# Lines in the tropics

### Maria Angelica Cueto

Department of Mathematics The Ohio State University

Blackwell-Tapia Conference 2018 - ICERM

Based on joint works in preparation with Anand Deopurkar (Australia) and Hannah Markwig (Germany)

#### **Tropical Mathematics**



SLOGAN 1: Tropical Geometry is **Algebraic Geometry over the tropical** semifield  $(\overline{\mathbb{R}}, \oplus, \odot)$ .

SLOGAN 2: Tropical varieties are **combinatorial shadows** of algebraic varieties (over valued fields.)

SLOGAN 1: Trop. Geometry is Alg. Geometry over  $\overline{\mathbb{R}_{tr}} := (\overline{\mathbb{R}}, \oplus, \odot)$ .

 $\bullet \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}, \ a \oplus b = \max\{a, b\}, \ a \odot b = a + b$ (E.g.:  $3 \oplus 5 = 5$ ,  $3 \odot 5 = 8$ ,  $-\infty \oplus 3 = 3$ ,  $0 \odot 3 = 3$ .)

Polys in  $\overline{\mathbb{R}_{tr}}[X_1,\ldots,X_n] \equiv \overline{\mathbb{R}}^n \to \mathbb{R}$  cont., convex, affine PL with  $\mathbb{Z}$ -slopes

$$F(\underline{X}) = \bigoplus_{\substack{\alpha \in \mathbb{N}_0^n \\ (\text{finite})}} a_\alpha \odot X_1^{\odot \alpha_1} \odot \cdots \odot X_n^{\odot \alpha_n}$$
$$= \max_{\alpha} \{ a_\alpha + \alpha_1 X_1 + \ldots + \alpha_n X_n \}$$

• Tropical hypersurface:  $V_{tr}(F) = \text{corner locus of } F$ .

• Examples:



$$F(X,Y) = \max\{0, X, Y\}$$



$$F(X,Y) := \max\{-1, X, Y, X+Y, -1+2X, -1+2Y\}$$

### SLOGAN 2: Trop. vars are comb. shadows of alg. vars via valuations.

- **Def.:** A valuation on a field K is a map val:  $K \setminus \{0\} \to \mathbb{R}$  satisfying:
  - (1)  $\operatorname{val}(xy) = \operatorname{val}(x) + \operatorname{val}(y)$ ,
  - (2)  $\operatorname{val}(x+y) \geqslant \min{\{\operatorname{val}(x), \operatorname{val}(y)\}} \text{ (and } = \operatorname{if } \operatorname{val}(x) \neq \operatorname{val}(y))$

Extend val to K via val $(0) = +\infty$ .

- **Examples:** Trivial valuations val(x) = 0 for all  $x \neq 0$ .
  - $K = \overline{\mathbb{C}((t))}$  with *t*-valuation (val $(2t^{-5}+3t^{-1/2}+...)=-5$ ).
  - $K = \overline{\mathbb{Q}_p}$  with *p*-adic valuation.
- We tropicalize polynomials in  $K[x_1, ..., x_n]$  using  $(-val \text{ on } K, \oplus \text{ and } \odot)$ :

$$f(\underline{x}) = \sum_{\alpha} a_{\alpha} \underline{x}^{\alpha} \rightsquigarrow trop(f)(\underline{X}) = \max_{\alpha \in Supp(f)} \{-val(a_{\alpha}) + \alpha_{1}X_{1} + \ldots + \alpha_{n}X_{n}\}$$

• **Def. 1:** Trop(V(f)) = Corner locus of trop(f) in  $\overline{\mathbb{R}}^n$  (max is at two  $\alpha$ 's)

In general: 
$$I$$
 defining ideal  $\rightsquigarrow$   $Trop(I) = \bigcap_{f \in I} Trop(V(f))$ .

SLOGAN 2(cont.): Trop. vars are *comb. shadows* of alg. vars via *valns*.

Fix 
$$K = \overline{K}$$
 with **non-trivial valn.** (e.g.  $K = \overline{\mathbb{C}((t))}$ ).

Fix a closed embedding  $\iota \colon X \hookrightarrow Y_{\Sigma} =$  toric variety with dense torus  $(K^*)^n$ .

$$\begin{array}{lll} \textbf{Examples:} & Y_{\Sigma} &= (K^*)^n, \ K^n \ \ \text{or} \ \ \mathbb{P}^n. \\ & \text{Trop } Y_{\Sigma} = \ \mathbb{R}^n \ \ , \ \ \overline{\mathbb{R}}^n \ \ \text{or} \ \mathbb{TP}^n := \frac{\overline{\mathbb{R}}^{n+1} \smallsetminus \{(-\infty, \ldots, \infty)\}}{\mathbb{R} \cdot \mathbf{1}} \simeq \Delta_n \ \ {}_{(n\text{-simplex})}. \end{array}$$

**Def. 2:** Trop 
$$X = \text{cl.}\{(-\text{val}(p_1), \ldots, -\text{val}(p_n)): (p_1, \ldots, p_n) \in X\} \subset \text{Trop } Y_{\Sigma}$$

Fundamental Thm. of Trop. Geom.: Both definitions agree.

Structure Thm.: Trop(X) is a polyhedral complex of dimension dim(X) (pure if X is irreducible, balanced if multiplicities on top-dim. cells.)

**ISSUE**: Definition of Trop(X) is coordinate dependent! (Q: Best choices?)

## Examples: Lines in the tropics over $K = \mathbb{C}((t))$

- **Example 0:** The line  $K \rightsquigarrow \mathsf{Trop}(K) = \mathbb{R}$
- Example 1: The line 1 + x + y = 0 in the plane  $K^2$ .

Def. 1:  $f = 1 + x + y \leadsto \text{trop}(f)(X, Y) = \max\{0, X, Y\}$ 

ane 
$$K^2$$
.
$$\{0, X, Y\}$$

Def. 2: 
$$\iota : K \hookrightarrow K^2$$
  $\iota(x) = (x, -1 - x) \leadsto (-\operatorname{val}(x), -\operatorname{val}(1 + x))$  in  $\mathbb{R}^2$ 

• Example 2: Trop. Lines in  $\mathbb{TP}^2$ 



• Example 3: Trop. Lines in  $\mathbb{TP}^3$ 



 $A = (0, -1, -\infty, 0)$  $B = (0, -\infty, -2, 0)$ C = (0, -1, -2, 0) $E = (0, 0, -1, -\infty)$  $F = (-\infty, 0, -1, 0)$ 



 $-e_2 = (e_0 + e_1)$ 

Non-generic November 10th 2018

Tropical plane curves = metric graphs in  $\mathbb{R}^2$  = dual to Newton subdivisions

**Example:** 
$$f(x,y) = t + x + y + xy + 2tx^2 + (3t + t^2)y^2$$
 in  $\overline{\mathbb{C}((t))}[x,y]$   $trop(f)(X,Y) = max\{-1, X, Y, X + Y, -1 + 2X, -1 + 2Y\}$ 



- 0. Take a polynomial f in K[x, y] with K non-trivially valued field.
- 1. Build the **Newton Polytope** of f: NP(f) := conv((i, j) in supp(f)).
- 2. Place each point (i,j) from NP(f) at height  $-\operatorname{val}(\operatorname{coeff}(x^iy^j))$  in  $\mathbb{R}^3$ .

#### Tropical plane curves = metric graphs in $\mathbb{R}^2$ = dual to Newton subdivisions

**Example:** 
$$f(x, y) = t + x + y + xy + 2tx^2 + (3t + t^2)y^2$$
 in  $\overline{\mathbb{C}((t))}[x, y]$   $trop(f)(X, Y) = max\{-1, X, Y, X + Y, -1 + 2X, -1 + 2Y\}$ 



- 0. Take a polynomial f in K[x, y] with K non-trivially valued field.
- 1. Build the **Newton Polytope** of f: NP(f) := conv((i,j) in supp(f)).
- 2. Place each point (i,j) from NP(f) at height  $-\operatorname{val}(\operatorname{coeff}(x^iy^j))$  in  $\mathbb{R}^3$ .
- 3. Take upper hull and project to  $\mathbb{R}^2$ . We get a **subdivision** of NP(f).

### Tropical plane curves = metric graphs in $\mathbb{R}^2$ = dual to Newton subdivisions

**Example:** 
$$f(x, y) = t + x + y + xy + 2tx^2 + (3t + t^2)y^2$$
 in  $\overline{\mathbb{C}((t))}[x, y]$   $trop(f)(X, Y) = max\{-1, X, Y, X + Y, -1 + 2X, -1 + 2Y\}$ 



- 0. Take a polynomial f in K[x, y] with K non-trivially valued field.
- 1. Build the **Newton Polytope** of f: NP(f) := conv((i, j) in supp(f)).
- 2. Place each point (i,j) from NP(f) at height  $-\operatorname{val}(\operatorname{coeff}(x^iy^j))$  in  $\mathbb{R}^3$ .
- 3. Take upper hull and project to  $\mathbb{R}^2$ . We get a **subdivision** of NP(f).
- 4. Trop(V(f)) = dual graph to this subdivision. Comes with a metric.

### Basic Facts about general tropical plane curves:

- (1) Interpolation for *general* pts in  $\mathbb{R}^2$  holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
- (2) General trop. curves intersect properly and as expected (Trop. Bézout.)



### Basic Facts about general tropical plane curves:

- (1) Interpolation for *general* pts in  $\mathbb{R}^2$  holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
- (2) General trop. curves intersect properly and as expected (Trop. Bézout.)



Non-general case: Replace usual intersection with stable intersection.

$$C_1 \cap_{st} C_2 := \lim_{\varepsilon \to (0,0)} C_1 \cap (C_2 + \underline{\varepsilon}).$$

### Today's focus: 2 classical results in Algebraic Geometry

Plücker (1834): A sm. quartic curve in  $\mathbb{P}^2_{\mathbb{C}}$  has exactly 28 bitangent lines. (0,4,8,16 or 28 real bitangents, depending on topology of the real curve.)







Salmon: 28 real, 24 totally real.

Cayley-Salmon (1849): Any smooth algebraic cubic surface in  $\mathbb{P}^3_{\mathbb{C}}$  contains exactly 27 distinct lines.

Figure: Clebsch cubic surface

ISSUE: Both results fail tropically! But we can fix it.



## 28 bitangent lines to sm. plane quartics over $K = \overline{\mathbb{C}((t))}$ .

Plücker (1834): A sm. quartic curve in  $\mathbb{P}^2_K$  has exactly 28 bitangent lines. (0,4,8,16 or 28 real bitangents, depending on topology of the real curve.)

Question: What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2015): Every tropical smooth quartic in  $\mathbb{R}^2$  has 7 bitangent classes.

Len-Markwig (2017): Generically, each class lifts to 4 classical bitangents.

Len-Jensen (2017): Each class *always* lifts to 4 classical bitangents.

Question: What is a tropical bitangent line? Need tangencies at 2 points.

Len-Markwig: 5 local tangencies (up to  $S_3$ -symmetry.)



## 28 bitangent lines to sm. plane quartics over $K = \overline{\mathbb{C}((t))}$ .

Theorem: There are 28 classical bitangents to sm. plane quartics over *K* but 7 tropical bitangent classes to their tropicalizations.

Question: Combinatorial proof?

Trop. sm. quartic = dual to unimodular triangulation of  $\Delta_2$  of side length 4.



→ duality gives a genus 3 planar metric graph.

Possible cases:





## 28 bitangent lines to sm. plane quartics over $K = \overline{\mathbb{C}((t))}$ .

Theorem: There are 28 classical bitangents to sm. plane quartics over *K* **but** 7 tropical bitangent classes to their tropicalizations.

Question: Combinatorial proof?

Trop. sm. quartic = dual to unimodular triangulation of  $\Delta_2$  of side length 4.



→ duality gives a genus 3 planar metric graph.

Possible cases: [BLMPR '15]





Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges.















C.-Markwig (2018): There are **36 shapes** of bitangent classes (up to symm.) They are **min-tropical** convex sets. Liftings come from vertices. **Over**  $\mathbb{R}$ : liftings on each shape are either all (totally) real or none is real.

## The 27 lines on a sm. cubic surface in $\mathbb{P}^3_K$ for $K = \mathbb{C}((t))$

Cayley-Salmon (1849): Any smooth algebraic cubic surface X in  $\mathbb{P}^3_{\kappa}$  contains exactly 27 distinct lines.

Figure: Clebsch cubic surface



• Say L, L' lines of X intersect and let  $\pi$  be the plane in  $\mathbb{P}^3_{\kappa}$  they span.

Then:

$$X \cap \pi = L \cup L' \cup L''$$

and L'' is also a line.



(not concurrent)

• Generically: Every line meets 10 others (which come in 5 pairs).

**Gen. dual int. complex:** 27 V, 135 E and 45 T = 10-reg. Schläfli graph.

## The 27 lines on a sm. cubic surface in $\mathbb{P}^3_K$ for $K = \overline{\mathbb{C}(\!(t)\!)}$

Vigeland (2007): The result fails tropically! He gives examples of Trop X in  $\mathbb{TP}^3$  with 1-parameter families of tropical lines (infinitely many lines!)



trop. line = balanced metric trees with (r) rays in direction  $e_{B_1}, \ldots, e_{B_r}$  in  $(\mathbb{TP}^n)^{\circ}$  with  $B_1 \sqcup \ldots \sqcup B_r = \{0, \ldots, n\}$ ,  $e_B := -\sum_i e_i$ .

## The 27 lines on a sm. cubic surface in $\mathbb{P}^3_K$ for $K = \overline{\mathbb{C}(\!(t)\!)}$

Vigeland (2007): The result fails tropically! He gives examples of Trop X in  $\mathbb{TP}^3$  with 1-parameter families of tropical lines (infinitely many lines!)



Vigeland (2007), Hampe-Joswig (2016): Combinatorial classification of all tropical

cubic surfaces in  $\mathbb{TP}^3$  and their lines.

#### Algebraic approach:

- Cubic surface in  $\mathbb{P}^3_K \equiv$  homogeneous degree 3 polynomial in 4 variables.
- ullet 20 coefficients up to global constant, so we get a  $\mathbb{P}^{19}_K$  worth of surfaces.
- Smoothness: *open condition* in  $\mathbb{P}^{19}_K$ .
- Coord. changes give the *same surface*, so we identify points via PGL(4).

Our moduli space of smooth cubic surfaces has dimension  $= 20 - 4^2 = 4$ .

## The 27 lines on a sm. cubic surface in $\mathbb{P}^3_K$ for $K = \overline{\mathbb{C}((t))}$

Running assumption: Our smooth cubics contain no concurrent lines.

New approach: Fix the problem by a new embedding (compatible with families), when all the lines are at infinity.



C-Deopurkar (2018): The antican. embedding  $X \hookrightarrow \mathbb{P}^{44}_K$  satisfies:

- 1. Linear span of X in  $\mathbb{P}^{44}$  is a  $\mathbb{P}^3$  (the original one).
- 2. All 27 lines of X lie at infinity (on 5 hyperplanes each).
- 3. Intersections of lines lie in exactly 9 hyperplanes at infinity.
- 4. Generically, Trop X in  $\mathbb{TP}^{44}$  has exactly 27 lines, all at infinity. Each line is a metric tree with 10 leaves. This arrangement determines Trop X.
- 5. Otherwise, we have 27 extra lines inside (5 rays each) and Trop X is a fan. The arrangement at infinity is the 10-reg Schläfli graph (27 V, 135 E.)

## The 27 tropical lines on a gen. trop. cubic surface in $\mathbb{TP}^{44}$







| Туре                                             | #cones | Vert. | Edges | Rays | Triangles | Squares | Flaps | Cones |
|--------------------------------------------------|--------|-------|-------|------|-----------|---------|-------|-------|
| 0                                                | 1      | 1     | 0     | 27   | 0         | 0       | 0     | 135   |
| (a)                                              | 36     | 8     | 13    | 69   | 6         | 0       | 42    | 135   |
| $(a_2)$                                          | 270    | 20    | 37    | 108  | 14        | 4       | 81    | 135   |
| $(a_3)$                                          | 540    | 37    | 72    | 144  | 24        | 12      | 117   | 135   |
| $(a_4)$                                          | 1620   | 59    | 118   | 177  | 36        | 24      | 150   | 135   |
| (b)                                              | 40     | 12    | 21    | 81   | 10        | 0       | 54    | 135   |
| (aa <sub>2</sub> )                               | 540    | 23    | 42    | 114  | 13        | 7       | 87    | 135   |
| $(aa_3)$                                         | 1620   | 43    | 82    | 156  | 22        | 18      | 129   | 135   |
| $(aa_4)$                                         | 540    | 68    | 133   | 195  | 33        | 33      | 168   | 135   |
| $(a_2a_3)$                                       | 1620   | 43    | 82    | 156  | 22        | 18      | 129   | 135   |
| $(a_2a_4)$                                       | 810    | 71    | 138   | 201  | 32        | 36      | 174   | 135   |
| $(a_3 a_4)$                                      | 540    | 68    | 133   | 195  | 33        | 33      | 168   | 135   |
| (ab)                                             | 360    | 26    | 48    | 123  | 16        | 7       | 96    | 135   |
| $(a_2b)$                                         | 1080   | 45    | 86    | 162  | 24        | 18      | 135   | 135   |
| $(a_3b)$                                         | 1080   | 69    | 135   | 198  | 34        | 33      | 171   | 135   |
| (aa <sub>2</sub> a <sub>3</sub> )                | 3240   | 46    | 87    | 162  | 21        | 21      | 135   | 135   |
| $(aa_2a_4)$                                      | 1620   | 74    | 143   | 207  | 31        | 39      | 180   | 135   |
| $(aa_3a_4)$                                      | 1620   | 74    | 143   | 207  | 31        | 39      | 180   | 135   |
| $(a_2a_3a_4)$                                    | 1620   | 74    | 143   | 207  | 31        | 39      | 180   | 135   |
| $(aa_2b)$                                        | 2160   | 48    | 91    | 168  | 23        | 21      | 141   | 135   |
| (aa <sub>3</sub> b)                              | 3240   | 75    | 145   | 210  | 32        | 39      | 183   | 135   |
| $(a_2a_3b)$                                      | 3240   | 75    | 145   | 210  | 32        | 39      | 183   | 135   |
| (aa <sub>2</sub> a <sub>3</sub> a <sub>4</sub> ) | 3240   | 77    | 148   | 213  | 30        | 42      | 186   | 135   |
| $(aa_2a_3b)$                                     | 6480   | 78    | 150   | 216  | 31        | 42      | 189   | 135   |
|                                                  |        | •     |       |      |           |         |       |       |

Table: recovers Table 1 from [Ren-Shaw-Sturmfels (2016)] for Cox embedding.