Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany)

(arXiv:2004.10891)

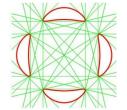
Algebraic Geometry Seminar UC Davis

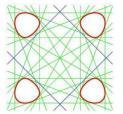
Today's focus: two classical result in Algebraic Geometry

Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines.

Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}^2_{\mathbb{R}}$).

The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4





Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{\{t\}\}\$ and $\mathbb{R}\{\{t\}\}\$.

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7 equivalence classes**.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

Two independent answers (with different approaches):

Len-Jensen (2018): Each class *always* lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

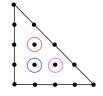
Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency properties.

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

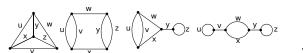
Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.



→ duality gives a genus 3 planar metric graph.

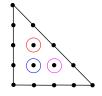
Possible cases:



28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

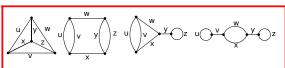
Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.



→ duality gives a genus 3 planar metric graph.

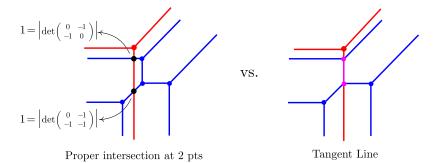
Possible cases: [BLMPR '16]



Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges.

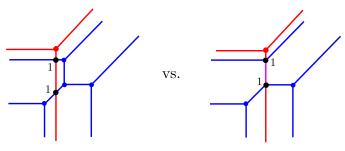
Basic facts about general tropical plane curves:

- (1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
- (2) General trop. curves intersect properly and as expected (Trop. Bézout.)



Basic facts about general tropical plane curves:

- (1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
- (2) General trop. curves intersect properly and as expected (Trop. Bézout.)



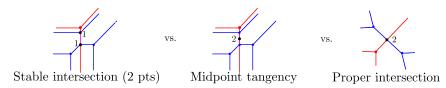
Proper intersection at 2 pts

Stable intersection at 2 pts

Non-general case: Replace usual intersection with stable intersection.

$$C_1 \cap_{st} C_2 := \lim_{\varepsilon \to (0,0)} C_1 \cap (C_2 + \underline{\varepsilon}).$$

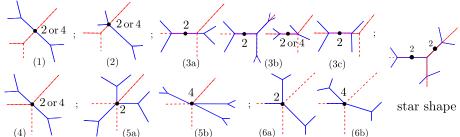
Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2 :

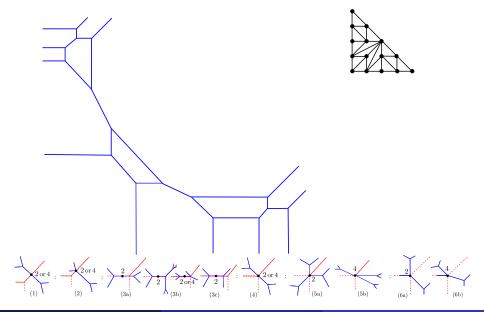


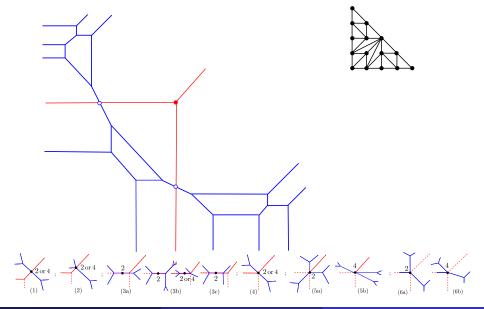
Definition: $Λ = \neg$ is a **bitangent line** for quartic Γ if and only if:

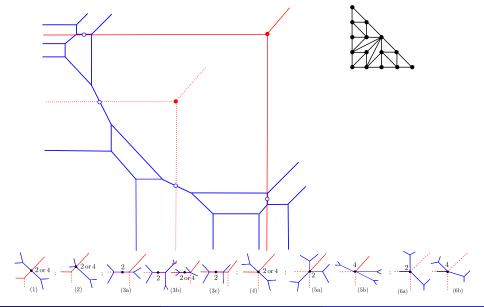
- (i) $\Lambda \cap \Gamma$ has 2 conn. components of stable intersection mult. 2 each; or
- (ii) $\Lambda \cap \Gamma$ is connected and its stable intersection multiplicity is 4.

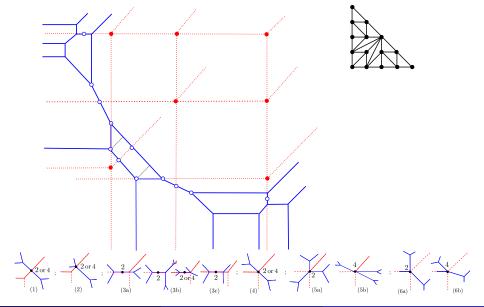
[L-M '20]: 6 local tangency types between Λ and Γ (up to $\mathbb{S}_3\text{-symmetry}).$

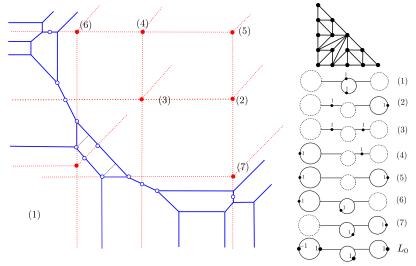




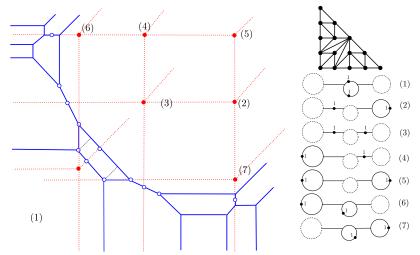




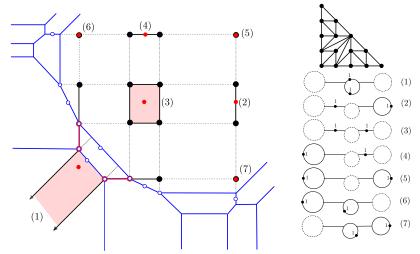




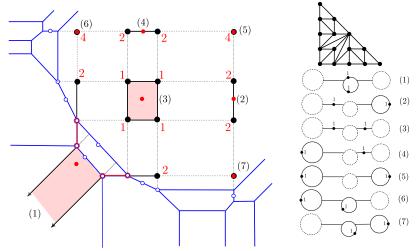
Zharkov (2010): Trop. theta char on a metric graph $\Gamma \leftrightarrow H_1(\Gamma, \mathbb{Z}/2\mathbb{Z})$. $2\theta_i \sim K_{\Gamma} = \sum_{x \in \Gamma} (\text{val}(x) - 2)x$; L_0 non-effective \leftrightarrow **0**; $2^{b_1(\Gamma)-1}$ effectives.



[BLMPR '16]: 7 effective trop. theta characteristics on **skeleton** of tropical sm. quartic Γ in \mathbb{R}^2 produce 7 tropical bitangent lines Λ to Γ .

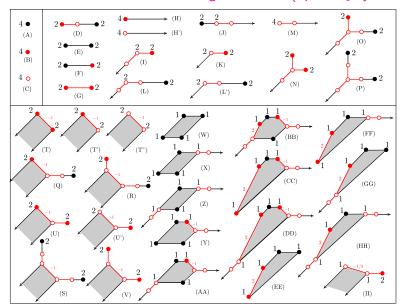


[BLMPR '16]: Equiv. class = move Λ continuously, remaining bitangent. [L-M '18, J-M '20]: Each bitangent class lifts to 4 classical bitangents.



C.-Markwig (2020): There are **40 shapes** of bitangent classes (up to symm.) They are **min-tropical** convex sets. Liftings come from vertices. **Over** R: liftings on each class are either all (totally) real or none is real.

THM 1: Classification into 40 bitangent classes (up to S_3 -symmetry)

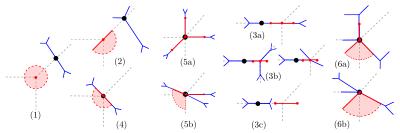


Bitangent line $\neg \longleftrightarrow$ location of its vertex (standard duality = -vertex)

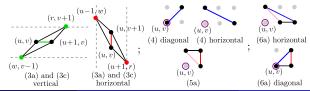
Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency



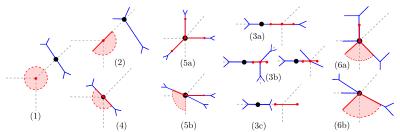
Step 3: Interpret \mathbb{S}_3 -tangency types from cells in the Newton subdivision of $q(x,y) = \sum_{i,j} a_{i,j} x^i y^j$ with $\mathsf{Trop}(\mathcal{V}(q)) = \Gamma$ and combine local moves.



Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.

Step 2: Identify local moves of the vertex of Λ that preserve one tangency



Step 3: Interpret S_3 -tangency types from cells in the Newton subdivision.

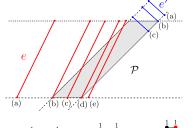
Step 4: Classify the shapes using 3 properties of its members:

max. mult.	proper	min. conn. comp.	shapes
4	yes	1	(II)
4	no	1	(C),(D),(L),(L'),(O),(P),(Q),(R),(S)
2	yes/no	2	rest

For the last row, refine using dimension and boundedness of its top cell.

Sample refinement: max mult. 2, dim=2 and bounded top-cell.

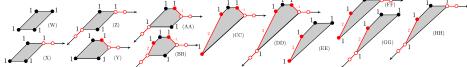
- Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of **two different ends** of Λ (e.g. horizontal and diagonal).
- dim 2 means we can find tangencies at two bounded edges e, e' of Γ , both in the boundary of the conn. component of $\mathbb{R}^2 \setminus \Gamma$ dual to x^2 (because e and e' are bridges of Γ , so metric graph is $\circ \circ \circ$)
- Draw parallelogram $\mathcal P$ with horizontal and diagonal lines through endpoints of e and e', respectively; analyze $\mathcal P\cap e$ and $\mathcal P\cap e'$



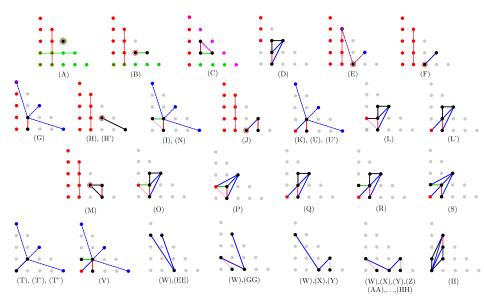
e' vs. <i>e</i>	(a)	(b)	(c)	(d)	(e)
(a)	(W)	(X)	(Y)	(GG)	(EE)
(b)	$\tau_1(X)$	(Z)	(AA)	(HH)	(FF)
(c)	$\tau_1(Y)$	$\tau_1(Z)$	(BB)	(DD)	(CC)

$$\tau_1: X \mapsto -X, Y \mapsto Y - X \text{ in } \mathbb{R}^2$$

 $(x \longleftrightarrow z, y \leftrightarrow y \text{ in } \mathbb{P}^2)$



Partial Newton subdivisions for all 40 bitangent shapes:



Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $\mathbb{K}=\mathbb{C}\{\!\{t\}\!\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}}=\mathbb{R}\{\!\{t\}\!\}$ (real P. s.)

- If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\bar{a} := a_0 = \overline{a t^{-\alpha}}$ in \mathbb{C} (initial term).
- Assume no classical bitangent line ℓ to $\mathcal{V}(q)\subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell : y + m + nx = 0$$
 with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$?

Answer: p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then

- (i) $-(\alpha_0, \alpha_1)$ is a **trop. tangency pt.** for $\Lambda := \text{Trop } \ell$ and $\Gamma := \text{Trop } \mathcal{V}(q)$.
- (ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from **lowest valuation terms** of q, ℓ, W vanish at the initial term $\bar{p} := (b_0, b_1)$. (*Initial degener. vanish at* \bar{p} !)

Thm. [L-M '20]: We can use $\bar{q} = \bar{\ell} = \bar{W} = 0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in (\mathbb{C}^*)^4$.

Lifting tropical bitangents to classical bitangents (cont)

$$(\bar{m},\bar{n},\bar{p})$$
 and $\bar{q}=\bar{\ell}=\bar{W}=0$ (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q},\bar{\ell},\bar{W})_{|\bar{p}} \neq 0$, then (\bar{m},\bar{p}) lifts to a **unique solution** (m,p); get n from $\ell(p)=0$.

Crucial [C-M]: Lifting lies in
$$\mathbb{K}_{\mathbb{R}}$$
 if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

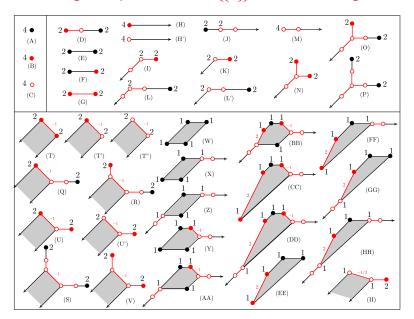
- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (**genericity condition**.)

ſ	type	(1)	(2)	(3a), (3b) or (3c)	(4)	(5a)	(6a)
	mult.	0	1	2	$ \det(e,e') $	2	$ \det(e,e') $
((e' edge of Γ responsible for second tropical tangency, det = 1 or 2.)						

(e' edge of I responsible for second tropical tangency, det = 1 or 2.

Thm.[L-M'20]: Local solns. for mult 1 in $\mathbb{Q}(\overline{a_{ij}})$ but for mult 2 in $\mathbb{Q}(\sqrt{\overline{a_{ij}}})$

THM 2: Lifting multiplicities over $\mathbb{C}\{\{t\}\}\$ for all 40 bitangent classes

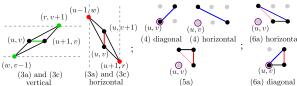


THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}$ for each shape is 0 or 4.

Proof technique: determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

type	condition for real solutions	coeff.	end of Λ
(22)	$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\mathrm{sign}(ar{n})>0$	m	horizontal
(3a)	$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\operatorname{sign}(\bar{n})>0$	m/n	vertical
(20)	$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w}>0$	m	horizontal
(3c)	$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1}>0$	m/n	vertical
(4),(6a)	$-\operatorname{sign}(ar{n})s_{uv}s_{u+1,v+1}>0$	m	diagonal
(4),(0a)	$-\operatorname{sign}(\overline{m})s_{u,v+1}s_{u+2,v}>0$	n	horizontal
(5a)	$sign(\bar{n})s_{u+1,\nu}s_{u,\nu+1}>0$	m	diagonal
	$sign(\overline{m})s_{u+1,v+1}s_{u+1,v}>0$	n	horizontal

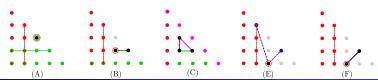
- $s_{ij} = \text{sign of initials } \overline{a_{ij}} \in \mathbb{R}$.
- Indices in formulas come from relevant cells in Newton subdivision:



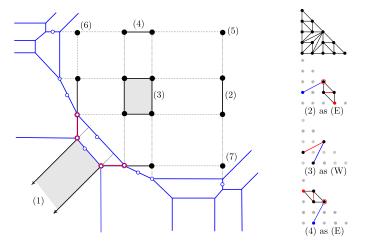
Real lifting sign conditions for each representative bitangent class:

Shape	Lifting conditions		
(A)	$(-s_{1\nu}s_{1,\nu+1})^is_{0i}s_{22}>0$ and $(-s_{u1}s_{u+1,1})^js_{j0}s_{22}>0$		
(B)	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $(-s_{21})^{j+1}s_{31}{}^{j}s_{1\nu}s_{1,\nu+1}s_{j0}>0$		
(C)	$\left\{ (-s_{11})^{i+1} s_{12}^i s_{21} s_{0i} s_{j0} > 0 \text{ and } (-s_{21})^{k+1} s_{12}^k s_{11} s_{k,4-k} s_{j0} > 0 \right. \text{ if } j = 1,3.$		
(H),(H')	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1\nu}s_{1,\nu+1}s_{21}s_{40}<0$		
(M)	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1\nu}s_{1,\nu+1}s_{30}s_{31}>0$		
(D)	$(-s_{10}s_{11})^is_{0i}s_{22}>0$		
(E),(F),(J)	$(-s_{1\nu}s_{1,\nu+1})^is_{0i}s_{20}>0$		
(G)	$(-s_{10}s_{11})^i s_{0i} s_{k,4-k} > 0$		
(I),(N)	$s_{10}s_{11}s_{01}s_{k,4-k}<0$		
(K),(T),(U),(V)	$s_{00}s_{k,4-k} > 0$		
(L),(O),(P)	$s_{10}s_{11}s_{01}s_{22} < 0$		
(L'),(Q),(R),(S)	$s_{00}s_{22}>0$		
rest	no conditions		

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.



Sample sign choices for our running example:



Negative signs	Real bitangent classes	Number of Real lifts	Topology
— (1) and (3)		8	2 non-nested ovals
<i>s</i> ₃₁	(1), (2), (3) and (7)	16	3 ovals
s ₁₃ , s ₃₁	$(1), \dots, (7)$	28	4 ovals
s ₁₃ , s ₃₁ , s ₂₂	(3)	4	1 oval