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Tropical Mathematics

SLOGAN 1: Tropical Geometry is Algebraic Geometry over the tropical
semifield (R,⊕,�).

SLOGAN 2: Tropical varieties are combinatorial shadows of algebraic
varieties (over valued fields.)
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SLOGAN 1: Trop. Geometry is Alg. Geometry over Rtr:=(R,⊕,�).
• R = R ∪ {−∞}, a⊕ b = max{a, b}, a� b = a + b
(E.g.: 3⊕ 5 = 5, 3� 5 = 8, −∞⊕ 3 = 3, 0� 3 = 3.)

Polys in Rtr [X1, . . . ,Xn] ≡ Rn → R cont., convex, affine PL with Z-slopes

F (X ) =
⊕
α∈Nn

0
(finite)

aα � X�α1
1 � · · · � X�αn

n

= max
α
{aα + α1X1 + . . .+ αnXn}

• Tropical hypersurface: Vtr(F ) = corner locus of F .

• Examples:
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SLOGAN 2: Trop. vars are comb. shadows of alg. vars via valuations.

• Def.: A valuation on a field K is a map val : K r {0} → R satisfying:
(1) val(xy) = val(x) + val(y),
(2) val(x+y) > min{val(x), val(y)} (and = if val(x) 6= val(y))

Extend val to K via val(0) = +∞.

Examples: • Trivial valuations val(x) = 0 for all x 6= 0.
• K = C((t)) with t-valuation (val(2t−5 +3t−1/2 + . . .)=−5).
• K = Qp with p-adic valuation.

• We tropicalize polynomials in K [x1, . . . , xn] using (−val on K , ⊕ and �):

f (x)=
∑
α

aα x
α  trop(f )(X )= max

α∈Supp(f )
{− val(aα)+α1X1+. . .+αnXn}

• Def. 1: Trop(V (f )) = Corner locus of trop(f ) in Rn
(max is at two α’s)

In general: I defining ideal  Trop(I ) =
⋂
f ∈I

Trop(V (f )).
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SLOGAN 2(cont.): Trop. vars are comb. shadows of alg. vars via valns.

Fix K =K with non-trivial valn. (e.g. K =C((t))).

Fix a closed embedding ι : X ↪→ YΣ = toric variety with dense torus (K ∗)n.

Examples: YΣ = (K ∗)n, Kn or Pn.

TropYΣ = Rn , Rn
or TPn := Rn+1r{(−∞,...,∞)}

R·1 '∆n (n-simplex).

Def. 2: TropX =cl.{(−val(p1), . . . ,−val(pn)) : (p1, . . . , pn)∈X}⊂TropYΣ

Fundamental Thm. of Trop. Geom.: Both definitions agree.

Structure Thm.: Trop(X ) is a polyhedral complex of dimension dim(X )
(pure if X is irreducible, balanced if multiplicities on top-dim. cells.)

ISSUE: Definition of Trop(X ) is coordinate dependent! (Q: Best choices?)
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Examples: Lines in the tropics over K = C((t))

• Example 0: The line K  Trop(K ) = R

• Example 1: The line 1 + x + y = 0 in the plane K 2.

Def. 1: f = 1 + x + y  trop(f )(X ,Y ) = max{0,X ,Y }

Def. 2: ι : K ↪→ K 2 ι(x) = (x ,−1− x)  (− val(x),− val(1 + x)) in R2

• Example 2: Trop. Lines in TP2

• Example 3: Trop. Lines in TP3
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Tropical plane curves = metric graphs in R2 = dual to Newton subdivisions

Example: f (x , y) = t + x + y + x y + 2t x2 + (3t + t2) y2 in C((t))[x , y ]

trop(f )(X ,Y )= max{−1,X ,Y ,X + Y ,−1 + 2X ,−1 + 2Y }

0. Take a polynomial f in K [x , y ] with K non-trivially valued field.

1. Build the Newton Polytope of f : NP(f ) :=conv((i , j) in supp(f )).

2. Place each point (i , j) from NP(f ) at height − val(coeff(x iy j)) in R3.
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Tropical plane curves = metric graphs in R2 = dual to Newton subdivisions

Example: f (x , y) = t + x + y + x y + 2t x2 + (3t + t2) y2 in C((t))[x , y ]

trop(f )(X ,Y )= max{−1,X ,Y ,X + Y ,−1 + 2X ,−1 + 2Y }

0. Take a polynomial f in K [x , y ] with K non-trivially valued field.

1. Build the Newton Polytope of f : NP(f ) :=conv((i , j) in supp(f )).

2. Place each point (i , j) from NP(f ) at height − val(coeff(x iy j)) in R3.

3. Take upper hull and project to R2. We get a subdivision of NP(f ).
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Tropical plane curves = metric graphs in R2 = dual to Newton subdivisions

Example: f (x , y) = t + x + y + x y + 2t x2 + (3t + t2) y2 in C((t))[x , y ]

trop(f )(X ,Y )= max{−1,X ,Y ,X + Y ,−1 + 2X ,−1 + 2Y }

0. Take a polynomial f in K [x , y ] with K non-trivially valued field.

1. Build the Newton Polytope of f : NP(f ) :=conv((i , j) in supp(f )).

2. Place each point (i , j) from NP(f ) at height − val(coeff(x iy j)) in R3.

3. Take upper hull and project to R2. We get a subdivision of NP(f ).

4. Trop(V (f )) = dual graph to this subdivision. Comes with a metric.
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Basic Facts about general tropical plane curves:

(1) Interpolation for general pts in R2 holds tropically (Mikhalkin’s Corresp.)

(unique line through 2 gen. points, unique conic through 5 gen. points,. . . )

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)
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Basic Facts about general tropical plane curves:

(1) Interpolation for general pts in R2 holds tropically (Mikhalkin’s Corresp.)

(unique line through 2 gen. points, unique conic through 5 gen. points,. . . )

(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

Non-general case: Replace usual intersection with stable intersection.

C1 ∩st C2 := lim
ε→(0,0)

C1 ∩ (C2 + ε).
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Today’s focus: 2 classical results in Algebraic Geometry

Plücker (1834): A sm. quartic curve in P2
C has exactly 28 bitangent lines.

(0,4,8,16 or 28 real bitangents, depending on topology of the real curve.)

Trott: 28 totally real bitangents. Salmon: 28 real, 24 totally real.

Cayley-Salmon (1849): Any smooth algebraic cubic
surface in P3

C contains exactly 27 distinct lines.

Figure: Clebsch cubic surface

ISSUE: Both results fail tropically! But we can fix it.
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28 bitangent lines to sm. plane quartics over K =C((t)).
Plücker (1834): A sm. quartic curve in P2

K has exactly 28 bitangent lines.
(0,4,8,16 or 28 real bitangents, depending on topology of the real curve.)

Question: What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2015): Every tropical smooth quartic in
R2 has 7 bitangent classes.

Len-Markwig (2017): Generically, each class lifts to 4 classical bitangents.

Len-Jensen (2017): Each class always lifts to 4 classical bitangents.

Question: What is a tropical bitangent line? Need tangencies at 2 points.

Len-Markwig: 5 local tangencies (up to S3-symmetry.)
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28 bitangent lines to sm. plane quartics over K =C((t)).
Theorem: There are 28 classical bitangents to sm. plane quartics over K
but 7 tropical bitangent classes to their tropicalizations.

Question: Combinatorial proof?

Trop. sm. quartic = dual to unimodular triangulation of ∆2 of side length 4.

 duality gives a genus 3 planar metric graph.

Possible cases:
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28 bitangent lines to sm. plane quartics over K =C((t)).

Theorem: There are 28 classical bitangents to sm. plane quartics over K
but 7 tropical bitangent classes to their tropicalizations.

Question: Combinatorial proof?

Trop. sm. quartic = dual to unimodular triangulation of ∆2 of side length 4.

 duality gives a genus 3 planar metric graph.

Possible cases:
[BLMPR ’15]
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Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give
linear restrictions on the lengths u, v , w , x , y , z of the edges.
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28 classical bitangents vs. 7 tropical bitangent classes.

Local tangencies:

(up to symm.)
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28 classical bitangents vs. 7 tropical bitangent classes.

Local tangencies:

(up to symm.)
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28 classical bitangents vs. 7 tropical bitangent classes.
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28 classical bitangents vs. 7 tropical bitangent classes.
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28 classical bitangents vs. 7 tropical bitangent classes.

C.-Markwig (2018): There are 36 shapes of bitangent classes (up to
symm.) They are min-tropical convex sets. Liftings come from vertices.
Over R: liftings on each shape are either all (totally) real or none is real.
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The 27 lines on a sm. cubic surface in P3
K for K = C((t))

Cayley-Salmon (1849): Any smooth algebraic cubic
surface X in P3

K contains exactly 27 distinct lines.

Figure: Clebsch cubic surface

Schläfli, Cayley-Salmon: description of this line arrangement.

• Say L, L′ lines of X intersect and let π be the plane in P3
K they span.

Then: X ∩ π = L ∪ L′ ∪ L′′ and L′′ is also a line.

• Generic behavior: (not concurrent)

• Generically: Every line meets 10 others (which come in 5 pairs).

Gen. dual int. complex: 27 V, 135 E and 45 T = 10-reg. Schläfli graph.
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The 27 lines on a sm. cubic surface in P3
K for K = C((t))

Vigeland (2007): The result fails tropically! He gives examples of TropX
in TP3 with 1-parameter families of tropical lines (infinitely many lines!)

trop. line =
in (TPn)◦

balanced metric trees with (r) rays in direction eB1 , . . . , eBr

with B1 t . . . t Br = {0, . . . , n}, eB := −
∑
i∈B

ei .
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The 27 lines on a sm. cubic surface in P3
K for K = C((t))

Vigeland (2007): The result fails tropically! He gives examples of TropX
in TP3 with 1-parameter families of tropical lines (infinitely many lines!)

Vigeland (2007), Hampe-Joswig (2016):

Combinatorial classification of all tropical
cubic surfaces in TP3 and their lines.

Algebraic approach:

• Cubic surface in P3
K ≡ homogeneous degree 3 polynomial in 4 variables.

• 20 coefficients up to global constant, so we get a P19
K worth of surfaces.

• Smoothness: open condition in P19
K .

• Coord. changes give the same surface, so we identify points via PGL(4).

Our moduli space of smooth cubic surfaces has dimension = 20− 42 = 4.
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The 27 lines on a sm. cubic surface in P3
K for K = C((t))

Running assumption: Our smooth cubics contain no concurrent lines.

New approach: Fix the problem by a new embedding (compatible with
families), when all the lines are at infinity.

 45 tritangent planes  X ↪→ P44
K

“anticanonical
embedding”

C-Deopurkar (2018): The antican. embedding X ↪→ P44
K satisfies:

1. Linear span of X in P44 is a P3 (the original one).

2. All 27 lines of X lie at infinity (on 5 hyperplanes each).

3. Intersections of lines lie in exactly 9 hyperplanes at infinity.

4. Generically, TropX in TP44 has exactly 27 lines, all at infinity. Each
line is a metric tree with 10 leaves. This arrangement determines TropX .

5. Otherwise, we have 27 extra lines inside (5 rays each) and TropX is a
fan. The arrangement at infinity is the 10-reg Schläfli graph (27 V, 135 E.)
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The 27 tropical lines on a gen. trop. cubic surface in TP44
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Type #cones Vert. Edges Rays Triangles Squares Flaps Cones
0 1 1 0 27 0 0 0 135

(a) 36 8 13 69 6 0 42 135
(a2) 270 20 37 108 14 4 81 135
(a3) 540 37 72 144 24 12 117 135
(a4) 1620 59 118 177 36 24 150 135
(b) 40 12 21 81 10 0 54 135

(aa2) 540 23 42 114 13 7 87 135
(aa3) 1620 43 82 156 22 18 129 135
(aa4) 540 68 133 195 33 33 168 135
(a2a3) 1620 43 82 156 22 18 129 135
(a2a4) 810 71 138 201 32 36 174 135
(a3a4) 540 68 133 195 33 33 168 135
(ab) 360 26 48 123 16 7 96 135
(a2b) 1080 45 86 162 24 18 135 135
(a3b) 1080 69 135 198 34 33 171 135

(aa2a3) 3240 46 87 162 21 21 135 135
(aa2a4) 1620 74 143 207 31 39 180 135
(aa3a4) 1620 74 143 207 31 39 180 135
(a2a3a4) 1620 74 143 207 31 39 180 135
(aa2b) 2160 48 91 168 23 21 141 135
(aa3b) 3240 75 145 210 32 39 183 135
(a2a3b) 3240 75 145 210 32 39 183 135

(aa2a3a4) 3240 77 148 213 30 42 186 135
(aa2a3b) 6480 78 150 216 31 42 189 135

Table: recovers Table 1 from [Ren-Shaw-Sturmfels (2016)] for Cox embedding.
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