
{Ui - U},.; € Cov (C), and t; € F (U;) such that o (t;) = s|u,.

Proof. Assume sequence is exact. Let s € 4 (U) be such that 5 (s) = 0.
Im (a) = ker (g 2, coker (a)), ie., t € 4 (U) such that p(t) = 0 in coker () (U) =

(% (U) /o (U))*, which shows that s € ker (8) = Im (a) arises locally from a (.Z (U;))’s,
by construction of §. (Some details omitted).
The converse is an exercise. Wl

Corollary 8.16 0 —» % % ¢ B, # in Ab (C) is exact if and only if 0 — F (U) —
G (U) — o (U) is exact in Ab for allU € C.

Proof. Assume exactness. Then exactness at .Z (U) is immediate from Lemma 8.15.
Remains to show s € ker (4 (U) — 5 (U)) comes from .# (U). By Lemma 8.15, there
exists a cover (U; — U) and t; € F (U;) such that a(t;) = s|y,. But ti|v,xv; = tjlv,xv;
because .7 (U; xy Uj) — ¢4 (U; xy Uj), so the t;’s glue (since .# is a sheaf) toat e .# (U),
which must map to s € 4 (U) (¥ is separated). Likewise converse. B

Theorem 8.17 C any site. Then Ab (C) is an abelian category with enough injectives.

We will not prove this. The fact that it is abelian and we have an isomorphism between
image and coimage is now an exercise using our lemmas. We will not prove that there are
enough injectives in this generality, but (next class?) we will give a direct construction for
Se¢t (using stalks and injectives in Ab).

Definition 8.18 Let C be a site, # € Ab(C). Let X € Obj(C). Define H; (X, F) to
be the pth right-derived functor of T'(X,—) : Ab(C) — Ab, i.e., Ab(C) is an abelian
category with enough injectives, so for all # € Ab (C), there exists an injective resolution
F ——— I* and we set HY (X, %) = HP (I* (X)).

quasi-iso

When C = Xe¢ (which has final object X ), we will write HP (X, F) for Hé’{ét (X, 7).

9 Basic functorialities of the étale site

9.1 Lecture 11: 10/3

Suppose we have j : U — S étale. We get a restriction functor
771t Ab(Sg) — Ab(Ug)

JLFU - U) = FU - 8)

4We know how to define kernel and cokernel, so we can formulate what exactness means.
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Clearly j~!

that

is exact, and we would want it to be compatible with cohomology, in the sense

HY, (U, F) = HE, (U, %),

Another way of thinking about this is that given a sheaf .# on X, and j : U — X étale,
taking the cohomology of .% on U in X¢ and Ug gives the same result. We will see soon
that this is true.

For any map of schemes f : S’ — S, we get a functors f, : Ab(S,) — Ab(S¢) and
fs 2 Sh(S%) — Sh(S¢) defined by

FF(U - 8) = F(U x5 8 — 8

Proposition 9.1 1. For any map of schemes f :S" — S, the pushforward functor fy
has left a adjoint f~1 : Sh(Sg) — Sh(SL,).

2. The functor f~' is exact (i.e. it preserves finite limits and finite colimits) and the
[« 1s left exact.

3. The same holds replacing Sh with Ab, and in that case, fy preserves injective.

Proof. We construct f~! and the adjunction map, and leave the rest as an exercise.
Fix 7w : U’ — S’ étale. Let D be the category whose objects are diagrams

U ——U
lﬂ J
S —— S

with U — S étale, and whose morphisms from a diagram with U; in the top right to a
diagram with Us in the top right are S-morphisms U; — Us.
We claim this category D is cofiltered. Given

U’%UZ’
SN — S

fori =1,2, we get

U/*> U1 ><5U2

ool

S — 8

and given
U/ E— U1 4> U2
S —— S

we get
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U —— 0

LA

S —— S
equalizing a, b, where U is the fiber product

U—— U

| e

U2 E— U2 Xs U2
Now, for . € Sh(Se), set

LIFU - 8 =lim F(U — 5)
D
where p stands for presheaf. As f,- !is defined by a filtered colimit, we have that .# Iy L7
commutes with all colimits, and finite limits. We define f~1.% as the sheafification of
I 1.Z . As sheafification is exact, we have that .# — f~L.% commutes with finite limits
and finite colimits.
The adjunction map

B : Homgy s, ) (F, f+9) — HomSh(Sét)(f_lgia 9)

is given, for U’ — S’ étale, by the sheafification of

Bl £, F () = lim F(U) 2 lim LI(U) = lim (S x5 U) > H(U).
UeD UeD UeD

Example 9.2 1. If f : S8 — S is étale, then we have just defined two different f~!
functors, restriction and pull-back. There is little ambiguity, as the functors are
naturally isomorphic. This can be checked by unravelling the construction of the
latter in the case of an étale morphism.

2. Let S be a scheme, with a sheaf F € Sh Sy, and s : Spec(k) — S me a morphism of
schemes, k a field. Define Fy:= s~ V.. This is the stalk of .F at s.

When k is separably closed, Sh(Spec(k)) =~ Set via ¢ — ¥ (Spec(k)). When this is
the case, we will conflate Fs and F5(Spec(k)), as all of the information is contained
in this set. We can compute this set

ZF4(Spec(k)) = s 1.7 (Spec(k)) = Sgl(Spec(k)) = lim .7 (U)
&

where & is the category of diagrams

-

/

Spec(k) ——

—

ét

n
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Definition 9.3 When k is separably closed, a morphism § : Spec(k) — S is called a
geometric point of S. An étale neighborhood of 5 is an étale map f : U — S, and a
geometric point t : Spec(k) — U of U so that fot =35 (i.e. it is a commuting diagram like
the one above).

We have the following results on stalks at geometric points:
Proposition 9.4 Let 5: Spec(k) — S be a geometric point.

1. F — F5 is exact (on Ab(Ss) as well as PAb(Se)).

2. For F € PAb(Sg), the canonical map Fs — (F7)s is an isomorphism.

3. For all morphisms of schemes, f : S — T and % € Ab(Ts), the canonical map
[ 1\Fs — Ftos is an isomorphism.

Warning: Stalks of a pushforward along a morphism f, are not as easy to describe.

For f: U — S we have a right adjoint to 7', namely j.. But when f is étale, we also

have a left adjoint:

Proposition 9.5 Let j: U — S be étale.
1. =% has an exact left adjoint, j (both for Sh and for Ab).
2. Hp, (U, j~'7) = HY (U, 7)
Proof. e We should think about 7 as extension by 0. When j is an immersion, this is
literally what j is.

In general, we set
HFV -8 =]]FV 1)
c

where C is the category of commuting diagrams

, and our definition of j.% is the sheafification. The adjunction map can be described
by taking jI.% — ¥ to

FV-U) - [[Z20V -U)=FFV >89 -9V —8) =;"'9(V ->U)
C

e We know ;! is exact. It is a fact that exact functors with exact left adjoints

preserve injectives. So given .# — I*® an injective resolution, ;1. — j71I* is still
an injective resolution, so

HP(U,j~7) = HP((j7'1°)(U)) = HP(I*(U)) = HP(U, 7)

1

using our description of 77+ when j is étale at the very beginning of this lecture.
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Remark 9.6 Similar argument shows that cohomology is the same whether computed on
the big étale (resp. Zariski) or small étale (resp. Zariski) site.

Lemma 9.7 Let f: X — Y be a morphism of schemes.
o For 9 e Ab(Yy) we get HP(Ye,9) — HP (Xg, f'9).
o For F € Ab(Xg) we get HP Yy, foF ) — HP (X, F)

Proof. e Let 4 — I® be an injective resolution. Then f~'¢ — f~1I* is a resolution,
not necessarily injective. Let f~!% — J*® be an injective resolution. We get an
induced map of resolutions f~'I* — J*. Then we get

HP(Yer,9) = HP(I°(Y)) — HP(f7'1°(X)) — HP(J*(X)) = H? (X, f7'9).

e Using the previous bullet, we have HP (Y, f+. %) — HP (X4, f L fo#) — HP (X, F),
using the unit or counit map.

Example 9.8 For any sheme S and group G, we get a constant sheaf, denoted by
Gs,Gs,G, or G. We can describe this as Gg(U — S) = {functions U — G, Zariski-
locally constant}. This sheaf is represented by a group scheme Gg := [[5 S with mul-
tiplication coming from that on G. For any f : X — Y, f‘lﬁ ~ Gx, so we get
HP(Ye, Gy ) — HP (X4, Gy). Typically we will have G = Z/n’ZL.

Definition 9.9 Let X be a scheme, £ a prime. Define
HY (Xet, Zg) = lim HP (X4, Z/0"7)

and

HP (X, Q) := Qp ®z, H*(X¢t, Zy)

For k separably closed, and ¢ # char(k), this defined a Weil cohomology theory (which
is what we used earlier to prove the Weil conjectures).

9.2 Lecture 12: 10/5

Let f: X — Y be a scheme morphism. Last time we constructed an adjoint pair
f~': AbYy — Ab Xe, f«: AbXg — AbYg (f~! the left adjoint, f* the right). When
f is étale, we also found a left adjoint fi to f~!. The typical use of these functors is to
construct functorial maps between the cohomology of different schemes, as we saw above.

The functors f~! and f are exact, hence possess no interesting derived functors, but
f« is only left exact in general, so it admits (generally nontrivial) right derived functors
RP f, (these are defined in the usual way, i.e. start with an injective resolution .# — .#*
and take cohomology: RPf,.%# = HP(f..#*)). The key computation tool for computing
these is the Leray spectral sequence (actually, there are two of them). First recall this in
the general setting:

Theorem 9.10 (Grothendieck(—Leray) spectral sequence) Let A, BB, C be Abelian
categories, F: A — B, G: B — C left-exact functors. Assume that A, B have enough
injectives and F(I) is G-acyclic for I € A injective (meaning RPG(F(I)) = 0 for p > 0;
e.g. F(I) could be injective). Then there exists a first-quadrant spectral sequence EY? =
RPG o R1F(A) = RPTI(G o F)(A).
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In order to explain this result, we’ll give a brief summary, without any constructions
or proofs, of spectral sequences. The Grothendieck spectral sequence for a given object
A € A consists of the following:

e Objects EP9 € C for each 7 > 2 and p,q > 0 such that EY"? = RPG o RIF(A). For
(p, q) outside of the first quadrant, we set EPY = 0. We visualize the objects EP?,
for fixed r, as occupying the integer lattice in R? (i.e. at the coordinates (p,q)); they
form the so-called E,.-page of the spectral sequence.

e Each E,-page comes equipped with morphisms dP4: EP4 — EPT™4="+1 for each p, q
(the differentials). For example, the Eo- and Es-pages and some of their differentials
are pictured below:

S0 N

e The data is required to satisfy that E7, is formed by “taking the cohomology of E,
at (p,q)”, i.e. we should have

EP ~ Ker dp-9
Pl S T
Im d»

Observe that for fixed p, q, since the nonzero objects of each page are concentrated
in the first quadrant, the morphisms d?? and d?~"9*"~1 will have trivial target and
source, respectively, for sufficiently large r. Therefore each sequence (EP:?), stabilizes,
and we denote the stabilized object by EL7.

e Finally, the conclusion of the Grothendieck spectral sequence (the meaning of RPG o
RIF(A)“=" RPTI(Go F)(A)) is that for all n > 0, R"(G o F')(A) admits a filtration
(in C)

R (GoF)(A) =Fil’ 2Fil' 2--- 2Fil" 2 Fil""! =0

whose jth graded piece (the successive quotient Fil/ /Fil’*1) is isomorphic to Egé"*j .
(And eveything should be natural in A, but let us not expand on that.)

The point of the spectral sequence is to relate the objects RPG o R1F(A) and R"(G o
F)(A). This relationship is in a way only an “approximation” in that it expresses R"(G o
F)(A) as filtered by certain subquotients of the R/G o R* 7 F(A), but sometimes this is
enough to glean useful information about R"(G o F')(A).

Before describing the Leray spectral sequences, let’s see the Grothendieck spectral
sequence in action with some concrete examples and applications.

Example 9.11 Suppose F is exact. (we leave the reader to consider the case when
instead G is exact.) Then RPF = 0 for p > 0, so the Es-page has nonzero objects
only along the line p = 0 (they are RIG o F(A)). Immediately the spectral sequence
degenerates—all the differentials of the Es-page are forced to be trivial. So EY? = E51
for all p,q and the corresponding filtration of R™(G o F)(A) has just one object, namely
R"(GoF)(A) = R"Go F(A).
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Example 9.12 (Hochschild—Serre spectral sequence) Let G be a group. The “G-
invariants” functor (—)%: Modg — Ab is left exact, and its right-derived functors (the
group cohomology of G) are denoted HP(G,—). Introducing a normal subgroup H < G,
the cohomology groups HP(H, M) have a natural G/H-action, and there is the classical
“inflation-restriction” exact sequence

0 —— HY(G/H,MT) 2 UG, M) == HY(H, M)%/H

which, if one is courageous, continues — H?(G/H,M™) (the so-called “transgression”
map). This is in fact an instance of the Hochschild—Serre spectral sequence, which is the

Grothendieck spectral sequence for the commutative diagram of functors

Modg
_\G
(_)Hl ( )
MOdG/H S — Ab,

)G/H

giving EY? = HP(G/H, HY(H, M)) = HPT4(G, M). Indeed, we have a filtration H'(G, M)
Fil° © Fil' 2 0 with FilO/Fill >~ Ego’l and Fil' ~ E&;O, i.e. a short exact sequence

0 —— B —— HY (G, M) EY! 0.

Clearly EX° has already stabilized at v = 2, i.e. By’ = HY(G/H, M*). The groups E%!
instead stabilize at r = 3, giving By = Ker(H'(H, M)S/H — H2(G/H,M™)). Putting
these pieces into the short exact sequence above yields the inflation-restriction sequence.

Caveat: Our argument does not show that the maps in the exact sequence coming from
the Hochschild—Serre spectral sequence agree with those in the classical inflation-restriction
sequence. This takes some amount of explicit computation.

Example 9.13 (Edge maps) We return to the setting of the general Grothendieck spec-
tral sequence. Observe that at each page, the differential dP° is always trivial, so as we take
cohomology to pass from one page to the next, Effl is a quotient of EPY. Finally, Eopéo
appears as the smallest graded piece in the filtration of RP(G o F')(A), i.e. as a subobject.
The composition

RPGo F(A) = B§® — EL" — RP(G o F)(A)

is called an edge map of the spectral sequence. Dually, there is also an edge map
RY(G o F)(A) » E%I — EY? = Go RIF(A).

Now we state the two Leray spectral sequences, which for us are the main applications
of the Grothendieck spectral sequence.

Corollary 9.14 (first Leray spectral sequence) Let f: X - Y, g: Y — S be maps
of schemes. Then there exists a spectral sequence RPg.(R1f+%) = RPTI(go f)uF for
F € Ab Xét-

Of course, such a spectral sequence will also exist for fppf or Zariski sheaves, or for
sheaves on topological spaces (the latter being what “Leray spectral sequence” classically
refers to).
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Proof. Indeed, f, g« are left exact and f,, having an exact left adjoint, takes injectives to
injectives. So, the Grothendieck spectral sequence applies to g« o fx = (g0 f)x.

Corollary 9.15 (second Leray spectral sequence) Consider f: X — Y a morphism
of schemes. Then the Grothendieck spectral sequence associated to the diagram

Ab X
f{ FX.-)
AbYy —— 3 Ab
T(v,—)

is HP Yoy, R1f.F) = HP*9(Xer, F).

Example 9.16 Let’s consider the edge maps of the second Leray spectral sequence. The
first ones take the form HP(Ys, foF) — HP (X, F), and in fact these are the “change-
of-scheme” maps for étale cohomology defined previously! However, as with the Hochschild—
Serre example, it is necessary to “look inside the machine” to check this. The other edge
maps take the form HY(Xg, F) — Rif. 7 (Y). (We leave it as an exercise to construct
these natural maps in a more concrete way.)

Example 9.17 Let v: Z — X be a closed immersion. Then vy is exact (exercise—check
on stalks), so Rl = 0 for all ¢ > 0. Thus the second Leray spectral sequence collapses
and gives HP (Xgt, 14 F) = HP (Zgy, F) for F € Ab Zs. The same is true (to be discussed
later) for any finite morphism of schemes.

Enough with the formalism (for now). So we next ask

10 Can we (ever) compute cohomology on the étale site?

Spoiler: amazingly, sometimes! We’ll explain three examples and in the middle take a
detour through the Cech cohomology = derived-functor cohomology spectral sequence.
For now we just give statements—proofs next time.

First, we’ve seen that quasicoherent Zariski sheaves on a scheme can be upgraded to a
sheaf on the big fpqc site of that scheme, and hence on all the smaller sites we’ve considered.
How does the classical sheaf cohomology compare to the cohomology on the fancier sites?
In fact, it’s the same:

Theorem 10.1 Let F be a quasicoherent Zariski sheaf on a scheme S. Then the classical
sheaf cohomology satisfies HP(S,.7%) =~ HP(S;,.%), where T is any of the symbols zar, ét,
fppf, Zar, Et, Fppf.

Example 10.2 The sheaf G,: T — T(T, Or) gives HP(S;,G,) =~ HP(S, O).

Example 10.3 The sheaf Gy,: T — (T, O7)* is not quasicoherent, so the Theorem does
not apply. Nevertheless we have the following:

Theorem 10.4 H'(S:,G,,) ~ H'(S,0%) = Pic S.

93



These results (and the next) give us some useful inroads toward computing étale and
fppf cohomology, and in particular are a couple of the “seed" calculations needed for the
general theoretical tools.

Let’s now turn toward a more elementary example which gives a sense of what’s
different with our new étale cohomology theory. Let k be a field, I'y = Gal(k*P/k),
F € Sh(Speck)g. We construct a discrete left I'g-set:

Mg = colim F (K.

k' /k finite Galois
k<k' cksep

Here, the right action of T'y on Speck’ induces compatible left actions of T'y on each .# (k).
That Mg is a “discrete” I'p,-module means that all the stabilizers are open, which is clear
since every element of Mz comes from some % (k).

Theorem 10.5 The association % — Mg induces equivalences of categories

Sh(Spec k)¢, — {discrete left I'y-sets},
Ab(Spec k)¢, — {discrete left I'y-modules}.

Corollary 10.6 Let .# € Ab(Speck)s. Then there exists a canonical isomorphism
HP((Speck)s, F) = HP (L, Mz).

(The latter cohomology group refers, of course, to the right derived functors of (—)"*
on the category of discrete I'y-modules.)

Proof. We have H°((Spec k)g;,.7) = .7 (k), so by the Theorem it suffices to give a natural
isomorphism .7 (k) = M ;’“ We check this at the finite Galois levels, i.e. we fix &’/k finite
Galois and want to show that .7 (k) — .7 (k')S2/(K'/%) ig an isomorphism. For this, we write
down the sheaf sequence corresponding to the étale cover {Spec k¥’ — Spec k}:

d
F(k) —— F(K) 4?’ F (K @ K').
id®1
Now recall that we also have an identification F (k' @ k') = F ([ [,egain/k) k')» Which is
defined so that each of the following diagrams commutes:
F (K @, k') —— F ([ Lreca m k)
J{project onto the o-factor

F(K)

id-o: a®b—ac(b)

Using this isomorphism, the sheaf sequence becomes

F(k)={te Z(K): (d®1)(t) = (1®id)(t)}
={te Z(K): (id-0)o (id®1)(t) = (id - o) o (1 ®id)(t) for all o}
_ (k/)Gal ’/k)’

as desired.
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10.1 Lecture 13: 10/10

We start off with a few examples to the theorems of the last lecture.

Example 10.7 Let k be a field and 'y, be its absolute Galois group. Consider the constant
sheaf Z/nZ € Ab((Speck)st) , we have, from the last lecture, the following:

H} (Spec(k), Z/nZ) = H (T, Z/nZ) = Homes (T, Z/nZ)

as we endow Ty, with the Krull topology and consider it acting on Z/nZ trivially. It’s worth
noting that these groups may well be infinite. For example, let n = 2 and k = Q, we have
Homs(I'g, Z/2Z) in correspondence to the trivial and quadratic extensions of Q of which
there are infinitely many.

Example 10.8 In the previous lecture we stated
Pic(S) = H},.(S,05) = HA(S,Gy).
Take S = Spec(k), Pic(k) = 0, hence
0 = Pic(k) = HY(I'y, (k%))
which is exactly Hilbert’s 90.
Example 10.9 For scheme S and n > 1 we have p, € Ab(Se) represented by group

scheme p, = Spec(Z[X]/(X™ — 1)), so un(T) = {z e T(T, OF )|z"™ = 1}. If n is invertible
in S, i.e. n€ 0, then there is short exact sequence in Ab(Sg)

1 Lin Gy =2 G, 1.

We also get Kummer sequence

1 — pn(9) o3 Og

< >

Hé}t(sﬂ :un) R Hélt(S’Gm) —

1 —— G (S)/(G(8))" ——— HL(S, i) ——— Pic(S)[n] —— 1.

Take S = Spec(k) we get
k*/(k*)" = H' Tk, pin)

which is Kummer’s theory.

We will now give proofs of the three theorems from last times. First is the equivalence of
categories one corresponding to Theorem 7.5. We will only prove the Sh(Spec(k))e:) part,
i.e. the equivalence of the following categories

Sh((Spec(k))et) = {discrete I'y, set} = (Spec(k))st-
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Proof. Let k be a field, k?® its separable closure, and 'y, its absolute galois group. Given
X — Spec(k) étale, associating it to the discrete I'y set Homg,, ,(Spec(k®), X) = X (k*)
will give us the equivalence on the right {discrete I'y set} = (Spec(k))et.

Now we want to show the essential surjectivity first. Given 'y S discretely, decompose S
into orbits denoted by [ [ S; and pick s; € S; for each i. Now let k; := (k*)5%2P(s1) which is
a finite extension of k due to the discreteness of action of I'y. Letting X := [ [, Spec(k);
yields X (k®) = S as I'j, sets.

Faithfulness however is left as an exercise.

For the fullness, given X,Y € (Spec(k))et, since they are étale over Spec(k) we can write

X =~ H Spec(k); Y = HSpec(k);-.

el jed
We also let
S := Homgp, i (Spec(k)®, X) = HHom(ki, k*) = HSZ"

T := Homgey,x(Spec(k)®, V) = | [Hom(k}, &°) = [ [ ;.
J J

and notice that X (resp.Y') is associated to S(resp.T). Given a I'y, map a : S — T' (hence
image of a single orbit of S lies in a single orbit of 7', which gives o : I — J such that
S is mapped to T,(;)). We claim that this induces a map X — Y which would give the
fullness. So the only thing left is the claim.

Fix base points s; € S; and t; € T for each 4,j such that t,;) = a(s;). Identify by base
points(i.e. identify k; as s;(k;) S k°) we can consider k; and kj as subfields of k°. For
any h € Iy fix k;, we have a(h - s;) = a(s;) = to;)- On the other hand, since a is a
'y set map, we have a(h - s;) = h-a(s;) = h-t,), hence h also fix kq(i)’. By Galois
theory we have k'a(i) C k; hence X — Y. Now we have the right equivalence. For the
left equivalence, we will give a quasi-inverse to the functor # — Mg. Given an M, we
constructed Xj; € (Spec(k))es such that X,y is associated to M. Now we associate M to
the sheaf hyx,, € Sh((Spec(k))st) represented by X .

= colim  hx,,(Spec(k)’)

k' /k finite Galois
kCk'ck®

hx

= colim Hom Spec(k), X
k' /k finite Galois SCh/k( ( ) ’ )
kCk'cks

= HomSch/k’(SpeC(k)saXM)
= M.

This shows that M — hy,, is a quasi-inverse to .# — Mg, hence the left equivalence,
which concludes the proof.

Remark 10.10 The isomorphism HY (Spec(k), #) = HP(T'y, M) gives us a good reason
to define our £-adic cohomology as

HY, (Spec(k), Zy) := lim H (Spec(k), Z/("Z)
as opposed to the naive definition

H? (Spec(k), constant sheaf Zy)
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because if we adopt the naive definition, we will find that, given the isomorphism,
H/, (Spec(k), constant sheaf Zy) =~ H (I, Z) = Homeys (T, Zy)

where Ty, acts on Zy trivially and Zy is endowed with discrete topology. However we notice
that continuous homomorphism from 'y, a compact group, to Zy which has discrete topology
has to have finite image, whereas Zy has no finite subgroup; therefore the map has to be
trivial, which in turn shows that the H} (Spec(k), constant sheaf Z;) has to be trivial.

The other two theorems(Theorem 7.1 and 7.4) requires a detour to Cech cohomology.

11 Cech cohomology and first calculations of étale cohomol-
ogy
Let C be a site, # € Ab(C) and U = {U; — Ulier € Cov(C). These will give us a Cech
complex C*(U,.F)
Hioel F(Uy) —— Hio,z‘lely(Uio xuy Up) —— -+

with usual Cech differential given by

o S _1)k -
(ds)m’“’”'ﬂpﬂ T Z( 1) Sioyin, ik yipg1 | Ui XX Uiy *
k

Definition 11.1
HPU,F):= HP(C*(U, F))

In fact we used H® when defining sheafification.

Notice that . — C(U, .F) is an exact functor from PAb(C) to Ch(Ab), and we know that
short exact sequences of chain complexes give rise to long exact sequences, and we have
the following lemma.

Lemma 11.2 .% — C(U, .F) is effaceable hence a universal § functor.

Now we will introduce some preliminaries for the proof. The forget functor from PAbC to
PShC has a left adjoint given by

F—LzU—~ @ 7).
seZ(U)
Take .7 = hy represented by U € C i.e. #(V) = Home(V,U), then we have
Hompayc)(Zh,,,9) = Homgyc)(hu,9) = 9 (U).

9)
Let’s abbreviate Zy,, to Zy. Notice that Hompapc)(Zu, #) = # (U) and we rewrite the
Cech complex into

[ Lijer Hompape)(Zu,,, #) —— [iy.iper Hompane)(Zuy <y s, » F) —— -+
which equals to Hompapc)(- -+ — @ Zv, xyv,, — @D Zu,,» F)-
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Proposition 11.3 The following hold

1. Given cover U = {U; —> U}ieq, the complex @ZUZ-O — @ZUiOXUUil «— .- {8
exact in non-zero degree.

2. For any injective I, HP(U,I) = 0 for p > 0.

3. HP(U,—) : PAb(C) —> Ab are the right derived functor of HOU, —).

Proof. Assume 1., 2. follows because Hompay,c)(—, 1) is evact, which implies that HP(U, —)

is effaceable since PAb(C) has enough injectives. Given that HP(U,—) is a delta functor,
and we know effaceable § functor is universal, so 3. follows. Now we turn to the proof of 1.
Let Z[S] denote the free abelian group with basis S. To show 1., we must show, for any
V e C the exactness of the following at non-zero degree

@® Z[Home (V, Ui, )] = Z[[ [ Home(V, Usy)] «— Z[][Home(V, Uiy xu Uiy)] «— -+

To wutilize the property of fiber product, i.e. Hom(A, B x C') = Hom(A, B) x Hom(A, C)
when the Hom set is appropriately restricted, we partition the basis of these free groups
by the maps V. — U they induce: we write Home(V, Uiy) = [ eniome (v,rry Home (V, Ui )
we now can rewrite the complex into

D (Z[H Hom(V, Uy, )] «— Z[[ [Hom(V, Uy, )y, x Hom(V,Uj, )] «— -+ >

peHom(V,U)
Each direct summand of this complex is in the form
Z[S] «—Z[S x S| «—Z[S x S x S] «— ---

with the boundary map alternating sum of projection, which is exact at non-zero degree,
hence so is their direct sum. This concludes the proof of 1.

11.1 Lecture 14: 10/12

We connect “presheaf cohomology" (Cech cohomology) to sheaf cohomology

Theorem 11.4 Let % be a sheaf, U = {U; = U}ier € Cov(C), F € Ab(C). Let HY(F) €
PAD(C) be the presheaf HY(F)(V) = HY(V,.F). Then, there is a spectral sequence EY? =
HP(U, HY(F)) = HP (U, 7).

. = HOU,— L .
Proof. The composite Ab(C) L=Torget, PADb(C) U, Ay s just & — HO(U, %) since
% is a sheaf. w preserves injectives since sheafification is an exact left adjoint; so we obtain
a Grothendieck-Leray spectral sequence

EY* = HP(U, Rw(F)) = HP (U, F)
We claim that Riw(%#) = H(.%). Indeed, they agree for ¢ = 0, so it is enough to show

that H?(.Z) are the derived functors of H°(.#) = w. For .# — I*, an injective resolution
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in Ab(C) we compute the p-th derived functors of w as ker(I? — IP*!)/Im(IP~! — IP) in
PAb(C). This is the presheaf

ker(I°(V) — I"*1(V))
(1P 1(V) — I7(V))

V— = HY(V, 7)

which is exactly H?(.%).1
Corollary 11.5 The edge map H (U, F) — HY U, F) is injective.

When it makes sense (when Cov(C) is a set, or when we make an adjustment as in
the étale site example) we form HP(U,.%) = colimy; HP(U,.F). We still get an injection
HY\(U,.#) — H'(U, %), which is now an isomorphism. Indeed, same reasoning as in the
theorem shows that there is a spectral sequence HP(U, HI(.Z)) = HP*9(U, F). Now, we
use the fact that HO(U, HI(.Z)) = 0 for ¢ > 0. Indeed, any element of it arises from some
HO(U, HY(F)) for a cover U = {U; — Uler. Then the claim follows from

Lemma 11.6 Let V € C,§ € HY(V,.#), ¢ > 0. Then, there exists a V = {V; = V}jes
such that EIV_ =0 forallje J.
J

Proof. We take an injective resolution .7 — I®. Then HY(V,.7) = H(I*(V)). So, £ is
represented by & € ker(14(V) — I91(V)). Exactness of I® in degree > 0 shows that there
exists a cover ¥ = {V; — V},e; such that §|V_ e Im(I971(V) — I9(V)), i.e. £|V- =0.1

J J

This simplifies the spectral sequence and unpacking we get H'(U,.%) ~ HY(U, 7).
Now, we return to our target results

Theorem 11.7 For € {Zar,ét, fppf}, C = (Sch /S); (or the small sites) we write H® and
H? for the Cech and the usual cohomology on C. Then Pic(S) ~ HX(S,G,,) ~ HX(S,G,,).

Proof. Let £ € Pic(S). Then, there exists a Zariski cover (hence a 7-cover) U = {U; —
a;l
J

S}ier such that f’U, is trivial. Fix oy : "%}U- ~ Oy,. The isomorphism Oy, ——
<z Uiy
cocycle condition (g;;) defines a class in H} (U, G,,). So, we get a group homomorphism
Pic(S) —> HY U, Gp) —> HL(S, Gum).

We claim that this composite is injective. Suppose, .Z is in its kernel. Then, there exist
a refinement 7" — U, with ¥ = {V; — S}, B : J — I together with maps x; : V; — Upg(),
such that if .Z is sent to ¢, then C|"V is trivial. This means that c|7/ € [}, joes Gm(Viijn)
given by (C‘»y/)ju'g = (Xj1 % X42)*(98G1)8(2)) 18 equal to hml‘v for some (h;) €
HjeJ Gm(vj)

We now modify the trivializations of . For all j € J we pullback ag ;) to & {Vv
J

N Oy,;, where U;; = U; xy Uj is multiplication by g;; € G,,(U;;) and from the

hil,
J1i2 J ‘9132

xi(ap(s))
——

Ov;. and alter to the new trivializations o = h; - X} (ag(;))- The trivialization functions
/ 1
for the (« ) s are now trivial. This means Oy, , —— e IR f‘v ﬁvjm is the identity
J1J
map. Then the full faithfulness statement in the flat descent theorem for QCoh shows
that {a;}jes glue to a global isomorphism Og ~ ., which proves the injectivity.
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For the surjectivity of Pic(S) — H(S,G,,) it suffices to prove that for any cover
U = {U; — S}ics any class (g;;) € H:(U,G,,) comes from a line bundle. We’ll construct
a line bundle by descent. Let .Z be the trivial bundle on S := [[,.;U;. We have
isomorphisms p;.% ~ p7.Z given by the ggjs and the cocycle relation for g;;’s implies that
PO = p;'»‘kgbpquﬁ. Hence, we get a descent daturm. By the essential surjectivity in the flat
descent theorem for QCoh we obtain .Z € QCoh(S), such that p*.Z ~ %, where p is the
projection S’ — S. It remains to check that .Z is a line bundle. This reduction is possible
because given an fpqc cover S’ > S and .F € QCoh(S) to check

1. % is finitely generated
2. 7 is finitely presented
3. F is flat

can be done by checking it for p,.#. Having this result, if we have 1) — 3) for p*.%, as
locally free <= flat of finite presentation we get that .# is locally free. Then, an easy
check yields that rk.% = rkp*.% if the latter has finite rank.

We explain how to prove 1) in the aforementioned result, and the rest of the claims
follows similarly. In particular, we want to show that if p*.% is finitely generated, then so
is #. We reduce to the affine case S’ = Spec(B) — Spec(A) and F is some A-module M.
We know that M ®4 B is finitely generated, i.e. there exists a surjection B" - M ®4 B.
We choose generators eq,...,e, of M ®4 B over B. We write ¢; = Z;’f":l m;; @ bi;. Let
N=#{myj|i=1,...,rand j =1,...,s}. Then we define ¢ : AN — M by sending E;;
to myj. Certainly, ¢ ® 4 B is surjective and as A — B is faithfully flat, so is ¢.l

Finally, we have the other theorem

Theorem 11.8 Let S be a scheme, # € QCoh(S), T € { Zar,ét,fppf}. Then HE, (S, F) ~
HE(S, Z;), where F; is the sheaf on (Sch /S); associated to F by descent theory.

Example 11.9 Let S = Spec(k) and F = G,. Then for p > 0 we get

H?, (Spec(k),G,) = HE (Spec(k), G,) = HP(T'y, k) = 0,

the last equality by the normal basis theorem.

Proof of Theorem: We’ll show this only for S separated. We do that by induction on the
degree p. The claim is clearly true for p = 0. We will first prove the result in the case
when S is affine. We note that HZ,.(S,.%#) = 0 for all p > 0 for S affine and .# € QCoh(S)

zar

by Serre’s Theorem. Now, for p = 1 we let £ € HX(S,.7). We already showed that there
exists 7-cover U = {U; — U}ier such that & ’ U, = 0. We may assume that all U; are affine
and |I| < co. Then, the spectral sequence HP (U, H.%) = HP*4(S,.7) tells us that there
exists £ € Iﬂ (U,.#) mapping to &.

Replacing U with ¥ := {[ [,.; Ui — S} does not change the C complex. Indeed, as .7
is a sheaf it takes [ [,.; U; to | [,c; % (U;). So as U; are affine and |I| < o0 we can assume
that ¥ is of the form {Spec(B) — Spec(A)}. Then H*(¥,.%) is the cohomology of the
complex

M@(B—>B><AB—>B><AB><AB—>H-)
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where M is the A-module corresponding to .%#. By the descent lemma A — B 3 B®4 B
is an equilizer for A — B faithfully flat. A minor variant of it shows that the complex
is exact in degree > 0 and the first arrow has kernel M. Thus, ﬁp(”f/, F) =0 for p> 0.
Thus, £ and hence ¢ vanishes.

Now, for S affine and p > 1, by induction we assume that for all affine v and 1 <
s < p, H5(U, any QCoh) = 0. Then, as before for £ € HE(S,.%#) there exists a cover of
affines {U; — U}ier with |I| < oo such that £|U¢ = 0. Then, from the spectral sequence
H'(U,H*(F)) = H'5(S,.7), as Ui, xg --- xg U;, are affine schemes, Ey° = 0 for
1 < s < r and & vanishes under the edge map to Eg’p = I:IQ (U, HP ). Hence there exists
£ € HP(U,.Z) mapping to & under the edge map. The same descent lemma argument as
above shows that the groups vanish, hence ¢ = 0.

In general, for S separated, another application of HP(U, HP(.F)) = HP*9(S, .F) with
U an affine open cover of S allows us to reduce to the affine case as follows: By the result
in the affine case the spectral sequence collapses and so

HL,.(S,7) ~ HL, (U, F) = HYU, F) ~ HE(S, F)

T T

where the middle equality follows since this is an affine open cover. B

Lecture 15: 10/17
12 More on RI!f, and Stalks

Lemma 12.1 Let f: X — S be any scheme map and F € Ab(Xg). Then R1f..F is the
sheafification of the presheaf given by U — HL(X xg U, F|xxqv)-

Proof. Let % — I*® be an injective resolution. By definition, RYf,.# = HY9(f.I*). So,
RIf, 7 is:

(UhamﬂﬂJ%UV*ﬁJ“WU»>#
(£ 71(0) — AI7(0))

(
_ (U  ker(IU(X xg U) — I""(X xs U))>#
= (191X x5 U) - I1(X x5 U))
— (U > HL(X x5 U, Z|xx0))"

which concludes the proof.

We next want to understand stalks (RP fy.%# )z for 3 — S a geometric point. Formally,
this is (RPfy.#)s = limH} (X x5 U,.7|xxsv) in observance of the lemma, where the

colimit is over

A special case would be suppose that S = Spec(k) with k% a separable closure and that

our geometric point is § = Spec(k®) — S L x.
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(RPfoF)s = lim Hf (X, #). We hope that this is isomorphic to Hf (Xgs, Fps).
k' /k finite
seperable
This is both true and convenient to formulate a vast generalization.
Let (I,<) be a directed set. Let (X;, Xy —> I, X;|Vi,i" = i) be an inverse system of
schemes over I. By a system of (abelian) sheaves on this inverse system, we mean

1. forall 7 € I, ﬂl € Ab(Xiyét)

P

2. for all i/ >4, fy;.F; —> Fy such that for all i =i’ =i, fu = fui o finy

1 bin;
fi”i 91 — ﬁi//

;T %ﬂ

Lbai
f,,,f 1(@ /// Zlfi//’}/gi/

cominutes.

Example 12.2 1. Take all X; = X with fy; = id X and the data of the system of
sheaves is a directed system (F; € Ab(X&), % — Fy fori =1i). So, we can form
h_n)lﬂ] € Ab(Xét).

2. Given a system of schemes (S; — S,g; : S; — S) over a ﬁa:ed base scheme S,
F € Ab(S«), we can set F; = g7 ' F with ¢y; : £ Fi = fle7 ' F = g7 —
Fi =9, L7 . This is our setup in the hmH (X, Fi) example.

In the full generality, for all ¢/ > i, we get a map H% (X, %) —— i —— HY (X, [; Lz) =4 P,

HY (Xy, #)(This was implicit in the Spec(k) example), so h_r)nHe (X ,ffi) makes sense.
I
Is it isomorphic to HY, (some scheme, some sheaf)?

»
“limX;” “lim.7;”

Limits of schemes don’t always exist, but inverse limits given (I,<) do when the
transition maps X/ ELIN X, are affine morphisms (The idea is that if all X; = Spec(R;)
are affine, we set X = Spec(limR;)).

Then we set X = limXj.

I
In general, we fix some iy so that for all i > ig, we have the affine map X; — it io
which yields a quasi-coherent sheaf of algebras <% = (fii,)«Ox, on Xj,. Set & = h_r)n,xzfz €
=10

QCohAlg(Xj,), and it corresponds to some

X

J{afﬁne

X

20
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Theorem 12.3 Let X = lim; X; f, X; be a limit of directed systems of qcqs (quasi-

compact and quasi-separated) schemes X; with affine transition maps (X Jis, X, i =1).

Let (Z, pu; - fi,_i1 Fi; — Fy) be a system of sheaves on (X;). Set F = li_r)nfi_lﬁi, then
i

imHE(X;, 7)) — Ha(X, 7).

el

This includes our  lim HE (Xp, Fp) — Hi(Xx,. #,.) examples; also for X fixed and
kck/cks

Fi; — Fy a directed system), we have

lim HE (X, F;) = H (X, lig 7).

el

We won’t prove this theorem: see Stacks project.

Back to stalks of Rf,, given
X

|7
S ——
geom pt
(RP .7 )s = imHE (X x5 U,.7 |xxsu) where the colimit is over étale neighborhoods
U
5 —— S

The index category has a cofinal system obtained by assuming U affine. Therefore it equals
lim HP(X x gSpec(A), Z [ x xgSpec(4))- Should we assume X qcgs, then automatically so are

all of X x gSpec(A) since we know qcgs is stable under base change. Now we are in the setting
of the theorem as the system of sheaves are given for free: we can simply take the sheaf on
X xgSpec(A) to be F |xy gspec(a)- Hence we have im HP (X x g Spec(A), F | x x sSpec(A)

) ~ HP(lim X x5 Spec(A), im.7 |y yspec(a)) =~ HE (X x Spec(li_I)nA),p_lﬁ) where the
limits/colimits are over all the diagrams

Spec(A4)
/ J{étale
55— S

and p is the projection from the limit to X.
This Spec(limA) is the stalk at 5 of 08 (= G, on Sg) which we write ﬁgfjg or g 3.

But what is it?
First, an example: If S = Spec(k), k° separable closure,

s = Spec(k) — Spec(k) = S
Then Ogs = k°.
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Corollary 12.4 We have the following:

(1) OE. is the strict henselization ﬁgf; of the Zariski local ring Os s (s = image of 5 in

,S

S).
(2) For any f: X — S qcgs, s — S a geometric point, and . € Ab(X ), we have
(RPf+F)s = HY (X xg Spec(ﬁgfg), Q\XXSSPQC(@,;) —p L7

1

where p~ is the projection from X xg Spec(ﬁgﬁg) to X.

Granted (1), part (2) follows from last theorem. For (1), let’s digress into some CA
background.

Definition 12.5 A local ring R,m, Kk = R/m is henselian if for every monic f € R[T]
(f € K[T]), ao € K such that f(ag) = 0 and f (ag) # 0, there exists (a necessarily unique)
lift a € R of ag such that f(a) = 0.

Example 12.6 (R, m) a complete local ring.
Some equivalent formulations:

1. For all f € R[t] and factorization f = gohg in x[t] with (go,ho) = 1, there exist lifts
g — go and h — hg in R[t] such that f = gh.

2. For all étale maps Spec(S) Seecld), Spec(R) and g € Spec(S) such that ¢~1(¢) = m

and k(q) = kK, there exists a section o : Spec(R) — Spec(S) of Spec(¢) carrying m to
q.

Note 12.1 o must be étale, hence open, and a section of a separated morphism is a closed
immersion. So o is a iso onto a connected component of Spec(S) (S = R x 57).

Sketch of the implication "henselian = 2": Localizing on Spec(.S), we may assume
the map is standard étale and S = R[t]y/f with f monic and f’ invertible in R[t],/f.
We've given ¢ — m with k(q) = k. Let ag € k be the image of ¢ under the natural map

S — S, — k(q) = k.

Necessarily, f(ag) = 0 and f (ao) # 0. Since R is henselian, there exists a € R with a — ag
so that f(a) = 0. We then define R[t],/f — R to be given by t — a for the section.

3. Any finite R-algebra is a finite product of local rings.

Sample argument: Let R be henselian, and let R — S be finite. Assume (and in fact
the general case reduces to this one) that S = R[t]/f with f monic. Let m < R be any
maximal ideal of R; any maximal ideal of S then lies over m by the going-up theorem, so S
is local if and only if S/mS is local. If f is a power of an irreducible, then S/mS =~ k[t]/f
is clearly local, hence so is .S, and we win. Otherwise, there is a nontrivial factorization
f = goho with (go, ho) = 1. The henselian property 1 tells us that f = gh for lifts g and
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h, and then since (g,h) = R[t], we get that R[t]/f = R[t]/g x R[t]/h. The upshot of
this special case is that we showed, given S = R[t]/f for f and a non-trivial idempotent
xo € S/mS, you can find a non-trivial idempotent = € S that lifts xg: you can easily verify
this by writing S/mS as a finite product of finite local algebra over s (which are Artinian)
and considering what a non-trivial idempotent look in it like (which then should lead to
an easy lift). Now for the general case, suppose S not local, then from previous argument
we have a non-trivial idempotent & € S/mS with a lift x € S. We also know that since
R — S is finite (a fortiori integral), = is a root of a monic polynomial f € R[t]. Hence we
obtain the map
R — R[t]/f 5 S

by sending t to ¢(t) = x, and we shall call this middle term A. Elementary arguments can
show that

AfmA = wf0)/f = k1))@ — D" x w[1)/7

for some n > 0 and g where f = (£2 —t)"g and (g,t> — t) = 1; one can also verify that
the induced map ¢’ : A/mA —> S/mS has kernel (£2 —t) x x[t]/g. Notice that one of
the non-trivial idempotent (1,0) € &[t]/(t?> — )" x k[t]/g corresponds to hg € A/mA; from
the special case hg has a non-trivial idempotent lift h € A. Therefore p(h) is also an
idempotent, which is a non-trivial one because

o) = ¢/ (ho) =1~ .

Hence we can split S into a product of two finite R—algebra. This splitting process stops
exactly when each factor is local. For converse, we assume 3, and given f € R[t] and
ap € k as in the assumption of henselian property, we consider S = R[t]/f which is a finite
R—algebra. We write S = [ A; hence S/mS = [ A;/mA;. f(ag) = 0 tell us that, WLOG,
A1/mA; = k[t]/(t — ap). In particular, A;, a direct summand of the free R—module S, is
projective hence free R—module of rank 1: we can write A1 = R[t]/(t — a). Such a clearly
is a lift ag and a root of f.

Definition 12.7 A local ring (R, m) is strictly henselian if it is henselian and R/m is
separably closed.

Lecture 16: 10/19

Corollary of our discussion of henselian rings: Let R be a henselian ring with residue
X

field k. Then FEt(Spec(R)) — FEt(Spec(x)) defined by l > X Xgpec(R) SPeC(K)
Spec(R)

is an equivalence of categories (Notation: For any scheme X, FEt(X ) is the full subcategory
of X¢ with objects Y 1, X with f finite). As a result there is no non-trivial finite étale
cover of Spec(R).

Proof Sketch: I want to remark that any scheme finite over Spec(R) is affine because
finite morphisms are affine. For any finite étale R — 5, S = A; x As x -+ x A, with local
rings A;. S/mS =~ [[ A;/mA; and R — S étale implies each A;/mA; is a finite separable
extension of k. Since objects on both sides of a functor canonically decompose as disjoint
unions in a manner compatible with the functor, we can check essential surjectivity and
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full faithfulness on connected objects.

Essentially surjective: Let L/k be finite separable. Then L =~ x[t]/f(t) for some monic
irreducible f € x[t]. Lift f to monic f € R[t] and looks at S = R[t]/f(t). Then R — S is
finite étale and reduces to L.

Full Faithfulness: Suppose R — 51 and R — Ss are finite étale with each S; local. S1®gr .S
is finite étale over R and finite implies S1 ®r S9 =~ A1 X --- x A,, a product of local finite
étale R-algebras. Given a morphism S; - S, get

S1 ®r S2 @ Sa

1®idT id
Sa

and S1 ®pg S2 — Sz must be projections onto one of the A;.

Homp(S7, S2) Dijection, {iel,...,rst. So 1eid, 51 ® Sy 22 A4 is an isomorphism. The
same description holds compatibly with (®p %) in FEt(k), so we get the full faithfulness.
Q.ED.

In particular, if R is strictly henselian (x separable closed), R has no nontrivial (connected)
finite étale covers.

Picture Think about R = C[[t]], x € C. Spec(R) is a "formal unit disk". Spec(C) is a
point, is simply connected, as is the (formal) unit disk.

Theorem 12.8 : Fiz (R, m, k) a local ring and k* a separable closure of k. Then there exist
flat local R-algebras Ry — R" — R*" (a "henselization" where R*" is a strict henselization
with respect to k < k°) such that

1. RM is henselian with mazimal ideal mR" and residue field x and
2. R*" is strictly henselian with maximal ideal mR*" and residue field k°.

Moreover they satisfy universal properties, e.g. R — R" is initial among local homo-
mophisms from R to any henselian ring.

Here is the construction
RM = lim §
—
(S,q)

where R — S is étale, ¢ € Spec(S) lies over m and k — k(q) is an isomorphism.

R = lim S
(S:0,2)

with S, ¢ as before and « : k(q) < k°. (Both of these colimits are filtered.) See Stack
Project section 10.155 for the rest of the proof. Lemma S a scheme, s € S, 5 —> S a
generic point over s. Let k°P be the separable closure of x(s) in k(3). Then there exists a
canonical iso ﬁgfg = ﬁghs (with respect to k(s) < Kk*P, where ﬁgfg is the stalk of the sheaf
on Sg at T).

See Stack Project 59.33 for proof.

Prop Let f: X — S be a finite morphism of schemes. Then for all % € Ab(X¢), p = 1,
RPf..7 = 0.
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Proof: Let 3 — S be a generic point. Then (using last times discussion and the identification
ﬁg’% =0 fsffs)
(Rpf*y)g = Hezz)t (X X8 Spec(ﬁgﬁs)’ ‘9Z|X><SSpec(ﬁ§hs))

X xg Spec(ﬁ’gfls) is finite over ﬁgﬂs hence is Spec(A) where A = [ [ 4; is a product of finite
local ﬁ’gf;—algebras. Each A; is henselian since any finite A;-algebra is finite over ﬁghs
Hence this is isomorphic to a product of local rings. Since ﬁghs is strictly henselian, so
is each A; if the res field of A;/k°P is separable. If not then the étale cohomology is no
different: the étale site is invariant under universal homeomorphisms.

We are reduced to S = Spec(R).

Lemma 12.9 Let R be a strictly henselian ring. Then T'(S,-) : Ab(S¢) — Ab is ezact (so
for allp =1 and F € Ab(Sg), HY(S, F) =0). Explicitly, I'(S,.7) =~ Fs where s — S is
the map Spec(R/m) <« Spec(R).

Proof. 75 is the colimit of .# (U) over the diagram

U

7 J{étale

but the pair (5,3) is cofinal in the collection of étale neighborhoods (U, %). To see this, we
may assume U = Spec(A) and we have shown that Spec(A) — Spec(R) has a section, and
that section is an iso onto a connected component of A, so inducing A admits a splitting
A~ R x A’). This gives I'(S, #) =~ .Z5 and we know .# — F5 is exact.

Corollary 12.10 f: X — S finite. For any geometric point Spec(k) 2, 8,
(f+7)s =D Tz
Where the direct sum is over lifts T of the diagram
lifts

B X
Spec(k) —— S

For example if f is a closed immersion [ : Z — X, (f«F )z

)0 image(T) ¢ Z
Fz  image(T) € Z

Proof.
(f*y)§ = He?t (X xS Spec(ﬁEZ)ay’XXSSpec(()’;,hSJ
T
= C—B I (SpeC(Ai)’ §|X><SSpec(ﬁ§hs))
=1 ’

T
=D I
i1

the last equality follows from that inverse image preserves the stalks and the lifts {7;} are
in bijection with the maximal ideal of A;.
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13 Cohomology of curves and constructible sheaves, part 1

Two aspects:

1. Concrete calculation of H, (X, i) where X is a smooth projective curves over a
separably closed field k (or algebraically closed)

2. extension to softer but more general results: vanishing of higher coh. H>3(X,.%) for
any curve X /k and torsion sheaf .7, and finiteness of H*(X,.%#) for "constructible“
sheaves with torsion prime to char k.

For Step 1, use results on Brauer graphs (and Picard varieties), so we will start with
some background.

Definition 13.1 Let K be a field, Br(K) ={finite dimensional central simple algebras
over K (CSA/K)}/~.

(CSA/K: associative but not necessarily commutative K-algebras with center K and no
proper 2-sided ideals).

Example 13.2 My(K) the set of d x d matrices over K, is a division algebra over K with
center K.

The equivalence relation ~ is A ~ B if there exist n,m € Z such that M, (A) =~ M,,(B).
Br(K) is a (commutative) group with identity and multiplication — ®x —. (The inverse
of AK is A°?). This group turns out to be torsion, given A, A @x K =~ My(K) for some d
and A®? is trivial in Br(K). In general Br(K) is deep arithmetic invariant. Examples:

e K is separable and closed implies that Br(K) = {1}.
e Br(R)=17/2

e Br(F,) = {1}

e Br(Q,) =Q/Z

Br(Q) lies in a short exact sequence

Xinvy,
0 BT(Q) @v all places of Q BT(QU) = @/Z 0

A consequence of non-abelian Hilbert 90: Br(K) =~ H*(Gk, (K*®)*) = HZ(Spec(K), Gy,).
Using

1 G GL, PGL, — 1

and H'(Spec(K),GL,) = 1 (“Hilbert 90"). See Serre Local Fields or Galois Cohomology
or Stacks Project.
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13.1 Lecture 17: 10/24

Our key example of a Brauer group:

Theorem 13.3 Let K be the function field of a curve (integral, 1-dimensional, finite type)
over an algebraically closed field k. Then Br(K) = 0.

Let r € Z. A field is C, if Vd,n € Z=q such that 0 < d" < n, any homogeneous degree d
polynomial f € K[ti,...,t,] has a non-trivial solution, i.e., f(a) = 0 with o € K™\{0}.

Lemma 13.4 Let K be as in Theorem 13.5. Then K is Cy.

Proof. We may assume K = k(X) for X/k genus g, smooth, projective. Fix f €
K|t1,...,t,]. There exists an ample line bundle Ox (D) with divisor D € Div(X) such
that all coefficients of f lie in HY(X,Ox (D)) = {h € K|divh > —D}. Consider tuples
a € K" lying in HY(X, Ox (D)) for e > 1 allowed to vary. Riemann-Roch theorem implies
that for e » 0 we have

dimy H°(X, Ox(eD)) =1 — g + edeg(D).

We can view f as a map f : H*(X, Ox(eD))®" — H%(X, Ox((ed + 1)D). When e » 0,
the domain and target have dimensions

dimy HY(X, Ox(eD))®" = n(1 — g + edeg(D)),
dimy H(X, Ox((ed + 1)D) = 1 — g + (ed + 1) deg(D).
Assume d < 0, i.e. d + 1 < n. Then, we see that f has a non-trivial solution. So, K is C1.

Then, the following lemma completes the proof of Theorem 13.3.

Lemma 13.5 Let K be as in Theorem 13.3. If K is Cy, then Br(K) = 0.

Proof. STP any division algebra D/K is trivial. Given D, D ® K® = My(K?®) for some
d>=1. On D, we have the reduced norm

Nm:D — K.

characterized by

D® K° ~ My(K*®) 2% K.

Nm is a degree d homogeneous polynomial in d? variables. If d > 1, then d < d?. So
K being C forces the existence of an element x € D\0 such that Nm(X) = 0, which is
impossible because D is a division algebra.

Galois cohomology consequence: Let Gx = Gal (K*°/K).

Corollary 13.6 (1) Let K be any field such that for all finite K'/K, Br(K') = 0. Then
for allp =1, HP(Gk, (K*)*) = 0 and for all torsion (and discrete) G -modules M,
HP(Gg,M) =0 for all p > 2.

(2) The hypothesis of part (1), hence the conclusion holds for any field K of transcendence
degree 1 over an algebraically closed field k.
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Proof. (Sketch) Vanishing p > 2, for torsion M, M is direct limit of its finite submodules,
and HP (G, filtered colim) = colimHP?(Gk, ). So we may assume |M| < oo. Then,

M= P M.

{—prime
So, we may assume M = My, since H*(Gg) commute with direct sums. There are two

cases.
Case (a):The case we have ¢ # p = char(K). Then, we have Kummer sequnece

1 My — (K*)* 2225 (K)% & 1,
and for any L ¢ K*, we get
HP" Y (G, (K®%)*) — H? (G, o) — H? (G, (K°)").

So, if Br(L) = 0, we deduce (using Hilbert 90) that H?(G', 1¢)) = 0. Apply this observation
with L = (K*)% where Gy is ¢-Sylow subgroup. Then,
Br(L) = colim Br(K')=0 where K ¢ K'is finite.
KcK'cL

As a Gr-module, we have py ~ Z/¢ (L(pe) = L because deg[L(uy) : L] divides ged (¢ —
1,£%)); therefore we have H?(Gp,Z/¢) = 0. We deduce that for all -power torsion M, we
have H2(Gp, M) = 0. (The only simple Gy = G'r-module is the trivial module Z/¢. So, by
looking at J-H series and LES we win using the case M = Z/¢.) From this and dimension
shifting we deduce that for all £, torsion module M, we have HP(Gr, M) = 0 for all p > 2.
Since the restriction map is injective, we get HP (G, M) = 0 for all p > 2.

Case (b): The case we have £ = p = char(K). Same argument reduces vanishing for all
p* = {*-torsion module to the case of M = Z/p. Instead of Kummer, use Artin-Schreir
series. For any scheme S of characteristic p, we have a SES on Sgt:

0—Z/p— 08 L= 0% 0.

a—aP—a

We get
Hy (S, Os) ~ Hy7'(S, 05) — HE(S,Z/p) — HE(S, 0F) ~ Hy,.(S, O5).

When S is affine and n > 2, we see that Hl (S, Z/p) = 0. In particular, H., (Spec(K),Z/p) =
HPT' g, Z)p = 0.

Now we turn to prove HP(Gg, (K*®)*) = 0 for all p > 3 (we know it for for 1, 2). This
follows from the torsion vanishing in degree greater than or equal to 2 and the exact
sequence

0 — torsion — (K*)* — (K*)* ®z Q — torsion — 0.

We know HP (I, Q-vector space) = 0 for all p > 0; In addition, HP(I'k, torsion) = 0 for
all p > 2. We obtain the result by taking LES.
(2) is a corollary of the previous theorem. Write

Br(K) = k(?Lhcn}(Br(L) where k < L finitely generated of tr.deg, L = 1.

Since any such L is the function field of a curve over k we have Br(L) = 0. Hence,
Br(K) =0.
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Now globalize. Until otherwise stated, let X /k be a (connected) smooth projective
curve over an algebraically closed field k.

Goal: Hgt(X, Gp) = 0 for all ¢ > 2.

Relate this goal to the field theory results by

Lemma 13.7 Let j : n = Spec(k(X)) — X be the inclusion of the generic point and for
all closed points x € X let 1x : {x} — X. Then, there exists a short exact sequence on X g:

IEXCl

(Lemma also holds if we replace X by codimension 1 points on integral quasicompact
scheme X.)

Proof. For U — X étale, U = | [ U; with each U; smooth connected curve. To construct
the maps in the sequence, we may assume U is connected. (F([[U;) = [][-#(U;)). Then,
we have divisor sequence

() 0—-T(U,6%) — kU)LY P z.

uEUCl

The sequence of the lemma evaluates this sequence (*) on U. This exactness for (x) shows

0— Gm,X - j*Gm,n - @ LX %2

reXy

is exact. The surjectivity on the right holds Zariski-locally because Weil divisors are Cartier
in our setting. (Details of the proof is left as an exercise)

Using the LES associated to

0— Gm,X _’j*Gm,n - @ LX*Z —0

.’EEXCl

we get
HETH X, @ ix.2) = HE (X, Gr) — HE(X, juCon )

IEXCl

where the leftmost element is

Hgtil(X’ @ Lx L) ~ @ Hgtil(Xv Lx 4 2) ~ @ Hgtil({x}az) =0.

xEXcl :EEXCZ IEXcl

We have
Hgt(XvR?*Gm,n) = H£t+q(777Gm,n)'
—_——

Galois Cohomology

Lemma 13.8 For all ¢ > 1, we have R1j.Gy, , = 0.

Granting this, we get the following corollary. We will prove corollary first and will get
back to proof of lemma.

Corollary 13.9 For allp > 1, HY (X, j«G,,,) = 0.
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Proof. If R1j,Gy,, = 0, then for all ¢ > 1 E3 page of Leray is zero and for all p we have
0~ HE (0, Gmyp) = Hy (X, jxGp)-
since Br(k(X)) = 0.
The corollary gives us the following.
Theorem 13.10 For all ¢ = 2, we have HY,(X,G,,) = 0.
It remains to prove lemma.

Proof. (Proof of Lemma) For any geometric point Z of X, we show (R%j,G,, )z = 0. We
have two cases:

1) z over a closed point,
2) Z over the generic point 7.
Case 1: The point z lies in some affine open Spec(A). So, we have
(R752Gmn)z ~ H(n x Spec(0%'3), Gm)

N Xx Spec(ﬁj’(}fi) ~ Spec(FracA ®4 0’)"?56) ~ Spec(Frac(ﬁ}g(}fj)) .

Call this Kgh

K2 is an algebraic (but not finite) extension of K. So, again our Brauer group result show
Br(K:") = 0. Hence, we have HY, (Spec(K$h),G,,) = 0 for all ¢ > 1.
Case 2: Left as an exercise.

13.2 Lecture 18: 10/26

Applying the last time’s vanishing result, and following last lecture’s notation, we have
pplying

Theorem 13.11 Let X /k be a connected smooth projective curve of genus g over a
separably closed field, and let n € Z=1 n k*. Then we have

Proof. From the LES coming from the Kummer sequence (note that H°(X,G,,) = k*, so
HY part is easy), we have

0— He}t(X7 :un) - Helt(Xﬂ Gm) - Hélt(Xa Gm) - Hegt(Xﬂ :un) - Hegt(Xv Gm) =0

(The surjectivity of HY,(X,Gy,) — HY (X, Gp,) comes from the fact that n € k*.) The fact
that HY, (X, ) = 0 is because Hgt_l(X, Gm) and HY (X, G,,) are both 0 for p = 3. Since
HL(X,G,,) = Pic(X), we find H}, (X, un) = Pic(X)[n] and the cokernel of multiplication-
by-n map on Pic(X) is isomorphic to HZ,(X, un).

So we have a commutative diagram with exact rows:
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00— Pic®(X) —— Pic(X) 225,72 — 0

00— Pic®(X) —— Pic(X) 285,72 — 0
, then we use the fact that there is an abelian variety Pic% defined over k such that its
k-points are Pic’(X), and that [n] is surjective on Pic% /k, together with snake lemma,
we conclude that HY (X, pn) = Pic(X)[n] = Pic®(X)[n] = (Z/n)» and H%(X, ) = Z/n;
this follows from general theory of Abelian Variety (for abelian variety AV /k, AV (k)[n] =
(Z/n)?3mAVY and general theory of Picard Scheme of Curves (dim Pic% = g): see Stack
Project 03RP and 0BAO.

Remark 13.12 (1) The use of Kummer sequence is analogous to the use of exponential
sequence for X a compact Riemann surface:

. f%ef
0 —— 2miZ Ox

o% 0

(2) In the theorem, if X is defined over a general field k, then the above calculation
applies to HY,(Xs, pn). The isomorphisms in the theorem are Gal(k®/k)-equivariant,
i.e., they are isomorphic as Galois modules.

More generally, for X /k an affine scheme defined over a characteristic p > 0 field, we
use Artin-Schreier sequence

Fr—id

0 Z/p ﬁX ﬁX — 0.

Then since H}(X,Ox) = H!,.(X,0x) = 0 ( X is affine), H}, (X, Ox) = 0 as well. So
H}(X,Z/p) is the cokernel of Fr —id on Ox(X). However, this may not be a finite
dimensional Z/p vector space. For example, consider the cokernel of Fr —id : F,[t] — F[t].

But if X /k is proper, then this H! will not be infinite dimensional.

Theorem 13.13 Let X /k be a separated scheme of finite type defined over a separably
closed field k, with dim(X) < 1. Then:

(1) For any torsion sheaf F € Ab(Xy) and q = 3, H},(X,.F) = 0. And if moreover X
is affine, H}, (X, .F) =0 for all ¢ > 2.

(2) For any q any constructible sheaf F with torsion coprime to char(k), H}, (X, F)
is finite. And if moreover X /k is proper, H}, (X, F) is finite for all constructible
sheaves % .

(3) For any torsion sheaf % of order prime to char(k), and for any k < k', where k' is
separably closed, the natural map:

Hgt(Xa ‘g\) - Heqt(Xk’ayk/)

is an isomorphism. And if X /k is moreover proper, this holds for all torsion F .
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Definition 13.14 Let X be a scheme, a sheaf F of sets or abelian groups on Xeg; is locally
constant if there is an étale covering {U; — X }ier such that F |y, is a constant sheaf.(i.e.,
F is the sheafification of (Vij — ¥;), where Vij are étale coverings of U.

Definition 13.15 Notation as above, .Z is said to be finite locally constant (locally constant
constructible, l.c.c or lec) if ¥;’s are all finite.

Lemma 13.16 (1) Let f : X — Y be a morphism of schemes, Let F be a locally
constant sheaf, then f~Y.F is locally constant.

(2) If f: X =Y is finite étale and F is locally constant(resp. finite locally constant),
then f«(F) is locally constant(resp. finite locally constant).

Proof. (1) there is an étale covering {U; — X };es such that Z |y, = 5;. Then (f1.%)|xxy v, =
(Zu,)|xxyu, is constant, since pullback of a constant sheaf is constant.

(2) To prove (2), first prove a theorem:

Theorem 13.17 Let S be any scheme. The functor Sg — Sh(S¢), X — hx,
restricts to an equivalence of categories FEtg — {l.c.c. sheaves of sets on Sg}.

Proof of theorem: To see this functor is well defined, first note that a finite étale
morphism is étale locally isomorphic to a disjoint unions of isomorphisms. To prove
this, we let {U,, — S} be a Zariski cover such that f|y, is finite étale of constant
degree n(e.g., finite unramified extension of Dedekind domains). So we can assume

deg(f) = n.

Induct on n, and we have such a diagram

XXSX%X

e

X —— S

Since X is proper and thus separated, Ax is a closed immersion. Since pry is a
pullback of an étale morphism, pro is étale. Being a section of pro, Ax is étale. Thus,
Ax is a closed and open immersion. So X xg X = Ax (X)W, and restrict pry to
W, the degree of pry is n — 1( since the cardinality of fiber is n — 1), so by induction,
we are done.

Thus, there is a covering {U; — S} such that X xg U; is a finite disjoint union of Uj,
say Uy, U;. Then hx|y, is the constant sheaf ;|y,. So this functor is well defined.
And the full faithfulness is guaranteed by Yoneda’s lemma.

To prove the essential surjectivity, we first note that it is enough to represent .#
on a Zariski cover.(For if S = nS; is a Zariski cover of S, and suppose we have S;

. o — ~ T ~ b 3

representing .#|g,, then hSiXSZ- (Sinsy) =7 |s:ns; = thij (SinS;) BiVes, by the full
faithfulness of Hom functor, gives an isomorphism S; x s, (S;n.S;) with S; x 5. (S;n Sj),
so we can glue Si’s together.

Thus, we can assume that there is a single covering space f : U — S, such that .7 |y
is a constant sheaf, say ¥. And we want to use the descent theory to conclude( Milne
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Etale cohomology, chap I, Thm 2.23, Rmk 2.24). First, there is an o : Z|y = hyxy.
So, with notations in the following diagram,

p1
U=UxgU —— U255
P2

we have an isomorphism ¢ : pf(X x U) = p5(¥ x U), and this isomorphism satisfies
cocycle condition. Thus there is a Cartesian square

and S is finite and étale over S and represents .% .

proof of (2) Now to prove (2), note that if .# is represented by U — X, then f.(%) is
represented by U — Y, by definition of f.. Since f is finite étale, the result is clear.

Definition 13.18 ((Constructible sheaf)) Let X be a Noetherian scheme. Let .F €
Ab(X¢r). F is constructible if there is a finite partition X = 11X; as sets, and X;’s are
locally closed subspace of X, such that for all i, F|x, is l.c.c.

Though there is a potential ambiguity in this definition that X; can be given different
structure, we have the following theorem:

Theorem 13.19 Let f : X — S be a universal homeomorphism (equivalently, integral,
universally injective and surjective). Then

{étale schemes/S} — {étale schemes/X} Y —>5)—> (X xgY —09)

is an equivalence of categories, and so Sh(Se) = Sh(Xet).

14 Statement of the proper base change theorem and some
applications

14.1 Lecture 19 (cont)

Proposition 14.1 Let f : X — S be a finite morphism such that for any s € S, the
preimage f~1({s}) of s under f is a singleton, denoted by {x}, and the field extension
k(s) — k(x) is purely inseparable (or equivalently, for any geometric point s : Spec(k) — S
with k algebraically closed, there exists a geometric point T : Spec(k) — X which is a lifting

f
of §). Then Sh Xg <:>*1 Sh Sg  are quasi-inverse equivalences of categories. The same
r=

conclusion holds for abelian sheaves.

We give two examples that satisfy the conditions in the proposition.
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Example 14.2 (1) The scheme morphism X,.q — X for any scheme X.

(2) Let X be a scheme over the field k and k — k' a purely inseparable extension. We
consider the scheme morphism X — X.

Proof. Let § : Spec(k) — S be a geometric point with k algebraically closed. For .7 €
Sh Xgt, (f«F)s =~ Fz, where T is the unique lift of z, by our formula for f,.% when f
is finite. We also know for any ¢ € Sh S¢, f1(¥4)z =~ %. Then we can check that the
maps 4 — f.f'9 and f~!f..# — Z are compatible with the stalk isomorphisms we’ve
described. Thus the two maps are isomorphisms.

Consequences of the above proposition:
(i) Our definition of constructible is unambiguous.
(ii) In proving theorems like the big curve theorem, we may assume X is reduced.

(iii) We have a tool for replacing X /k*P with X /k.

15 Statement of the proper base change theorem and some
applications.

In topology, for proper map X N S of locally compact spaces, for any .# € Ab(X)
and any s € S, we have
(RPfo7)s = HP (X5, 7 |x,),

where X, = f~!(s). The analogue in étale cohomology is one of the key fundamental
theorems. We give two equivalent formulations of the proper base change theorem.

Theorem 15.1 (Proper base change theorem) 1. Let f: X — S be a proper mor-
phism, s — S a geometric point, and let .F € Ab(Xet)ior be a torsion sheaf (this
means that for any U € Xe and t € F(U), locally on U t is killed by some integer).
Then we have the following:

(RP f+F)s = HY (X5, F|x.).

E]

2. Let f: X — S be proper and F € Ab(Xet)tor- Let T — S be a morphism of schemes.
We lable the canonical morphism as following:

X xgT=Xp -2 X

.

T—2 5§

Then the canonical base change morphism
URST > R F)

is an isomorphism.
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Remark 15.2 When T = Spec(k(38)), (2) implies (1). (1) implies (2) by looking at the
stalks.

Proof. For any commutative diagram

!

9 . x

I f

_ 9.9

)-<

‘—

~

we give the construction of base change map.
First we consider the case when p = 0. Appyting fs to the adjunction map .# — ¢.¢'~ 1.7,
we get the map

[+F — f*g;g’—lﬁ = g*f;g/—ly_

We then take the adjoint map and get
9 T = [id T

Now we consider the case when p > 0. Choose an injective resolutions .# — .#* and
gty = #*, where the notation “ ~ ” denote quasi-isomorphism. Then we have maps

By definition, HP(f, #°) = RPfi(¢'"'.%). And since g~ is exact, we have HP (g1 f..%°) ~
g 'RPf..7, so HP(a) gives the base change map.

Next we give a few consequences of proper base change.

Theorem 15.3 Let f: X — S be proper and S quasi-compact and quasi-separable. Let
F € Ab(Xgt) be constructible. (For our purpose, we should restrict to the case when X
and S are Noetherian.) Then for all p = 0, RP f..% are constructible.

Example 15.4 Let X be a proper scheme over k, where k is a separably closed field.
Let F be a constructible funtor in Ab(Xg). Then for any p = 0, HY (X, .F) is finite:
HY (X,.7) is isomorphic to RP f.F, where f : X — Spec(k) is the structure map.

We have following theorems as corollaries.

Theorem 15.5 Let f: X — S be proper. Suppose all fibers have dimension no greater
than d. Then for any F € Ab(X¢t)tor, RP fuF = 0 for d > 2d.

Theorem 15.6 Let X be an affine scheme over a separably closed field k with dim X = d.
Then for any p > d and F € Ab(Xet)tor, Ho (X, F) = 0.
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Analogously, for any complex manifold X — C", HP(X,Q) = 0 for any p > n.

One would like some "proper base change', finiteness, and vanishing results for non-proper
maps as well. This is done by using compatification and cohomology of compact support.
In topology, let f: X — S be a map of nice spaces and .# € Ab(X). We define sections
with compact support of f..%# by

(fiZ)(U) = {s € F(f(U))[supp(s) — S is proper}.
As an example, if we take S to be a singleton, then
(1.F7)(S) = {s € F(X)|supp(s) is compact}.
Now we define for a space X,
.7 := {s e Z|supp(s) is compact},
and the cohomology of sompact support

H?(X, ) := R'T.Z.

. 0 1
Example 15.7 We have Hi(R",Z) = {Z L
=N

We note that mimicking this definition for étale cohomology works out badly. For example,

) 0 2#2
we take X = Al — Spec(C). Topologically, we would get H:(C,Z) = 7 2.¢ L In
1=1.

étale cohomology, we have
I'.(AL,Z/1) = {sections with proper support}
= {se ZJI(A}) = Z/l|supp(s) — Spec(C) is proper}
= (0)
We consider the derived functors. Rewrite

I'.(A{) = colim Tz(A¢, 7),

7 closed Ai
propey

Spec(C)

where, for any closed immersion Z < X of schemes and .% € Ab(Xg), we set I'z(X, %) =
ker(Z#(X) — Z#(X\Z)). Then for an injective resolution .# — .#* we have

RPT(AL,.Z) = HP(colim Tz(Ag, %)) = colimzHY(Ag, 7) = (D HY, (AL, F).

closed

Z Ai closed point
zeAl

prop% { C

Spec(C)

To compute these, we do a general calculation for H g. Let Z <% X be a closed immersion.
Denote by j the map U = X\Z — X. Then we have a short exact sequence of sheaves on
Xéti

0— jij 2 — 7 —iyi 'Z — 0.
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Taking Hom(-,.%), we obtain

0 — Hom(j;j7'Z, F) ~Tz(X, F) Hom(Z, F) Hom(ixi 12, F) ~Tz(X,.F)
T Ext!(ixi 12, F) - Ext'(Z, %) Ext'(jij~\Z, F) __

" Ext’(iyi\Z,F) ~ Hy(X, F) — Ext"(Z,F) ~ H"(X,.F) — Ext"(jij Z,.F) ~ H"(U,.7)

then we obtain
< H (AL ZJ1) — HE (AL Z/1) — HE (AR2),Z/1) — -+

and therefore

0 r=20
H{,(A¢,Z/1) = {0 r=1,
Z/1 r=2

which implies that R?T'.(A{, Z/1) is infinite. This is in conflict with the topological intuition.

15.1 Lecture 20: 11/2

In topology, there is an equivalent definition of H*(X,.#) or of R"f.# when we have
f=foj:X — S where j : X — X is an open immersion and f is proper. Namely,
hF = f.)Z. There is an identification between

[F(S)={te F(X) |supp(t) — S is proper}

with
(FeF)(S) = (P )(X) = {t € F(X) | supp(t) — X is proper}.

Under mild hypotheses on X and S, this identification passes to an identification
R'fF ~ R"[,(31:F)

(check that ji takes injectives to acyclics).
This motivates the correct definition in étale cohomology.

Definition 15.8 Let f : X — S be separated of finite type. Let j : X — X be an open
immersion into a proper S-scheme f : X — S (j is a “compactification”). The higher
direct images with proper support of f are by definition, for F € Ab(X ¢t)torsions

R"fF =R"f,(1.F)
In particular we use fi to denote RUf (note that this is not the R™ of f). When S =

Spec(k) for k a separably closed field, set H*(X, %) = H*(X,5.%) (~T(S,R*f.7)), the
cohomology with compact support.

79



Remark 15.9 e Given f as in the definition, assuming S is qcgs, such a compactifi-
cation exists. When S is Noetherian, this is the Nagata compactification (hard), and
the qcgs case can be reduced to this.

e The construction of Rfi.F# is canonically independent of the choice of compactification,
but his depends on proper base change.

e We have that j) is exact, so R® fy is still a §-functor (even though it is not R™(f,o4)).

o When f is étale (where we previously defined fi), this agrees with the previous
definition.

Sketch the relation: Since f is quasi-finite, Zariski’s Main Theorem implies that
there exists a factorization f = f o j where j : X < X is open and f is finite. To build a
map fi.# — f, o j.%, it suffices to give a map .# — f~1f,51.%. Given ¢ : U — X étale,
we want

FU) - (T F)U) = (FuirF)U) = (1 F)(U x5 X).

The map (id,j o ¢) : U — U xg X is an isomorphism onto an open and closed subscheme
(étale by 2/3, proper since U xg X — U is separated, and monomorphism). So U xg X =
UJ[W (W complementary open and closed). So,

(NF)U x5 X) =~ (1. F)(U) x (71:F)(W).

The map we wanted above is then given by s € % (U) — (s, 0) under the above identification.

Returning to the remark. Why is R" fi.% independent of compactification? For any two
ji = X; with f; : X; — S both are dominated by (j1,j2) : X < X1 x5 X2; we upgrade
(j1,J2) to a compactification by restricting its target to the closure of its image, which
makes it an open immersion. So, by comparing both to (ji, j2), it suffices to consider the
case where X1 — X3 (over S). We obtain the following diagram

N

X%)XQ fi

We now compute:

R" fo F = R" fo,(jorF)
>~ R"f5,(g9+J11:F)
=~ R"(fy, © g+)(j11F)
= (R"f1,)(JuF) =R"f1,7.
jQ!y p = 0

For the intermediate isomorphisms, use RPg,ji.-# = {0 0 and Leray spectral
p >

sequence. To see this we introduce the following
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Lemma 15.10 For all cartesian diagrams of schemes X xy U for f : X — Y and
j:U—>Y (and f': X xy U > U, j': X xy U — X) where j is étale, and for all
F € Ab(Ug), the canonical map j!’f’_lﬁ — f7LY9.F is an isomorphism.

Proof. Exercise: use the explicit stalk description.

Stalk calculation. Let 7 — X5 be a geometric point, we consider the following two
Cartesian diagrams.

X153 —

-
—

o

o [ ——{
k%ﬁﬁ

@\(*

_ )

By proper base change and the above lemma,
(RPgsj11F )y = HY (X135, (11T ) |, 5) = HY (X153, 51.(F | xp))-

This is 0 if 7 ¢ j2(X), and if 7 € j2(X), then Xy is a single point and H? vanishes for p > 0
and for p = 0 get .%3. We should further check that the isomorphism R" fo).%# ~ R" f,.%
is independent of the choice of the third compactification dominating the first two; we omit
this check.

We now list some corollaries of proper base change.

Corollary 15.11 Let f: X — S be separated of finite type, with S qcqs. Let g : T — S be
any map, and let F € Ab(Xegt)tor- Then, there exist a canonical base change isomorphism
g IR"1F ~ R"fl(¢g"~ LZ) where ¢ : Xp — X and f': Xp — T are the projections from
the fiber product X = X xgT.

(Taking T'=35 — S a geometric point yields (R" fi.%)s ~ H? (X5, #|x.).)

Corollary 15.12 For X Y 1, 8 both separated of finite type maps of qcqs schemes,
and for 7 € Ab(Xg)tor, there is a spectral sequence

E3Y = RPf((R9.7) = RPM(f o ghF

Corollary 15.13 Let f : X — S be separated of finite type with S qcqs. Forv:Z — X
closed and j : U = X\Z — X open, set fy = foj and fz = for. Then, for F € Ab(X&)tor,
there is a long exact sequence in Ab(Se)

> R"fu(F|ly) > R*"HF — R"f7(F|z) > R fu(Flv) —

(Taking S = Spec(k®), we get H}(U, #|y) —» H} (X, F) — --+)
Idea: We have a short exact sequence

0> i1 Fly = F — 1.5z —0

and R"fi(71.7|y) ~ R™(f o j)1.%|u because proper base change shows R¥ji.% |y = 0 for
k > 0. Likewise for ¢, = t;. Then, apply the d-functor R"f, to the short exact sequence
above.
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Theorem 15.14 (Generalizing the vanishing statement from before) Let f: X —
S be separated of finite type with S qcqs such that all fibers of f have dimension < d. Let
F € Ab(X¢gt)tor- Then, for all ¢ > 2d, R1fi.# = 0.

Proof. Tt suffices to check on stalks. By proper base change (for fi), it suffices to check that
HI(X,7) =0 for ¢ > 2d when X — Spec(k) is separated of finite type and dimension d
where k is a separably closed field.
There is an affine open j : U — X with ¢ : X\U — X and dim(X\U) < d. From the
short exact sequence
0—jij 'F > F > 1.0 F -0

by induction on d, it suffices to show HY(U,j 1.%) = HY(U,51j71.F) = 0 for all ¢ > 2d.

Thus, by induction, we may assume that X is affine, i.e. X = Spec(A4) where A =

klx1,...,2,]/I, and the algebra inclusions k < k[z1] < - -+ € k[x1,...,x,] induce
X=X, X0 I Xy 5 Xy S X = Spec(k)

where X; = Spec(subalgebra of A generated by z1,...,2;). Each f; : X; — X;_1 has

fibers with dimension < 1. Repeated use of “Leray” spectral sequence shows that it suffices

to prove that RPf;%; = 0 for all p > 3 and ¥%; € Ab(X ¢t)tor- (inductively,

RP(fifa-- fis\ R4 = RPFI(fr- - fi) ¥

check R™(f1--- fin¥ = 0 for n > 2i). But this follows from proper base change which
reduces you to showing HP(Y,%) = 0 for all Y affine finite type over k of dimension < 1
and 4 € Ab(Yet)tor and p = 3. Such a Y embeds in a projective Y over k of dimension < 1
(a:Y —Y)and HY(Y,9) = HP(Y, %), which is zero by the curve theorem we have
previously stated (but not proved).

Now, generalizing the constructibility statement from last time, we have:

Theorem 15.15 Let f: X — S be separated of finite type with X and S Noetherian, and
let # € Ab(Xgt) constructible. Then, Rf\.F is constructible for all q.

15.2 Lecture 21: 11/7

There is one more consequence of proper base change we want to mention, before turning
back the cohomology of curves: the comparison between étale cohomology and singular
cohomology.

Let X be a separated scheme of finite type over C. To X we associate a complex-analytic
space X" whose underlying set is X(C) (e.g. in the smooth projective case, X" is a
submanifold of complex projective space). The analytification X" has an étale site, whose
maps are analytic maps that are local homeomorphisms, and there is a functor X¢ — X&'
which does the obvious thing: (X — Y) — (X*" — Y?"). There is a corresponding “direct
image” functor of sheaves Sh X" — Sh X given by # — (U — F#(U*")). This functor
has a left adjoint .# — #2": Sh X¢ — ShX{'. Here are two ways to construct the
analytification of a sheaf:

e Mimic the construction of the inverse image of a sheaf.
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e It’s clear how a representable sheaf should be analytified: h{/' := hyan. Now a general
fact about sheaves on a site is that any sheaf is a colimit of representable sheaves, so
we can define in general (colimy hy)®" := colimy hyjan.

Theorem 15.16 Let X be a separated scheme of finite type over C and F € Ab Xg
torsion.

1. Then H¥(Xg, F) = HE(X?",.Z°") (the latter refers to cohomology on the usual site
of open subsets of the topological space X" ).

2. Assume F is constructible. Then H*(Xe, F) ~ H* (X", F7a0).

Remarks on the proof One first constructs isomorphisms between cohomology on the étale
sites X¢; and XZ'. Next one uses that the site X&' is sandwiched between the étale
and usual sites of the topological space X", and that cohomology on the étale site of a
topological space computes the usual cohomology.

(1). This result is a rather formal consequence of proper base change: follow the proof
of vanishing in high degrees. Notice that when X is proper, this becomes a statement
about the usual cohomology and strengthens (2).

(2). This is a difficult result; the usual proof uses resolution of singularities.

This is nice because it allows us to directly import results from the classical theory to
the étale setting.

16 Proof of the theorem on the cohomology of curves
Recall the statement:

Theorem 16.1 Let k be a separably closed field, X a separated scheme of finite type over
k of dimension < 1, and let % € Ab X be torsion.

1. One has HY (X, .Z) =0 for ¢ > 3.
(1') If X is affine, (1) holds for q = 2.

2. If F is constructible of torsion coprime to chark, the groups HZ (X,.F) are finite
for all q.

(2 ) If X is proper over k, (2) holds without the assumption on char k.

3. If the torsion of F is coprime to chark and k'/k is an extension of separably closed
fields, then H{ (X, F) — H{( Xy, F) is an isomorphism.

(8 ) If X is proper over k, (3) holds without the assumption on char k.

Below, continue to let k, X, % be as in the Theorem (with additional assumptions
stated as needed).

We separate the proof into several parts. First of all, we can and do assume k is
algebraically closed, since performing a purely inseparable field extension leaves the étale
site, and hence étale cohomology, unchanged. It’s easy to further reduce to the case when
X is connected of dimension exactly 1. Recall also that we’ve already treated the case of
X smooth projective over k.
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Lemma 16.2 Assume X is smooth and affine. Then the Theorem holds for F = Z/n
(the case of n prime suffices for our later use).

Proof. We can write X = X\S, where X is smooth projective over k and S is a finite
nonempty set of closed points. The case when char k | n (items (2/, 3')) is left as an exercise
in applying the Artin—Schreier sequence. So we assume char k t n, which implies Z/n =~ p,
on X since k is separably closed. Consider the Kummer sequence

n

1 [in Gm Gm 2225 1.

Now take the long exact sequence. First, since H1(X,Gy,) = 0 for ¢ > 2, we get that
HY(X, puy) =0 for ¢ = 3. Thus (1) is verified.

Next, using H!(X,G,) = Pic X, the long exact sequence gives an isomorphism
Pic X /nPic X =~ H%(X, pi,). But given D € Div X, we can extend D to some D € Div? X;
using that multiplication by n is surjective on Pic’ X, it follows that D = nE + div(f),
therefore D = nE|x + div(f)x. It’s clear now that [n] is surjective on Pic(X), thus
H?(X, ji,) = 0, verifying (1').

Now look a bit earlier in the long exact sequence to separate out the short exact
sequence

1 —— Ox(X)*)Ox(X)" —— HYX,u,) —— (Pic X)[n] —— 0.

We want to show that both Ox(X)*/0x(X)*™ and (Pic X)[n] (the latter meaning n-
torsion) are finite, which will prove (2) in this case.

We first consider the divisor map on X restricted to Ox(X)*, which evidently takes
the form Ox(X)* — Z°, and whose kernel is 05(X)* = k*. Then we can consider the
following commutative diagram with exact rows:

1 k* ﬁx(X)X E— diVYﬁx(X)X — 0
1 k> ﬁx(X)X %diVYﬁx(X)x *>O,

(all the vertical maps are multiplication by n). Since the nth-power map is surjective on
k>, the (easy part of the) snake lemma furnishes an isomorphism Ox (X)*/0x(X)*" ~
divy Ox(X)* /ndivyg Ox(X)*. Since divyg Ox(X)* embeds into Z°, the finiteness of
Ox(X)*)Ox(X)*™ follows.

Next, we show that (Pic X)[n] is finite. Begin with the morphism of exact sequences

0 —— divg Ox(X)* —— PDivX —— PDivX —— 0

J J J

0 —— DivS ——— DivX —— DivX —— 0,
where PDiv is the principal divisor and apply the snake lemma to get an exact sequence

0 —— Div S/divy Ox(X)* —— PicX —— PicX —— 0.
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Now, like in the previous paragraph, take multiplication by n on this sequence to get a
morphism of exact sequences and apply again the snake lemma. Since DivS = Z°, the
relevant piece of the snake-lemma exact sequence takes the form

(Pic X)[n] —— (Pic X)[n] —— finite.

By the theory of smooth projective curves over an algebraically closed field we have
(Pic X)[n] = (Z/n)%, where g is the genus of X. This at last finishes the proof of the
present special case of (2).

What remains is (3). This follows from a sufficiently close inspection of the argument
given above.

Remark 16.3 One can refine the calculations of the preceding proof to obtain that
HY(X,Z/n) = (Z/n)?9+#5~1 when char k { n.

Next, we make the main reduction for general X.

Lemma 16.4 [t suffices to prove the Theorem for % of the form 7%, where 4 is an lcc
sheaf of Z/l-vector spaces on U and j: U — X is the inclusion of an irreducible open
subscheme.

Proof. Any arbitrary torsion sheaf is a direct colimit of constructible sheaves (proof
omitted), and since cohomology commutes with colimits, we reduce to the case of %
constructible and moreover /*-torsion. Repeatedly using the exact sequence

0 —— F[/] F F|F[l] — 0,

we inductively reduce to the ¢-torsion case (here use that subquotients of constructible
sheaves are constructible). Thus there exists an open inclusion j: U < X such that j~1.%
(i.e. F|y) is an lcc sheaf of Z/l-vector spaces. Shrinking U, we may assume U = | |, U;
where each U; is an open irreducible subscheme of U (throw out the intersections of the
irreducible components of U). For Z = X\U, with inclusion i: Z — X consider the
adjunction short exact sequence

0 —— jij L7 F isi LF —— 0.

Since Z is finite, we have
W A .
Z*Z e/ = @’LZ,*‘/Ej
2€Z

where i, is the inclusion {z} < X and Z is a geometric point above z; thus

finite, ¢=0

HI(X,iyi V) =
(X, i ) {0, g=1.

The reduction now follows upon taking the long exact sequence associated to the adjunction
short exact sequence.

We now begin to attack the special case of the Theorem described in the preceding
lemma. We first consider the yet more special case of constant ¥.
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Lemma 16.5 The Theorem holds for % = ji(Z/0)y, where j: U — X is the inclusion of
an irreducible open subscheme.

Proof. We may of course assume X is reduced, since the étale site is not affected by passing
to the reduction.
First assume X is smooth. Use the short exact sequence

0 —— J(Z/N)y —— (Z)0)x — i Y Z/0)x —— 0

considered in the previous lemma; we know the cohomology of i,i~'(Z/f) x as stated above,
and we also know the Theorem for (Z/¢)x by Lemma 16.2. So, we get the Theorem for
J1(Z/0)y by chasing the long exact sequence.

Now for general X, we will look at the normalization f: XX (a finite map) and try
to relate the X-cohomology to X-cohomology. We’'ll treat the case chark { n (the other
case again being an application of Artin—Schreier). Consider the diagram

where U = f~'U. We know the theorem for j in place of ji. There is a canonical map
WW(Z)0) — fe(Z)0): write it down explicitly at the level of sections, or construct the
adjoint map f~15(Z/¢) — 51f1(Z/¢) using that ji commutes with arbitrary base change.
This map is injective and its cokernel is a (constructible) skyscraper sheaf supported on
some finite set S € X. Using the long exact sequence, we see that the theorem holds for
41(Z/¢) if and only if it holds for f.j1(Z/¢). But f is finite, so f is exact, so the Leray
spectral sequence degenerates, so H*(X, fyji(Z/0)) =~ H*(X,}i(Z/f)). This reduces to the
smooth case already proven.

Finally we need to deduce the whole Theorem from the case just established. For this
we need a new construction, which is maybe the most interesting part of the entire proof,
namely of the “trace map”.

Let f: U — X be étale, X any scheme. Given an Abelian étale sheaf .# on X, we
have adjunction maps fif '.% — .# (using that f is étale) and .# — f,f1.#. Assume
that f is moreover finite: then fi = f, (an exercise in checking on stalks). Thus we get
tr: fof1.% — .Z and a composition

F—— ff T 7

Example 16.6 In the special case U = |_|f:1 X — X, we have fof V¥ = F9 and the
trace is the sum map. Thus the composition F — F is multiplication by d.
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16.1 Lecture 22 11/9

Lemma 16.7 (Proper Base Change for Finite Morphisms) Given a cartesian dia-
gram

Xr 2, X

f’i Jf finite

and F € Ab(Xg), the canonical morphism

9 fuF — fid T F
is an isomorphism.
Proof. Compute the stalks.

Given an étale morphism f : U — X, we have a restriction map and a trace map.

F L f 7 F and fif L7 2L F
coming from the adjunctions f~' - f, fi 4 f~'. If f is additionally finite, using the fact
that fi = f, if f is finite we have the composition

N T
In the special case where U = ]_[?:1 X fof L.F = F9 the composition is just multiplica-
tion by d.
Moreover, traces behave well with localization: Given a cartesian diagram

!

UxxY 25U

f’l lf finite étale
Y . S
g étale
the pullback
g g g e f T - g T
agrees with
trir: fof "N F) » g F

via the identification
R % = (B iy Lt/

where the first isomorphism is the base change morphism and the second one is the canonical
isomorphism.

Therefore, putting this result with the previous special case, in addition to the fact
that every finite etale U over X étale-locally looks like [ [ X (as we have seen before), we
deduce the following: For a finite étale morphism f : U — X of constant degree d, the the
composite

F - fuf 7L
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is the multiplication by d map, denoted [d].
In particular, if [d] is an isomorphism for a sheaf .#, then the composite

HP(X,7) — HP(U, f L) ~ HP(X, fo f " F) ~L HP(X, F)

is the multiplication by d map, hence an isomorphism. (Note that the isomorphism in the
middle comes from the fact that f is finite so the Leray spectral sequence degenerates).
So, the pull-back map HP(X,.%) — HP(U, f~1.%) is injective.

Proposition 16.8 Let X be a separated finite type scheme of dimension < 1 over an
algebraically closed field k. Assume that X is reduced. Let j : U — X be an open immersion,
4 a lcc sheaf of Z/-module on U. Then the theorem for curves holds for 74 .

Proof. We will prove later the following fact: There exists a finite étale morphism f : V' — U
of degree coprime to £ such that f~!% has a filtration with all graded pieces isomorphic to
Z)L, ie.,
' 9=F'oFloF?o...oF 2 F =9
such that F'/F*t ~7Z/¢ for all i = 0,...,7.
Assuming the fact, the composite

g f.f g g

is an isomorphism. So, if we prove the theorem for ji fy f 1%, then we will be done because
719 is a direct summand of ji fy f 9.
By Zariski’s Main theorem, we can factor j o f as

V — Y

]& l? finite

X

where V' — Y is an open immersion. Observe that the diagram

’

V%Y

fJ{ J{? finite

UT)X

is cartesian, i.e. the morphism V ), U xx Y is an isomorphism. Hence, finite base

change theorem applied to j{f~'%¥ yields an isomorphism
T S f T = ff Y
Applying ji and using adjunction, we get a morphism
a:jifef G — Fuirf 'Y

The restriction of a to U is clearly an isomorphism. On the other hand, for T € X — U,
the stalk of LHS at T is zero because j is extension by zero and the stalk of RHS is also
zero because

(fudtf D)z = DU D)y

yey
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where the direct sum is over the geometric points § of Y lying over Z. But, for each
geometric point g of Y lying over Z, (j{f %)z = 0 because T € X — U. Therefore, a is an
isomorphism.

Hence, it suffices to prove the theorem for

H*(X, [ f7'9) = H* (Y, j f'9).

But, j{f*¥% has a filtration with graded pieced isomorphic to jjZ/¢ and we know the
theorem for this case.

rmk 16.9 The curve theorem holds for non-separated curves. In order to prove the theorem
for non-separated curves, cover it by affine open subschemes and use Mayor-Vietoris
sequences.

Next, we discuss the fact we use in the proof. Namely, if ¢ is a lcc sheaf of Z/¢-modules
on U, then there is a finite étale morphism f : V' — U of degree coprime to ¢ such that
714 has a filtration with graded pieces isomorphic to Z//.

For U = Spec(k) where k is a field, this can be seen as follows: a lcc sheaf of Z/¢-module
corresponds to a finite Z/¢[G g ]-module where G}, is the absolute Galois group of k. Such
a finite module gives a rational representation G — GL,(Z/¢) for some n. Since the
latter is finite, this representation factors through some G = Gal(L/k) where L/k is a finite
Galois extension. Now let Gy be an Sylow-{ subgroup of G, then up to conjugacy, Gy is
mapped into SU,, (Fy). Let Ly = L& be the Galois subextension of L/k fixed by Gy. Then,
Gr,-module M|¢,, has filtration with graded pieces isomorphic to Z/¢ by construction.

This generalizes as long as we have a formalism of the absolute Galois group for a
general scheme, the étale fundamental group of a scheme.

17«
17.1 Lecture 23: 11/14
We start with this rigidity lemma:

Lemma 17.1 If we have a diagram

/
X ————=Y

N

where X is connected and'Y — S is separated étale, and T: Spec(k) — X is a geometric
point. Then f(ZT) = g (T) implies f = g.

Proof. Consider A\ :Y — Y xgY. It’s closed immersion by separatedness, and etale
(2/3 over S) hence open, so A(Y) is close and open therefore Y xgY = A(Y)[[W. For
fxg: X —YxY, we know f(T) = g(T), we have f x g(X) meets A(Y), but X is
connected, hence f x g factors through A(Y') which is saying f = g.

Let f: X — S finite étale, X, S connected. Suppose deg(f) = n. Then #Aut(X/S) <n
by the lemma. (Take ¥ = X in the above diagram.)
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Lemma 17.2 (Galois closures) In the previous setup, there exists a connected X' — X
finite étale with #Aut (X'/S) = [X: S].

Proof. Let n = [X : S] and fix a geometric point Z: Spec(k) — S. Let X" := X xg--- xg
X = [1,er Z¢ with each Z; connected. Choose g such that Z;, s € X2 contains a point
/

(x1,...,2,) with z; # x; for all ¢ # j. Then the same holds for all (z],...,2]) € Z;,
Suppose not, so x; = z; for some i # j. Then there is a diagonal map A;;: Xt xn
(repeat the same coordinate in 7 and j position) whose images contains (z/,...,z}). A;; is
an étale closed immersion and hence must surject onto Z;, 5 (the latter being connected).
This contradicts z; # ;.

What is Aut (Z;,/S)? Let Gy, < S,, be the stabilizer of Z;, under the action of the
symmetric group S, on X". Then Gy, = {0 € Sy: 0 (x1,...,2y) € Zy,}. Thus Gy, acts
transitively on Zy, 5, since any element (27, ..., ;) of Zy 5 satisfies ] # 2/, for all i # j.
Hence there is a 0 € S,, such that o (x1,...,z,) = (2],...,2],). It also acts freely, so
#Gy, = #74,5. Thus taking

X' =2, — X

~

S,

where for the horizontal map we choose any one of the projections, we have #Aut (X’/S) =

[X': S].

Definition 17.3 A finite étale map X — S between connected schemes is Galois, if
#Aut (X/S) = [X : S]. Set Gal (X/S) := Aut (X/S)°® (for consistency with Gal(L/K)).
Aut(X/S) acts on the left on X, so Gal(X/S) acts on the right on X.

Another interpretation of the Galois condition:

X x Gal(X/S) » X xg X, (z,9) — (z,xg) is an isomorphism (it is a finite étale degree
one map. (X x Gal(X/S) is just disjoint copies of X. Clearly this map is injective and
local isomorphism; If X /S is galois it’s surjective for degree reason, for both of the are
degree (degree of X/S)? over S.)

Construction of the étale fundamental group:

Fix a connected scheme S and fix a geometric point 5: Spec(k) — S. Consider two
connected pointed Galois covers

such that

/
N —
/
th
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We know there is at most one g: X — Y such that g (Z) = y. Suppose there is such a map
g. Then we can construct a surjective group homomorphism Aut(X/S) — Aut(Y/S): Given
f € Aut(X/S), look at g (f (%)). Since Y is Galois, there is exactly one fy € Aut(Y/S)
such that fy (¢ (%)) = g (f (Z)). In a diagram

x 1. x
g J{g
y -y

By the rigidity lemma, f, 0o g = go f. One can check that this is a surjective homomor-
phism, and induces Gal(X/S) — Gal(Y'/S), f — fy.

Definition 17.4 7{!(S,5) := lim Aut(X /S)°P, where the limit is over all diagrams

X

7' Jﬁn et. Gal.

Spec(k) —— 8.

where X is connected. The transition maps (X,T) — (Y,7) are as we constructed
above.

Example 17.5 5 = Spec (k*P) — S = Spec(k). Then m{'(S,35) ~ Gal (k*P/k).

Lemma 17.6 (Functoriality lemma) 7{* is a functor on pointed schemes: Given f: (T,t) —
(S,3), there is a group homomorphism fy: 7t (T,t) — w§(S,5) making 7§ into a functor.

Proof. Let f: (X,T) — (5,5) be a connected finite étale Galois cover with geometric point
7 over 5. The pullback X7 = X x g T is finite étale with degree [Xr : T = [X : S] and it
comes with a basepoint Z = T xz ¢, which hits a unique component Z < Xp (the latter
may not be connected). In fact, Z — T is a Galois cover. More precisely, Gal(X/S) acts
simply transitively on Xz =~ (Xr);. For the subgroup H < Gal(X/S) given by StabZ,
#H = [Z :T]. We define 7 (T,t) — Gal(Z/T) = H < Gal(X/S). Passing to the limit,
we get a map m (T,t) — w1 (5,3).

Theorem 17.7 (Fundamental theorem of Galois theory) Let S be a connected scheme,
5: Spec(k) — S a geometric point. There is an equivalence of categories

FEtg — {ﬁmte left discrete wi' (S,5) — sets}

given by
(X - 85)— Xz

Connected objects on the left correspond to transitive mi-sets.

Remark 17.8 (a) ©{* is defined in SGA I as: define the "fiber functor' Fs: FEtg —
Set, (X — S) +— Xz. Then n{'(S,5) = Aut (F%)

(b) This equivalence is functorial in (S,3): Given a map (T,t) — (S,3) and (X — S) €
FEtg, then
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(X XS T)g ™~ Xg
G G
w11 —L s 7t (S, 3)
are compatible.

(¢) The theorem suggests (and would allow you to prove) that for a second geometric
point 8': Spec(k) — S, w1 (S,3) and 71 (S,3') are isomorphic. This is true, and the
isomorphism is unique up to inner automorphism (compare to the topological 71, or
classical Galois theory with different choices of separable closures and a choice of
isomorphism between them).

Corollary 17.9 Let S be a connected scheme, 5 a geometric point. Then there is an
equivalence (functorial in (S,3))

{lcc sheaves of sets on Sg} — {finite left discrete w1 (S,3) — sets}

given by
y > ﬁg.

Proof. Combine the theorem with the earlier result that FEtg ~ {lcc sheaves} by X — hx.
Remark 17.10 For any finite ring A, this extends to an equivalence

{lcc sheaves of A — modules} ~ {discrete left A [m1] — modules} .
We’ll see later a breakdown to non-lec sheaves/ infinite A.

Proof of the fundamental theorem of Galois theory To construct the action on Xz, we may

assume X is connected. There is a scheme X’ % X %> § with X’ /S is Galois (X'/X is also
Galois). Fix a base point #’: Spec(k®) — X’ over 5. Then Homg (X', X) — X5, h— ho®
is injective by the rigidity lemma and surjective because X’/S is Galois. Aut (X’/S) acts on
X' on the left, so by precomposition acts on Homg (X', X') on the right by h-o = hoo. This
bijection gives X5 the structure of a right Aut (X’/S): for y € Xz write 7 as goroT for some
7 € Aut (X’/S) and then set -0 = goToo (Z'). Thus Xz is a left 1 (S,35) = Aut (X’/S)°P-
set. The stabilizer of g (z') is Aut (X'/X)°P, identifying Aut (X’'/X)°P /Aut (X'/S)P ~ X5
as left mp-sets.

For Full faithfulness, use the rigidity lemma.

Essential surjectivity: any discrete left mi-set A is a disjoint union of orbits so we may
assume A is a transitive mi-set with the action factoring through some Aut (X/S)°" with
(X — S) Galois. Fix a € A and let H < Aut (X/S)°? be the stabilizer of a. Then we
can form X — X/H — S, where one can check that X/H — S is still finite étale, and
(X/H), ~ A.

In this case scenario, let f : X — S finite étale and ¢ € H < Gal(X/S), since g is
over S and for affine U = Spec(A), f~1(U) = Spec(B), g induces automorphism on
Spec(B) hence on B. We consider Spec(B) (B means elements fixed by H) where
Spec(B;) = f~1(Spec(A;)) and {Spec(A;)} covers S, and we are able to glue them to get
X/H.
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17.2 Lecture 24: 11/16

Last time we defined 7¢t (S,3) and showed the equivalence between categories FEtg and
{left discrete my (S,3) — sets}, this lecture we are going to see its relation to cohomology.
Let S = Spec(k), we showed earlier that

HE (S, 7) = H*(Gal(k*/k) = n$* (S,5), M)

For general S this is however too much to hope for. For one, not all topological spaces
satisfy this. Indeed, we have

H*(CP',Z) # H*(7;°°(CP'), Z)

Furthermore, the étale subtlety is related to lcc condition. To investigate the relation
between the fundamental group and cohomology, we begin with a definition.

Definition 17.11 .% € Sh(Ss) is a left 4 € Ab(Se) torsor if it comes with an action
G xF—F
meaning
1. When Z(U) is not empty, this action makes % (U) a principal homogeneous space
under 4 (U), i.e. for fited a € F(U), 9(U) — F(U) given by g — g-« is a
bijection.
2. There exists an étale cover {U; —> S} such that .7 (U;) is not empty. So by the

previous property we have
oz ~
Hu; =Y,

as Yy, torsors.
Proposition 17.12 Let (S, 3) be as before, 4 € Ab(Sst), we have the following two results.
(1) HL(S,9) = {left G torsor on S}
(2) If 4 is lcc, then we have
H(S,9) =~ H' (n{"(S, 5),%;)

Proof. (1) holds for any site if you identify H}(S,9) with ﬁgt(S, 4) and regard Cech 1-
cocycle on some cover {U; —> S} as glueing data for the trivial 4 —torsor on each U;. For
(2), let F be a G—torsor, by definition there exists {U; — S} such that Fy, = Yy,, then
Z is also lcc. By classification theorem of lcc sheaves, we obtain that F5 is a Y5—torsor
in the category of T$4(S,5) sets. 95 x Fs —> F5 is a 7545, 5) equivariance in the sense
that for o € 7$4(S,5) we have
o(g-a) =o(g)-o(a)

This torsor gives a class in H*(7$(S,5),%5) by (1).

Concretely we get a cocycle representing a class H'(n$%(S,5),%s) as follow: Choose
r € Fs, we define n$*(S,5) — 95 by sending o € 7$'(S,5) to the unique g such that
o(x) = gy - «, then we have

Jor X = U(T(l')) = U(g‘r) : U($) = 0(9‘1‘)90 "

hence gor = 0(gr)gs therefore it is a cross homomorphism. And we can check that this is
indeed a isomorphism that gives (2).
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We will use these result for proper BC.

Remark 17.13 In the previous proposition, (1) is a rather general fact as it holds for all
sites, while (2) is more special to the lcc condition, and it is not true in general for non-lec
sheaves, as shown in the following example.

Example 17.14 Let S be the nodal cubic curve cut by zy?> = 23 + z2? in P? has nor-
malization P* — S, we can show that H}(S,Z) =~ 7 whereas 7$(S, 3) is profinite so
HY(n$%(S,5),Z) = 0 (note that Zz = 7.). Indeed, let S be the a chain of P* indexed by
Z (each copy of P! has a unique intersection with another copy if any only if they are
indezed by i,j where |i — j| = 1), so we have a morphism S — S which the normalization
morphism when restricted on any copy of P, and S represents a non-trivial Z—torsor,
hence H} (S, Z) = 7 is non-trivial.

Alternatively, we can also look at the Leray spectral sequence. Let f : P' — S we have
ses

0— Z—> full—> fuLJZ— 0

we obtained les

00— Hgt(87 f*Z/Z) - Hélt(sa Z) - Hélt(57 f*z)

lle

We first notice that HY.(S, f+Z/Z) =~ Z and HZ (S, f+Z) =~ HL (P, Z), to show H} (S, Z)
Z, it will be sufficient to show H(P',Z) =~ 0. This is true because when S (in this
case S = P') is normal, the equivalence of categories between {lcc sheaves on Se} and
{finite discrete m$'(S,5) — sets} can be extended to equivalence between

{lcc sheaves of A—module of finite type on Sei}

and
{finite type A—module with w¢*(S, 5) continuously acting on it}
This gives us

Hé}t(P17Z) = Hl(ﬁélzt(Plvi'%Z) =0

Proposition 17.15 Let f : X —> Y be a morphism of connected schemes, & : Spec(k) —
X be a geometric point, and y = f(), then fy : 74X, Z) —> 7Y, y) is surjective if and
only if for all connected finite étale cover Y — Y, X xy Y’ is connected.

Proof. Surjectivity is equivalent to that for all finite etale Galois Y — Y, y' over 1y, the
composition

(X, 2) — 7" (Y, §) — Gal(Y'/Y)
is surjective. Given such cover, T Xy y7 is a geometric point of X xy Y’ lying in a unique
connected component X' which is Galois over X. By construction of fx (see functoriality
lemma) we have the above composition is the following one

(X, Z) — Gal(X'/X) — Gal(Y'/Y)
This composition is surjective if and only if [X': X]| =[Y':Y]. We also have [X': X] <

[X xy Y': X]=[Y':Y], and the equality holds if and only if X' = X xy Y'. Eventually,
we have that it’s surjective if and only if X' = X xy Y’ i.e. X xy Y’ is connected.
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Corollary 17.16 Let X be an irreducible normal scheme, 1 be the generic point, K = Ox ,
K* be its separable closure. ¥ : Spec(K®) — X, then the map 7' (Spec(K),y) —>
7YX, ¥) factor through the isomorphism

Gal(L/K) — ={"(X,7)
where

KcCMcCK?®
M finite extension
Xpy— X is étale
Xr is the normalization of X in M

Example 17.17 Let X = Spec(Z[1/n]), then
m$'(X) = Gal(L/Q)

where L is the mazimal extension unramified away from n. In particular, ©$*(Spec(Z)) =
{1} since there is no unramified extension over Q.

18 Proof of proper BC

Theorem 18.1 Given f: X — S proper, g : T — S as indicated,

Xx, T -2 X

b

T—2— 5

then g 'R"fo.7 =~ R"fLg'=1.F for alln for F € Ab(X¢)tor-
Remark 18.2 We also have "non-abelian" variants for n = 0,1.
1. If # € Sh(Xg), then the BC map
9 T — fid T
is an isomorphism.

2. Let .F be a sheaf of groups (not necessarily abelian). If F is ind-finite, meaning all
the stalks are ind-finite (finite subsets generate finite subgroup), then the BC map

g 'R T — R fid 7' F
is an isomorphism. Here R'f..F is the sheaf associated to the presheaf of pointed set

U~ Hg(X x U, Z\xxv)

The key special case to prove the theorem is when S is the spectrum of a (strictly)
henselian local ring, and 7T is the closed point of S, call it s, then the theorem becomes that
the restriction map Hg (X, %) — H (Xs, Z|x,) is isomorphism. For x = 0, we have the
map on global sections 7 (X) — Z#|x,(X;) is an isomorphism. When % = Z/n, 7 (X)
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is all the Zariski locally constant maps X — Z/n. Likewise for X, the theorem in this
case amounts to a bijection between closed and open sets in X and those in X, given by
U—Un X;.
When each connected component of X is closed and open (for example when X is
locally noetherian), the bijection above also gives a bijection between 7y(X) and 7o(Xs).
Similarly for * = 1, and .% = G, G finite abelian, then the theorem says X connected
implies X, connected, and the restriction map

Hom(ﬂ-? (Xa j)a G) - HOm(?T?t(XS, i)? G)
is a bijection of pointed sets. Varying G, this amounts to showing
T (X, 7) = 7 (X, 7)

To prove proper BC, we will directly address = = 0,1 and reduce the general case to
the case where X — S has fibre of dimension < 1. We will then use the curve theorems.

18.1 Lecture 25: 11/21

In this lecture and the next one we will prove the proper base change theorem 18.1.
Key Cases: S=Henselian local, T=closed point s € S

- (Xg) bijection - (X)

and .
m1(Xs) =5 71 (X) when X is connected.
Part I: General Reductions
Proposition 18.3 (a) It suffices to prove proper base change replacing S by S =

Spec(ﬁgfis,) where S' — S is globally finite type and s’ € S’ that is closed in its
fiber, and when g : T — S is the map

Spec(k(ﬁé’isl)) — Spec(ﬁ’gﬁsl).

(b) It then further suffices to prove proper base cahnge for f : X — S projective and S
Noetherian. We can even take f to be Py — S.

Firstly, we will provide a sketch proof of part (a). Since we only have to check the base
change map is an isomorphism at all geometric points E of T', we may assume S = Spec(A)
and T = Spec(B) are affine.

Write B = colimB; of finite-type A-subalgebras B; ¢ B. The square diagram

!

Xr 24 X

!

7 —— S
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is a limit of square diagrams (on U;*)

9i
X Spec(B;) ?

S

Spec(B;) — Spec(A)
and the old theorem on commuting H* with limits implies
colimU; 'R" f;,. g7 *F = R"fog™ ' F

where U; : Spec(B;) —> T. So, we may further assume T — S is finite type. To show
the BC map is an isomorphism, it suffices to prove it is an isomorphism on stalks at all
(geometric points over) t € T' that are closed in their fiber over S (exercise).

Now let t € T be closed in its fiber over s € S. Let

Spec(k(f)) 5 T
be a geometric point over T and let g ot = 5 be the corresponding geometric poin
Spec(k(s)) — S

over S. Consider
Spec(k(?)) —— Spec(k(s))

o

7T —— S

®|

The t-stalk of the base change map is
(¢ 'R f+F); — (R"frd ™' F )y
Note that we have
(g_anf*ﬁ)E = (Rnf*y)go%g ~ H"(Xg x Spec(@%@),ﬁ]x“g)
—_———
=S
and
(R fog ™' F)p = H" (X x0T, F |y, 7)) = H'(X x5 T, F|x, 1)
Then, the above map becomes

pull back
-

H"(X %55, 7|, .3) H*(X xsT, 7|, 7)

Then the commutative diagram above gives the following diagram (at this point we stop
explicitly writing restriction/pullback of sheaf):



So, it suffices to show the two vertical maps are isomorphisms. Part(a): Assume that
k()P =: k(t) = k(3) D k(s)*P the right hand map is an isomorphism. To see this,
consider this Cartesian diagram

Xf<g—>X><ST

1
t—2 7T
, and we assumed that PBC holds on this diagram, so we do the following calculation:
H"(X xs T, )~ R"f«(F)(T) because I'(T, —) is exact from 12.9
= Rnf*(ga‘)
= g_anf* (Z)
~ R"fl(¢"'.7) because PBC holds for this diagram
~ H" (X3, 7)

7 again, from 12.9

(It in fact shows that in the case of such diagram, PBC holds is equivalent to H"(X xg
T, )~ H"(X3,%).) The same argument shows

Hn(X XS g, y) ~ Hn(XK(S)sep,g).

Since t is closed in its (finite type) fiber over s, k(s) < k(t) is finite, so k(s)*P < k(3) =
k(t) = k(t)*P is a finite purely inseparable extension. Thus,

Hn(Xg) x>~ Hn(XH(S)SCp7 19?)

by invariance of étale cohomology under purely inseparable field extensions. This completes
the reduction of Part(a).
Part(b):(Sketch, mostly omitted) To reduce the proper case to the projective case, use
Chow’s lemma. Given that
X s Py

N

with f is projection, i is closed immersion, we show proper base change for f and we know
proper base change for i (We have shown proper base change holds for all finite maps)
together imply proper base change f = f oi. Indeed ,using a spectral sequence argument
(see Prop 4.4(ii) of SGA4 XII), consider the following diagram

X — Xp

sz ’ Jfé

Y +——Yr

!

g
J{fl J{f{

S——F—T

more generally, if you know proper base change for f; and fo you can deduce it for f; o fo
by
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g 'RV f1, R fy, F ————= g 'RPI[.F
\LBC map iBC map

Rpfl* o qug*(g”_lﬁ) E Rp-*-q(f{ o fé)g”_lﬁ

gives a morphism of (Leray) spectral sequences. Base change isomorphism for f = fj o fs
follows formally. Thus it suffices to establish proper base change for S strictly henselian
and the projection

¢ —S.

Writing
Os(S) = colim(strict henselizations of finite type Z-sub algebras)
you can further assume S is Noetherian.

Reference for details: SGA4 chapter XII.

For the general theorem we will want to reduce from general .# € Ab(Xgt)tors to the
case .# = Z/n where we prefer concrete calculations.

Fact: Let X be a Noetherian scheme
(1) Any .# € Ab(X¢t)tors is filtered colimit of constructible sheaves

(2) .7 € Ab(X¢) is constructible if an only if it can be written as a subsheaf

F

()

d
P (Z/n;)

=1

for some integers d,ni,...,nq, where p; : X; — X is a finite morphism.

For (2), see SGA4 IX 2.14
Part II: The case n =0

Proposition 18.4 Proper base change holds in degree 0.

We have seen that we may assume f : X — S where S is Noetherian, strictly henselian
and T = s — S is the closed points, and we must show

HY(X,7) — H(X,, Z|x.)
is an ismorphism for all .# € Ab(X¢t)tors-

Claim: It suffices to prove this assertion (for all such X — S) when .% = Z/n for all

Proof of claim: Assume we know the Z/n case. Write general .# = colim.%#; with %,

constructible. Since
H*(—, colim) = colimH*(—, —)
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we may assume .% is constructible. Our constructible .% is a subsheaf

d
F c @pi*Z/ni
i=1

for some finite maps
pi: Xi — X

L

S

Thus, we know by assumption proper base change for the Z/n; on X;, and consequently for

d
=1

on X (because the p; are finite we have H*(X,p;,Z/n;) = H*(X;,Z/n;)). Proper base
change in degree 0 follows formally for .%:

0>F >9Y—>Y/F7 —0
LES:

0 —— HYX, %) —— H(X,¥9) —— HYX,9/%)
Jo Js [
0 — HX,, %) — HY(X,,%4,) —— H'(X,9,/%,)

Since (8 is an isomorphism, the map « is injective, and base change map in degree 0 is
injective for all constructible sheaves, including ¢/.%. Thus 7 is also injective, and a chase
shows « is then surjective as well. This completes the proof of claim.

Part II of the proof: The case n = 0.

Proposition 18.5 Proper base change in degree 0.

We have seen we may assume everything is Noetherian where the .# = Z/n case will follow
from

Claim: mo(Xs) — mp(X) is a bijection.
Setup
X — X

l l f proper

Spec(k(s)) —2— Spec(R) = S

with R strictly henselian and local Noetherian. H%(X,0x) = HY(S, f«Ox) is a finite
R—algebra because f is proper. Since R is henselian, H°(X, O) is a finite product of
finite local R— algebras.

For the bijection, STP if X is connected and non-empty, then X, is connected and
non-empty. If X is non-empty and f is proper then f(X) is non-empty and closed, hence
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contains s € S, hence X, is non-empty. So we thus have to show X is connected imples X
connected.

For X connected, A = H(X, Ox) is a local finite R—algebra (If it were a product,
we Wopld get orthogonal idempotents disconnecting X). Consider the float base change
R— R:

Xp— X

l Jf proper

Spec(R) —2— Spec(R)

X and X have the same special fiber.

Now, H(Xp,0p) = HY(X,0x) ®r R=A®r R = A We may and do assume
R is complete. Suppose X, is not connected. Then, we obtain compatible orthogonal
idempotents on X,, = X xg Spec(Cgs/m"™1) for all n > 0. So, we obtain orthogonal
idempotents in lim HY(X,,, Ox,,).

Theorem of formal functions says: f : X — Y proper map of (locally) Noetherian
schemes, y € Y, % a coherent sheaf on X.

(RUfo T ), = lim H9(X xy Spec(ﬁ’yg/mgﬂ), F).

In our case,

(f*ﬁX)s — mHO(Xna ﬁn)

where (f«Ox)s = H°(X, Ox) since we saw global functions on X are complete.
Thus, we obtain orthogonal idempotents in H°(X, &x) contradicting the assumption
that X is connected.

18.2 Lecture 26: 11/28

We have already reduced the theorem to the case:

| I

T = Speck(s) — S = SpecR

, where R is Noetherian, strictly henselian, and s is a closed point. We continue our
reduction.

Part I1I: Reduction to the case of relative curves. Suppose the theorem is know for any
f X — § proper with all fibers of dimension less than or equal to 1. Then the theorem
holds.

Proof. From the assumption, we deduce that PBC(proper base change) holds for a product
of projective lines over S , since we can express the product as a sequence of relative curves
(PY)" —» (PL)" ! — .- — §) and that PBC map being an isomorphism is stable under
composition.

Next we observe that there is a finite map p : (P4)" — P%(quotient by symmetric
group). Let .% € Ab(S¢t)tor, the canonical adjunction map .# — p,p~ (%) is injective by
stalk considerations. We have PBC for the sheaf p,p~!(.%) since there is a commutative
diagram:
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HU(PY, pup™ (F)) —— HI((PY)",p~ (7))

! 5

H(Pg, pep~ ' (F)) —— HU((P3)",p~'(F))

S

, so the left vertical arrow is also an isomorphism.
To deduce the PBC for .%, we use that the short exact sequence

0> .F > pp "F > G := p*pflff/gz — 0
gives a long exact sequence:

HH (P, psp™ '(F)) —— HTY(PS,Y) —— HUPY, F) —— HIPE,pup~ (F)) —— HI(PY,¢

! ! | | !

HI (B2, p,p | (F)s)) —— HIV(PL, %)) —— HI(PL, F5)) —— HI(PL, pyp~ ' (F)) —— HI(PL,
We induct on ¢ for both injectivity and surjectivity of the middle vertical arrow.
First for injectivity, by some version of snake lemma, the middle vertical arrow is
injective.
Next the surjectivity is established by another version of snake lemma, since the
injectivity part also applies to the sheaf ¢.

Part IV: Application of the curve thm.

Proposition 18.6 Assume that we can show, for all Noetherian strictly henselian S and
projective f : X — S with fiber dimension < 1, that

1. HY(X,Z/n) — HY(Xs,Z/n) is surjective;
2. Pic(X) — Pic(Xs) is surjective.
Then the full PBC holds.

Proof. Similar as the reduction we did in Part I, we can assume that 7' — S is Speck(s) —
S = SpecR, where R is Noetherian and strictly henselian. And we want to show that the
map HY(X,.#) - H1( X5, .%5) is an isomorphism for any .# € Ab(X¢t)tor-

As before, we can assume % is a constructible sheaf of Z/¢*-modules for | prime and
a > 1. Let n = 1*. We saw any such .% is a subsheaf of @._; pix(Z/n) for some p; : X; — X
finite. And we have a commutative diagram:

HY(X, @iy pix(Z/n)) —— @HY(X;, Z/n)

| |

HY(X5, @iy pix(Z/n)) —— ©H!(Xi5,Z/n)

, where X; — S is still a relative curve, and so the map on H! of X; is surjective.

When ¢ = 2, we have two cases:

The first case is when [ = char(k(s)). Then the vertical arrows are surjective by
cohomological dimension considerations and Artin-schreier type argument.
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The second case is where [ # char(k(s)), then by kummer type argument, we have a
commutative diagram

Hz(Xia Mn) — HQ(X%Z/TL)

| |

PZC(XZ) _— PZ'C(Xig)

(The verical arrows comes from the LES induced by Kummer sequence). Then since
H? (Xis, Gp) = 0(X; 5 is a curve over separably closed field), the surjectivity is established.
Now, for ¢ = 3, HY(X;,Z/n) = 0, so we deduce that .7 is a subsheaf of a sheaf ¢
of Z/n-mods such that for any ¢ > 0, H1(X,¥) — H(X5,%) is surjective and is an
isomorphism for g = 0.(Proof to be completed by the proof of the following claim).

Claim 18.7 This conclusion implies that H4(X,.7) — H1(Xz, %3) is an isomorphism for
qg=0.

Proof. Let # < ¢ as above. The abelian category of sheaves of Z/n-mods on X has
enough injectives, so let 4 — _# be an inclusion of ¢ into an injective sheaf of Z/n-mods.

Then # is acyclic for the global section functor, i.e., H4(X, #) = 0 for all ¢ > 0. This
can be seen by checking the Godement resolution and realizing ¢ as a direct summand of
its Godement resolution. Taking LES induced by

09— 7> F/9—0

, and use a dimension shifting argument as before, we can conclude that H4(X,¥) —
HY(X5,%) is injective for g > 0.
Now, we can again do a similar trick, but this time with the SES

0>F -9 >G/F -0

and its associated long exact sequence, and then conclude that H%(X,.7%) — HY( X5, %5)
is injective for ¢ > 0.

Part V: ¢ = 1. We prove something stronger.

Theorem 18.8 Let S = Spec(R), where R is only assumed to be henselian (local), s € S
the closed point, f : X — S proper. Then pullback induces an equivalence FEt(X) —
FEt(X,), and this proves that m (X, *) = m(Xs, %) under the assumption that X, is
connected.

Proof. 3 main ingredients.

1. Let X,, = X xg Spec(ﬁg75/mg+1) (we will conflate Xy with X). Then for any
n =0, FEt(X,41) — FEt(X,,) is an equivalence. (We stated that for any nilpotent
thickening which is an universal homeomorphism Z — Z’, Et(Z') — Et(Z) is an
equivalence, and we proved the equivalence of sheaves. Then restricting to lcc sheaves
we get the equivalence FEt(Z') — FEt(Z).)
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2. First we reduce to the case where S = Spec(R) with R Noetherian and henselian(since
we can write R as a colimit of finite type Z-subalgebra of R, replace the R; by their
henselization at mpg,)

Then we can check that
FEt(X) — limFEt(Xg,)

is an equivalence (direct limit formalism).

Then given a finite étale X’ — X, we get a compactible collection of finite étale
X, — X, (Vn = 0).

Then we replace X — Spec(R) by X — Spec(R), assume R is complete. We'll
finish the proof of the theorem assuming R is complete. (Later on we prove that
this case in fact implies the general (henselian but not necessarily complete) case in
ingredient 3.) We then consider the formal scheme X := colim X,, which is a locally
ringed space with underlying space Xo = X and structure sheaf lim Oy, .

A

Use the Grothendieck existence theorem in formal geometry or formal GAGA.

Theorem 18.9 Let R be a Noetherian ring complete with respect to an ideal I. Let
X — Spec(R) be proper. The the functor between categories of coherent sheaves

Coh(X) — Coh(X)
F — F = limi’ (F)
is an equivalence.

We first prove the essential surjectiveness of the functor in the theorem.

For each X}, — Xy finite étale, we obtain X/, — X,, for all n because FEt(X,) ~
FEt(Xg). From each of these we have coherent @x, —algebra .%,. They form a
compatible system on X ,denoted by . By formal GAGA this corresponds to
a coherent Ox—module, denoted by o/ € coh(X). Each %, is an Ox, —algebra,
therefore we can make & an € ¢ algebra. The morphisms o Q@ — o and
Oy — o correspond to & ® &/ — & and Ox — &/, hence we upgrade </ to a
coherent 0y —algebra, which gives a finite morphism X’ — X. Clearly this morphism
base change to X, — Xy, so we are left to prove that it is étale. Since X' — S is
proper hence closed, any closed point has to be sent to the only closed point s € .5, so
every point in X’ specializes to some point in X, = X.. Moreover we know the étale
locus in X’ over X is open. If we can prove the étale locus contains all of points in
X{ (because X(, —> X is étale) then it has to be the entire X’. First it’s unramified
at every point in X{) because Qx//x vanishes at X;. To show it’s flat at X{, we use
the following

Lemma 18.10 Let A be a ring, B an A—algebra, a an ideal of A such that aB is
in the jacobson ideal of B, M a B—module. Then M is a flat A—module if and only
if M/a™ is a flat A/a"—module.

For a point p € X{) with image g € Xy, We take A to be Ox 4, B to be Ox/, and a

to be ms. Because X/ — X, is étale, B/a" is flat A/a™—module, and we apply the
lemma.
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18.3 Lecture 27: 11/30

Next step: for R complete, we show the full faithfulness. First we show faithfulness. Let
X" — X and X” — X be finite étale and

hl,hg : X/ - X”

such that the following diagram is commutative:

X —— X/

NS

We want to show that if hi|x: = ha|x: holds, then hy = hy. We consider the following
diagram
eq(hl,hg) e X/

e

X/ X/ % X/I
Ury X
We observe that eq(hy, hy) — X' is finite étale, so it is an open and closed immersion by
the properties of equalizers. Thus the locus where h; = ho is open. If the locus contains
X!, since X" — S is proper, the locus must be equal to X’ (the same argument as earlier).
Now we show the fullness. Let X’ — X and X” — X be given as before. Let h : X, — X”
be a given morphism such that the diagram

N /X”

is commutative. We view h as the embedding X/, 5, " X! x X!. Applying the essential
X
surjectiveness to the base X’ x X”, we deduce that there exists a finite étale morphism
X
W — X' x X", pulling back I';; to a special fiber. Since W — X’ x X” X' is finite
X

étale and pulls back to an isomorphism on the special fiber, W — X , denoted by ¢, is in
fact an isomorphism: the locus where a finite étale map is an isomorphism is open on the
base and contains the special fiber over s (see Stack Project 04DH), so it has to be the
entire X’. Then

-1

X L= w X

N

X

lifts h.

Step @ (the third ingredient mentioned in the last lecture): reduction from complete to
henselian case. Again we assume R is Noetherian and henselian. Let R be the completion
of R, then R is also Noetherian. Let F' : X — Spec(R) be a proper morphism. First,
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we use a limiting argument to reduce to a setting where Artin approximation applies.
Write R = CQliImRi, where R;’s are finite-type Z-algebras. Then R = CQliImR?(m,), where
1€ i€ ) T

m; = R nmp. In the following, we denote by R; the ring R?(mi). Since R is Noetherian,

X — Spec(R) is finitely presented, so a limiting argument shows that there exists i; € I
and a proper morphism X (i1) — Spec(R;,) such that for all the diagram

X(i1) — Spec(R;,)

I

X —— Spec(R)

is Cartesian.

Let X}, — Xo = lim;>;, X(i)p be a finite étale map where for every i > i; we write

X(1) = X(il)s ><R )Spec(Ri). Similarly, there exists io > i1 such that X, — X arises by
pec(R1,

base change from a finite étale map X'(i2)o — X (i2)o over Spec(R;,). Hence it suffices to

prove the essential surjectivity when R is the henselization at a prime ideal of a finite-type

Z-algebra. (We use the same argument used earlier for full-faithfulness.)

The core of the proof uses Artin aprroximation theorm.

Theorem 18.11 (Artin approximation) Let R = Rg’p, where Ry is finite type over Z
and p a prime ideal. Given a system {fi(Y1,Y2,...,Yy) = 0}, where f;’s are elements in the
polynomial ring R[Y1,Ys,...,Yy,], a solution (1,92, ...,Yn) € R, and ¢ = 1, there exists a
solution (y1,Y2,-..,Yn) € R such that for any i, y; = §; mod mpy.

Now, for a given finite étale cover X! — X, from 2) we know there exists a finite étale map
X — X, pulling back to X ! — X,. Write R as the colimit of finite-type R-subalgebras.

Another limiting argument shows that there exists a finite-type R-subalgebra A c Rand a
finite étale map X4 — X4 such that the diagram

X —— Xa

| |

~

Spec(R) —— Spec(A)

is Cartesian. Concretely, A = R[Y1,...,Y,]|/(f1,...,fy) and A C R corresponds to a
solution (y1,...,Yn) € R™ to f; = 0 for 1 < i < g. By Artin approximation theorem, there
exists an R-algebra homomorphism 1 : A — R such that the diagram

A—> R —— ﬁ/mé
b I
AV R R/mp
commutes. Now form X,  x Spec(R), which agrees on special fiber with X x
Spec(A),p Spec(A)

Spec(R/mpg) = X by transitivity of pullback and commutativity of the diagram. This
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establishes the essential surjecvitity of the map FET(X) — FET(X,), and the full faithful-
ness is as in step @). This completes the proof of m; theorem.

Part VI. End of the proof. By discussion last time, the proof of proper base change is
reduced to the following proposition.

Proposition 18.12 Let S be Noetherian and strictly henselian and s a closed point of
S. Let f : X — § be projective with all fibers of dimension no greater than 1. Then
Pic(X) — Pic(Xs) is surjective.

Proof. The proof is similar to degree 1 case. Let % € Pic(X5)

(a) Extend % to each X,, = X é Spec(ﬁg7s/mg+1), and we want to show for any n,

Pic(X,41) — Pic(X,,) is surjective. We identify this map with H*(Xj, 5
HY (X, 0 )X(n) Since X,,’s all have same underlying topologcial space, we can work on
Zariski site. We have a short exact sequence of sheaves:

0 —— S =ker(0x,,, > 0Ox,) — O, —— O ——0

o 1+«

Then .# is coherent, and this together with dim(Xy) < 1 implies that H?(X,.#) = 0.
The surjectivity then follows.

(b) Since £ extends to compatible collections (.4}, ),>0, where .Z,, € Pic(X,,) by Grothendieck’s

existence theorem, there exists a coherent sheaf £ on Xy, where R is the ring such
that S = Spec(R). We need to check that L € Pic(Xp).

(c) Another Artin approximation argument shows that there exists .Z € Pic(X) such that

ZLx, = 027| X, = Zp. It remains to check that . descends to X4 for some finite-type
R-subalgebra A ¢ R. The details are left as an exercise.

Now we are done with proper base change theorem. We've already discussed variants and
corollaries of proper base change theorem. In the following, we reemphasize a variant of
proper base change theorem.

Theorem 18.13 Let f; X — S be proper of finite presentation. Let F € Ab(Xe) be con-
structible (and for us S is Noetherian). Then for any q, R fy.# € Ab(Set) is constructible.

Example 18.14 Let X /k be proper, where k is separably closed. Then |HY(X,Z/n)| < o
for any n.

19 Statement and discussion of smooth base change theo-
rem

Motivation: recall Ehresmann’s theorem.
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Theorem 19.1 If f : X — S is a proper submersion of smooth manifolds, then locally
on S, f is trivial: for anyt € S, there exists a neighborhood N of t such that f~1(N) ~
N x X¢,and we have the following commutative diagram

i;w

Therefore, for any p € X and any constant sheaf A on X, RPf,A is the sheaf that is
associated to U — HP(f~1(U),A). For U small enough and contractible, HP(f~1(U), A) ~
HP(U x Xy, A) ~ HP(Xy, A), hence it’s locally constant. This induces an action of (S, )
on HP(X;, A).

Next we state an analogue of Ehresmann’s theorem in étale cohomology.

Theorem 19.2 (Smooth and proper base change) Let f : X — S be a smooth
proper morphism of schemes, and let F € Ab(Xg) such that

1. F s locally constant constructible;
2. all torsion in F is invertible on S.

Then for any p, RP f+.% is locally constant constructible on Sg.

Example 19.3 Let Xg — Spec(Q) be a smooth projective variety. For some N > 1, Xg
spreads out the following :

X —— Spec(Z[+])

| T

Xg — Spec(Q)

Fiz a prime {. For sheaves F := Z/{", we can apply the theorem to f : X [%] —
Z [ﬁ], so RPf..7 is locally constant constructible on Spec(Z [Nl]) Picking a geometric
point S : Spec(@) — Spec(Z [+;]), it corresponds to a 7$*(Spec(Z[+;]),3) action on
RP [ F5. wi(Spec(Z [ :]),3) ~ Goni and RP f Fs ~ Hp(X VL), give Go,ni action
on H?(Xg ,Z/E”). The lcc condition tells us that stalks at diﬁerent geometric points are
non—canom'cally isomorphic (more on this later). For p does not divide N1, condiering the
geometric point 8 : Spec(F,,) — Spec(Z [+;]) this gives

HP (X, /") = HP (X5, Z/I").

In fact, these two are isomorphic as Gg ni-module if we also identify

G = i (Spec(z | 3 )¥) = Spectz | 3 |19

Remark 19.4 For any finite type X /Q, it still holds that the action of Gg on H* (X VS
(each automorphism of Q gives an autormophism of X g giving action on Cohomology) is
almost everywhere unramified.
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The same holds for HP(Xg,Z¢) := UmHP(Xg,Z/"). The representations Go,ni on
n
Hp(X@, Zy) ® Qp, which are equal to Hp(X@, Qv), satisfy another deep general prop-
Ly

erty: the restriction to Gal(Q,/Qy) (via Q — Q) is de Rham (or potentially semistable)
in sense of Fontaine.

Conjecture 19.5 (Fontaine-Mazur) Let p : Gg — GL,(Q,) be a continuous map.
Assume the following conditions hold:

1. p is irreducible;
2. p is almost everywhere unramified;
3. plag, is de Rham.
Then there exists smooth projective X /Q and integers r and s such that p is isomorphic to

a subquotient of H"(Xg, Qy)(s).

19.1 Lecture 28: 12/5

Recall from lecture the theorem on smooth proper base change:

Theorem 19.6 Let f: X — S be a smooth and proper morphisms and % an l.c.c. sheaf
on X¢ with all torsion orders invertible on X (and hence S). Then RP f..7 remains l.c.c.

The l.c.c. condition implies that the stalks of RPf,.%# at different geometric points 5 € S
are isomorphic. More precisely, we may state the following;:

Definition 19.7 Let S be a scheme, s,n € X with s € {n}. Take 5 and 7} to be geometric
points over s and n respectively. We define a specialization of 17 to § to be a choice

t: Spec(k(n)) — Spec(ﬁfq{ls)

h t.
Spec(x (7)) —— Spec( ﬁ’ghs grint épec )(5)

making the diagram commute: \ J /

For F € Ab(S¢) we get a (co)specialization map

U an et. nbhd of s

via the composition
Spec(k(n)) — Spec(ﬁ%?s) — U.

Proposition 19.8 Let X be a Noetherian scheme, .# € Ab(X¢) constructible. Then F
is l.c.c. if and only if all specialization maps are isomorphisms.
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As a contrasting example, let £/Q), be an elliptic curve with multiplicative reduction.
There is a model & — Spec(Z,) such that &%, is a nodal curve. (Take for example E with
Weierstrass equation y? = 23 — 22 + p.) Then we have

@DZBY—»FP

and a (co)specialization map
1 T 1 T
H (gFP,Z/z ) S (éon,Z/ﬁ )

whenever £ # p. The above map is Gal(Q,/Qp)-equivarient, and in particular we have an
injective map to the intertia invariants

H (5@ Z/ﬂ) < H! (5@, Z/é’")IQp .

Note 19.1 This may not be a surjective map, but it will be upon taking inverse limits over
T.

One may think of this example by using Tate’s p-adic analytic parametrization of E.
The main technical ingredient in smooth and proper base change is the Smooth Base
Change Theorem:

Theorem 19.9 (Smooth Base Change) Let f: X — S be any scheme map. Consider
the cartestan diagram

XT4>X

|

T—258
Let g: T — S be smooth or T = LiLnSi where S; — S is smooth and (S;) form an inverse
system with affine transition maps. Then for F € Ab(Xe) with all torsion orders
invertible in S, the base change map

tors

9R T - RP [T
is an isomorphism.

Example 19.10 Let T = Spec(L) — S = Spec(K) where K < L is any extension of
separably closed fields (both L and K are separably closed) and (n,K) = 1. Then T' = lim S;
is mice in the sense of the theorem above. Therefore, for X /K,

H*(X,Z/n) — H* (X1,Z/n)

is an isomorphism. As we already know such an isomorphism exists under a purely
inseparable extension, we see such an isomorphism exists whenever K < L is an inclusion
of separably closed fields and n € K*.

An important use of this is the following: let X /Q be a variety. Then

H* (X, Z/n) = H* (Xc, Z/n) = iy (XE" Z/n)
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20 Statement of Cohomological Purity

Recall that for a scheme X and Z < X a closed subscheme and U = X\Z, we defined
I'z(X,%)=ker(#(X)— Z)).

Then taking derived functors, we get H}, (X,.#)—the cohomology supported on Z. This
lives in a long exact sequence

Cohomological Purity will (in certain cases) help us compute H.
Theorem 20.1 (Cohomological Purity) Let K be a field, X/K smooth, Z 4 X with
Z /K smooth. Take F € Ab(X¢) be an l.c.c. sheaf of Z/n-modules with n € K*. Then

there is a canonical isomorphism H"~%¢(Z, #(—c)) =~ HY(X, Z) where Z — X has pure
codimension c.

Here .7 (—c) is the Tate twist F Qg ;¢ where pi, = Hom(jun, Z/n).

If K = K%, then u®" =~ Z/n non-canonically (the isomorphism depends on a choice of
primitive generator). This twist is important because it may modify a Gal(K*?/K)-action
if Z is defined over K.

Example 20.2 1. If2¢>r+1, then H"(X,.%) ~ H" (U, ).

2. Take Z = Spec(k) — A} (with k algebraically closed and n invertible in k), then
c =1 and the theorem states

H"%(Spec(k), jin) = Hy (A, i)
and this is canonically isomorphic to Z/n for r = 2 and 0 otherwise.
On the otherhand

HE(A}C) — Hr(Allgnun) E— HT(Gm,kaun)

pn(k) r=0
n(k =0
palk) T Z/n r=1
0 else
0 else

This implies that
0 r # 2
HY(A}) =
28 {Z/n r=2.

Corollary 20.3 Let Z < X /k be as in the theorem, n € k*, and c¢ the pure codimension
of Z. Take F = Z/n(c), r = 2¢, then
H°(Z,Z/n) — HZ (X, Z/n(c)) — H*(X,Z/n(c))
In identifying H°(Z,Z/n) = Z/n, this map is given by 1 — clx(Z).
This coincides with the cycle class map for smooth subvarieties. We may also extend

this to the cycle class map
Z¢(X) — H**(X,Z/n(c)).
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Now fix (¢, char k) = 1 and tensoring with Q, (by taking an inverse limits over Z/¢")
we get
Z9(X) ® Qe = H**(X, Zy(c) ® Q-

In particular, if £°/k is a separable closure, we have
Z°(X) ®z Qp — H**(Xpe, Qq(c)) /), (5)

Conjecture 20.4 (Tate) If k is finitely generated over the prime field, then (5) is an
isomorphism.

Note 20.1 To prove the purity theorem, it is convenient to have a sheaf version: take
i1: Z—>X <—U:j,n, and c be as before. Then there is a functor

i =i* (ker(F — juj 'F)) € Ab(Zay).

This is a right adjoint to iy: Ab(Zg) — Ab(Xe). In particular it is left exact and preserves
injectives so we may take the derived functors Ri'.F .

Theorem 20.5
0 r # 2¢

R'i\F =
{(i_lf)(c) r = 2c.

This implies the previous theorem by the spectral sequence
Ey® = H'(Z,R%'F) = Hy (X, 7).
(Note T'(Z,i'.F) = Tz(X, .Z).)
Then one uses this sheafy version to affines inside of affines.

20.1 A Thought Experiment of Deligne

Suppose X is smooth projective over Fq and D = . ; D; a simple normal crossings divisor
on X. (So D; is smooth, irreducible and they have transverse smooth intersection.) For
J < I, we write Dj = (;c; D;. Let U = X\J D;.

By the Leray spectral sequence,

Ey® = HT(XE, R°5,Qy) = H”S(UE, Q).
(The f¢-adic sheaf Q; will be defined later.) As a consequence of purity, we may compute

Rj:Qr= @ Qu—s)p,

|J|=s

where Qy(s)p, = ixQe(s) for i : Dy < X. Then

Ep = @ H'(D, 5 Qu(~))
|J|=s

and the D JF, carry the action of Frobenius.
The Riemann Hypothesis implies the Eigenvalues of Frobenius on Ey® are algebraic
integers with complex absolute value q%%. We say that FEy° is pure of weight r + 2s.
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But
d2’ Er,s - Er+2,s—1
-2 2

has pure weight r + 2s and
d3 . BT 5+3,5s—1
. 3 3 .

But the source of ds is pure of weight r + 2s and the target is pure of weight r + 2s — 1. As
the d are equivarient under the Frobenius, d3 must be trivial and so the spectral sequence
degenerates at the F3-page.

Moreover, we may describe ds in terms of the purity theorem and the Gysin map

DJ — DJ\{’L}

At E4, we get an increasing filtration on H T(UE’ Qp) with graded pieces Grzv ~ Egnik’k
pure of weight k.

Deligne imported this heuristic over C and discovered mixed Hodge theory for smooth,
non-projective varieties.

20.2 Lecture 29: 12/7
21 /-adic Sheaves and Poincare Duality

Our principle motivation for defining étale cohomology was to prove the Weil conjectures.
We saw that to do this, we needed a cohomology theory with coefficients in characteristic
0. So far, all of our cohomology groups we have been able to prove good things about have
been finite, and thus not characteristic 0. We now see how to stitch these groups together
to give somethign of characteristic 0.

Definition 21.1 Let X be a Noetherian scheme. Am (-adic sheaf on X is an inverse
system

F = (g\mgn—&-l - gzn)rel

where F,, is a sheaf of Z/€"-modules, and Fpi1 Qg pn+r L™ — Fy are isomorphisms
of Z/€™ modules. Morphisms between (-adic sheaves are morphisms of inverse systems. We
say an f-adic sheaf is lisse if each F,, is locally constant constructible.

Example 21.2 Here are some examples of £-adic sheaves. In each instance, the morphisms
Fnr1 — Fn are obvious, so we omit them.

o F = (L/0")n=1 (We sometimes write this simply as Zy.)
[ ] 9 = (/,sz)n)l, Ee ﬁ;;

e For F a sheaf of Z/0" modules, we obtain an (-adic sheaf (F /") p>1.
We have the usual sheaf operations on /-adic sheaves, such as f~1, f., etc.
It is not actually true that for .# = (%,) is an f-adic sheaf on X and f: X — Y, we

get that RYfi(.%,) is an f-adic sheaf. This can be fixed, as it is isomorphic to an f-adic
sheaf in the following category:
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Definition 21.3 Let X be a Notherian scheme. The Artin-Rees category is the category
whose objects are projective systems of sheaves of abelian groups on X, and whose morphisms
are given by

Hom((Fy), (¥9n)) := lim Hom(Z[d], 9)

where d is the shift operator.

Definition 21.4 Given an ¢ adic sheaf %, the stalk at a geometric point T of X is defined
to be F3 = m(fn)j It is a Zy-module.

As a consequence of what we did on our connection between sheaves and 71 (X, z), we
have the following:

Corollary 21.5 Suppose X is a connected Noetherian scheme, and T is a geometric point

of X. Then

{lisse L-adic sheaves} — {continuous representations of m1(X,Z) on finitely generated Z¢-modules}
F — Tz

is an equivalence of categories.

Definition 21.6 The category of Qg-sheaves on a Notherian scheme X has objects £-adic
sheaves, with the hom sets being equal to the morphisms of £-adic sheaves, tensored over Zy
with Q.

When we view an {-adic sheaf, ., in this category, we write it as .# ®z, Qy, or just # ® Q.
We also write Qy for the Q; sheaf associated to the f-adic sheaf Z,. The stalk of an f-adic
sheaf .# ®z, Q¢ at a geometric point = is Fz ®z, Q. We can modify the above corollary
to work with Qy-sheaves and Qy-representations.

Definition 21.7 Let X be a Notherian scheme, F an £-adic sheaf on X. We define
H*(X,.7) :=lim H*(X, #,)

and
H*(X,g‘\@(@g) = H*(X, 9) Xz, Qy

By our previous work on cohomology of constructible sheaves, these are finitely generated
Zyp and Qp modules, respectively.

With these definitions in hand, we state a version of Poincare Duality (which can be
further generalized):

Theorem 21.8 Let k be a separably closed field, X /k a smooth, geometrically connected
variety of dimension d. Then

o There is a canonical isomorphism Tr : H24(X,Qu(d)) — Qy called the trace map.

e For any lisee Q; sheaf F on X, cup product and the trace map combine to give a
perfect pairing

H™(X,.7) x HX~" (X, 7" (d)) > H2(X,Q,(d)) 15 Q

(where FV := 7 om(F, Q) which is the sheaf associated to (U — Hom(F|v, Qelv))).
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This theory of X — H*(X,Qy) does give a Weil Cohomology Theory for any separably
closed field of characteristic not equal to ¢, though there are details we have not verified.
So, up to these details, we have proven the rationality of the Zeta function, the functional
equation, and the factorization into characteristic polynomials.

As mentioned earlier, the Riemann Hypothesis part of the Weil Conjectures does not
follow just from the existence of a Weil Cohomology Theory. We turn our attention now
to how Deligne proved this.

22 Generalization of Lefschetz Fixed Point Formula

For this section, let k£ be a finite field, X /k separated and of finite type, .# a Qg-sheaf on
X, ¢ a prime not equal to the characteristic of k.

Recall the zeta function Z(X /k,t) := [ [ex (1 — tdeg@) =1 where deg(z) := [k(z) : k].
A priori, this lives in Z[[t]. We now generalize this to any ¢-adic sheaf:

Definition 22.1 Let .% be an £-adic sheaf on X. Set

L(X/k, F,t) = ] det(1 -4 F, )] )7"!

IEXCZ
where Fyy € Gal(k/k') is defined for finite extensions k' /k to be the inverse of a — alF'l.

The above Fj is called the geometric Frobenius. It must act on cohomology for the above
definition to make sense. We explain how this works now. For x € X a closed point, we
pick geometric point Z : Spec(k) — X over x. Each element in %,z is represented by
(U,u,t e %,(U)) where U is étale over X and @ is a geometric point lying over T. Now we
send this to (U, u o Spec(Fy(,)),t € #,(U)), so we get an F,(,y action on F,z. Taking the
limit we get Fy(,) action on .

Theorem 22.2 Let .% be an L-adic sheaf on X. We have that
L(X /k, Z,t) Hdet 1~ tF |ty (. 7 )T
We now explain the action I on Hy (X, #|x.). We define Fx := idx Xgpec(r) Spec(Fi)

called Frobenius automorphism, and there is a canonical identification from functoriality
of inverse image Fi'(Z| xz) = ZF|x;. Therefore we have the map we call F

F: H(Xp, Fxp) — Hi (X Fx'(F|xg) = HU(XE, Zxg).

This looks a lot like our result for the Zeta function, but before we had the Frobenius
map ©x; k (defined by a — al*! on affine open of X and product with idspec(E)) instead of
our new Fx. It turns out that they have the same action on cohomology. (The action of

¢ Xk comes from a canonical isomorphism ot (F] x;) = Z|x..) Note that
. =

—1
SOXI’C,]C O FX

is the absolute Frobenius morphism (the morphism that is set theoretically the identity on
X7, and on open affines sends a to a|k|). Denote this by Fx .
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The surprising fact is that Fx ; acts trivially on cohomology. Note that this then gives
that px, , and Fx act the same on cohomology, as stated above. To get an action on
cohomology from the absolute Frobenius, note that by pull back, we have a morphism
H{(X,Z)—> H(X, ng?), and so all we need is a morphism back the other way.

Lemma 22.3 e There are canonical isomorphisms F)ﬁcﬁ’ — F,and F — (Fx )7 .

o Composing the induced map from the first iso with the map described above yields the
identity on HY(X, ).

For a proof, see SGA 5, around page 456.

23 Some ideas in the proof of the Riemann Hypothesis

[Note: we ran out of time and did not complete this discussion. More may be added later.]
For this section, let k be a finite field of size ¢, and let X /k be smooth projective,
geometrically connected. The Riemann Hypothesis says that

is in Z[t], independent of ¢, and its roots have complex absolute value q'/? for any embedding
into the complex numbers. We say that Hi(X,;, Qp) is pure of weight i.

Lemma 23.1 To prove the Riemann Hypothesis, it suffices to show that for all even
dimensional varieties Y of dimension d, the eigenvalues of Fy, on H¢(Y,Qy) are algebraic,

and all complexr embeddings have absolute value < q%Jr%.

Proof. Suppose we have proven this statement. Poinacre duality gives that we also have a
da_1

lower bound on the absolute values by g2~ 2. For an arbitrary variety X of dimension d,

and any even number r, we have

HY(X,Q)®" < H"(X*,Qy)

via Kunneth, and so if « is an eigenvalue of H%(X,Q"), we have that

rd_ 1
g2 2 <[a|" <¢q

CRt

Taking r-th roots and letting r go to infinity gives |ta| = q%. Thus, for any variety of
dimension d, we have that the eigenvalues are algebraic with the correct absolute values in
middle degree.

To prove this for H*(X,Qy) for i < d, we induct on dimension and use a weak Lefschetz
Theorem, which says that for a smooth projective variety X, there is a smooth hyperplane
section Y € X with HY(X,Q;) — HY(Y,Qy) injective for i < dim(X). We can find a
smooth hyperplane section by Bertini’s Theorem. The statement on cohomology follows
from our long exact sequence on cohomology with support in Y, using that the complement
is affine. As dim(Y) < dim(X) by induction its eigenvalues satisfy the correct condition,
then so do the eigenvalues on H'(X, Qy).

To get the eigenvalues to have the correct absolute value for i > dim(X), we can use
Poincare Duality, and the fact that it is true for i < dim(X).
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So now we have that all eigenvalues are algebraic, and of the correct absolute values.
This then implies that all of these characteristic polynomials are in Z[t] and independent
of ¢, as their alternating product is a rational function in Q(¢), and there can be no
cancellation due to the distinct eigenvalue absolute values.

The hard part of the Riemann Hypothesis is to show what we assumed in the last
lemma. We briefly discuss ideas involved here:

Definition 23.2 Let Z be a variety over a field k. A Lefschetz pencil over X is a diagram

ls

Pll

where g is birational, [ is flat, projective, smooth away from a finite set, and the fibers
over that finite set have ordinary double points as singularities.

From the definition, we have that the fibers of f give hyperplane sections of X. It is a fact
that the induced map H¢(X, Q) — H(X,Qy) is injective, so it is enough to prove the

statement on eigenvalues in middle degree for X.
We can use the Grothendieck-Leray spectral sequence to get that H 7”(IED}C, R £, Qp) =
H"™#%(X;,Q). We only need to check the eigenvalues on Eg’d, E%’d_l, Eg’d_g. Standard

theory of Lefshetz pencils covers E22 ’d_2, Eg’d. But ,E%’d_l is hard. The following theorem

proves a large piece of what we want:

Theorem 23.3 Let U/k be a smooth affine gemetrically connected curve, 4 a lisee Qy
sheaf on U. For any geometric point  of U, we get a representation w1 (U, ) — Y.
Suppose

1. det(t — Fylg,) € Q[t] for all x € Uy

2. there is a nondegenerate alternating form v : 4 x 4 — Qu(—a), for some a € Z that
18 T equivariant

3. The image of the image of w1 (U) in Sp(4,) is Zariski dense.
Then we have

e For all closed points x € Uq, the eigenvalues of Fy ;) acting on 9z are algebraic
numbers with absolute value ¢ @) qnd

e the eigenvalues of Fy, acting on H'(U,¥4) have absolute value < gzt

Here, to show that the first conclusion implies the second, you use the Grothendieck
trace formula for L(U,%¥,t). The proof of the first conclusion is the master-stroke involving
“Rankin’s trick" that rests on the positivity of the coefficients of L(U, 4% t) for all k € Z~.

117



References

[Lor21]

[Mar77]

[Mi180]

[Ser73]

[Si109]

[Vis05]

Dino Lorenzini, An invitation to arithmetic geometry, vol. 9, American Mathe-
matical Society, 2021.

Daniel A. Marcus, Number fields, Universitext, Springer-Verlag, New York-
Heidelberg, 1977. MR 0457396

James S. Milne, Etale cohomology, Princeton Mathematical Series, No. 33, Prince-
ton University Press, Princeton, N.J., 1980. MR 559531

J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7,
Springer-Verlag, New York-Heidelberg, 1973, Translated from the French. MR
0344216

Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts
in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094

Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory,
Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math.
Soc., Providence, RI, 2005, pp. 1-104. MR 2223406

118



	Motivation on zeta functions and the Weil conjectures
	Lecture 1, 8/24
	Lecture 2, 8/29

	Motivation on Cohomological Formalism
	Lecture 2, 8/29 (cont)
	Lecture 3 8/31
	Lecture 4, 9/7

	Zeta function of a curve
	Lecture 5, 9/12

	Review of smooth and étale morphisms
	Lecture 6, 9/14

	Sites and sheaves
	Lecture 7, 9/19

	Descent
	Lecture 8: 9/21
	Lecture 9: 9/26

	n'existe pas
	Categories of (abelian) sheaves on a site
	Lecture 10: 9/28

	Basic functorialities of the étale site
	Lecture 11: 10/3
	Lecture 12: 10/5

	Can we (ever) compute cohomology on the étale site?
	Lecture 13: 10/10

	Cech cohomology and first calculations of étale cohomology
	Lecture 14: 10/12

	More on Rqf* and Stalks
	Cohomology of curves and constructible sheaves, part 1
	Lecture 17: 10/24
	Lecture 18: 10/26

	Statement of the proper base change theorem and some applications
	Lecture 19 (cont)

	 Statement of the proper base change theorem and some applications.
	Lecture 20: 11/2
	Lecture 21: 11/7

	Proof of the theorem on the cohomology of curves
	Lecture 22 11/9

	1ét
	Lecture 23: 11/14
	Lecture 24: 11/16

	Proof of proper BC
	Lecture 25: 11/21
	Lecture 26: 11/28
	Lecture 27: 11/30

	Statement and discussion of smooth base change theorem
	Lecture 28: 12/5

	Statement of Cohomological Purity
	A Thought Experiment of Deligne
	Lecture 29: 12/7

	-adic Sheaves and Poincare Duality
	Generalization of Lefschetz Fixed Point Formula
	Some ideas in the proof of the Riemann Hypothesis
	References

