Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany) (arXiv:2004.10891)

Algebraic Geometry Seminar OSU

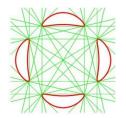
M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

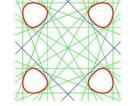
Sept 15th 2020 1 / 27

Today's focus: two classical result in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines. Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{P}}(f) \subset \mathbb{P}^2_{\mathbb{P}}$).

The real curve	Real bitangents	• (() 14
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4



Trott: 28 totally real bitangents.



Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{\{t\}\}\$ and $\mathbb{R}\{\{t\}\}$.

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7 equivalence classes**.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Two independent answers (with different approaches):

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies for each class under mild genericity conditions.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

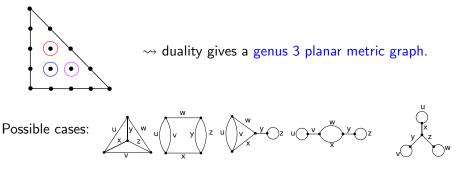
Answer: Continuous translations preserving bitangency properties.

M.A. Cueto (Ohio State)

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} **but** 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

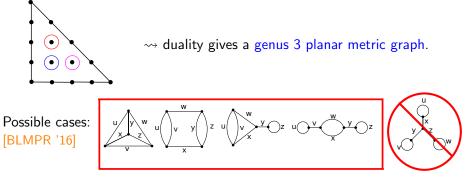
Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.



28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.



Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges.

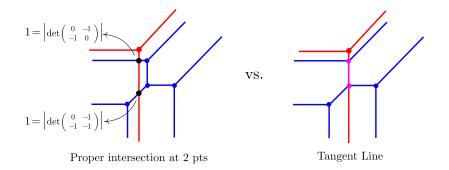
M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

Basic facts about general tropical plane curves:

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

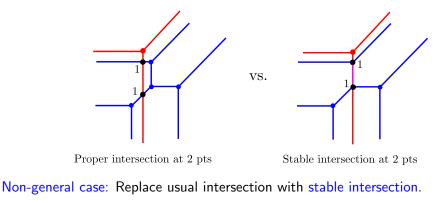
(2) General trop. curves intersect properly and as expected (Trop. Bézout.)



Basic facts about general tropical plane curves:

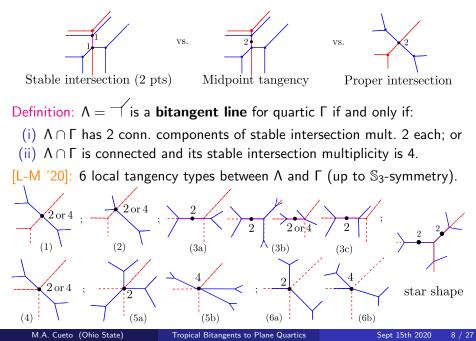
(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

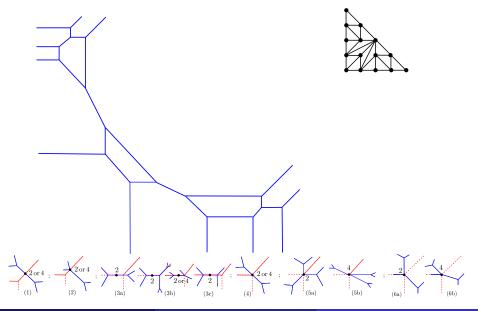
(2) General trop. curves intersect properly and as expected (Trop. Bézout.)

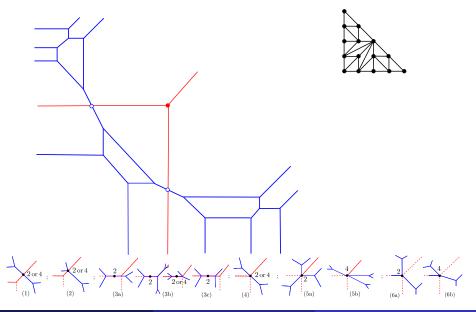


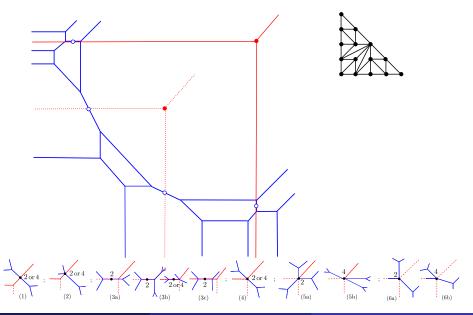
$$C_1 \cap_{st} C_2 := \lim_{\underline{\varepsilon} \to (0,0)} C_1 \cap (C_2 + \underline{\varepsilon}).$$

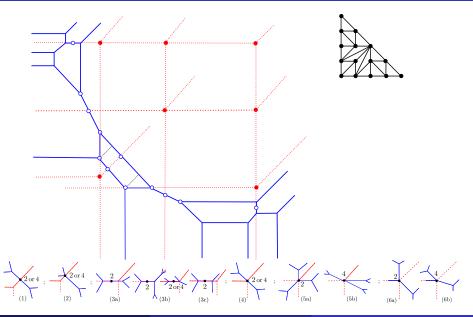
Tropical bitangent Lines to tropical smooth quartics in \mathbb{R}^2 :

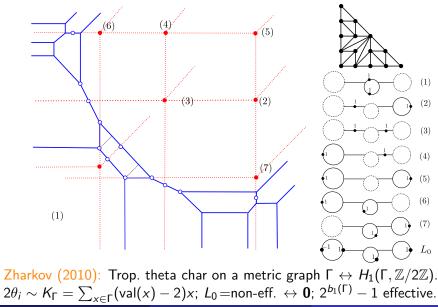






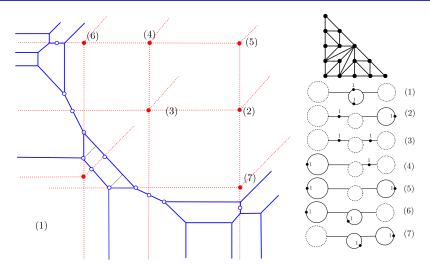




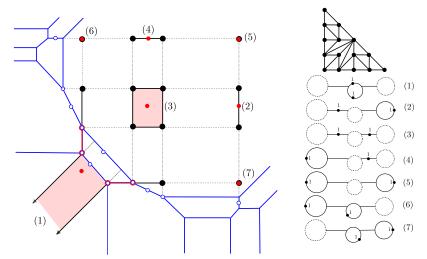


M.A. Cueto (Ohio State)

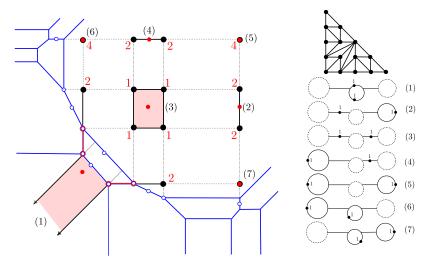
Tropical Bitangents to Plane Quartics



[BLMPR '16]: 7 effective trop. theta characteristics on **skeleton** of tropical sm. quartic Γ in \mathbb{R}^2 produce 7 tropical bitangent lines Λ to Γ .

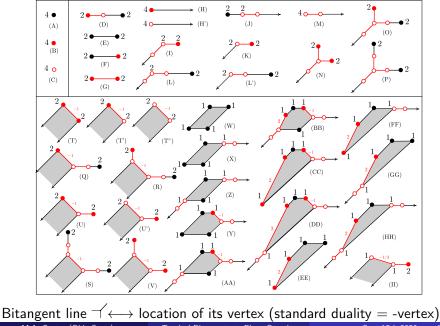


[BLMPR '16]: Equiv. class = move Λ continuously, remaining bitangent. [L-J '18, L-M '20]: Each bitangent class lifts to 4 classical bitangents.



C.-Markwig (2020): There are **40 shapes** of bitangent classes (up to symm.) They are **min-tropical** convex sets. Liftings come from vertices. **Over** R: liftings on each class are either all (totally) real or none is real. M.A. Cueto (Ohio State) Tropical Bitangents to Plane Quartics Sept 15th 2020 16/27

THM 1: Classification into 40 bitangent classes (up to S_3 -symmetry)



M.A. Cueto (Ohio State)

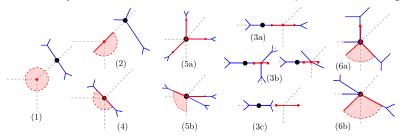
Tropical Bitangents to Plane Quartics

Sept 15th 2020 1

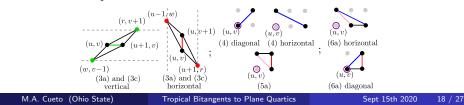
17 / 27

Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency

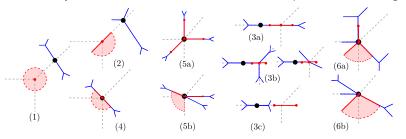


Step 3: Interpret S₃-tangency types from cells in the Newton subdivision of $q(x, y) = \sum_{i,j} a_{i,j} x^i y^j$ with $\text{Trop}(\mathcal{V}(q)) = \Gamma$ and combine local moves.



Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency



Step 3: Interpret S_3 -tangency types from cells in the Newton subdivision. **Step 4:** Classify the shapes using 3 properties of its members:

max. mult.	proper	min. conn. comp.	shapes
4	yes	1	(II)
4	no	1	(C),(D),(L),(L'),(O),(P),(Q),(R),(S)
2	yes/no	2	rest

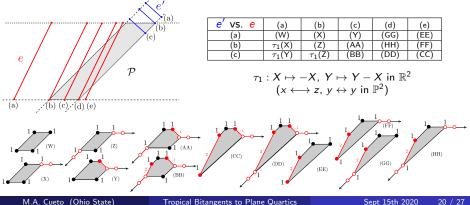
For the last row, refine using dimension and boundedness of its top cell.

M.A. Cueto (Ohio State)

19 / 27

Sample refinement: max mult. 2, dim=2 and bounded top-cell.

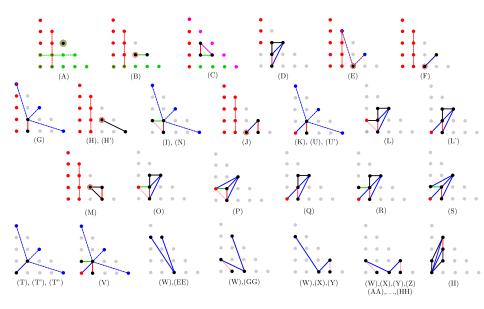
• Since 2-cell is bounded, the tangency points for any member Λ occur in relative interior of **two different ends** of Λ (e.g. horizontal and diagonal). • dim 2 means we can find tangencies at two bounded edges e, e' of Γ , both in the boundary of the conn. component of $\mathbb{R}^2 \setminus \Gamma$ dual to x^2 (because e and e' are bridges of Γ , so metric graph is $\bigcirc \bigcirc \bigcirc$) • Draw parallelogram \mathcal{P} with horizontal and diagonal lines through endpoints of e and e', respectively ; analyze $\mathcal{P} \cap e$ and $\mathcal{P} \cap e'$



M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

Partial Newton subdivisions for all 40 bitangent shapes:



Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

• If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \bar{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.

• Assume no classical bitangent line ℓ to $\mathcal{V}(q) \subset (\mathbb{K}^*)^2$ is vertical and all tangency points are in torus (if not, rotate and translate). Thus,

$$\ell: y + m + n x = 0$$
 with $m, n \in \mathbb{K}^*$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$? **Answer:** p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then (i) $-(\alpha_0, \alpha_1)$ is a **trop. tangency pt.** for $\Lambda := \text{Trop } \ell$ and $\Gamma := \text{Trop } \mathcal{V}(q)$. (ii) The initials $\bar{q}, \bar{\ell}, \bar{W}$ from **lowest valuation terms** of q, ℓ, W **vanish** at the initial term $\bar{p} := (b_0, b_1)$. (*Initial degener. vanish at* \bar{p} !)

Thm. [L-M '20]: We can use $\bar{q} = \bar{\ell} = \bar{W} = 0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in (\mathbb{C}^*)^4$.

22 / 27

Lifting tropical bitangents to classical bitangents (cont)

$$(\bar{m},\bar{n},\bar{p})$$
 and $\bar{q}=\bar{\ell}=\bar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p); get n from $\ell(p) = 0$.

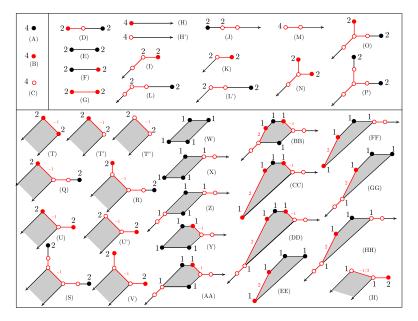
Crucial [C-M]: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ if $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with Λ ∩ Γ disconnected give non-compatible local equations (genericity condition.)

					```	0			,		
type	(1)	(2)	(3a)	, (3b) or (	3c)	(4)		(5a)	)	(6a)	
mult.	0	1		2		$ \det(e, e') $		2	d	et(e, e')	
(e' edge of $\Gamma$ responsible for second tropical tangency, det = 1 or 2.)											
[L-M'20, C-M'20]: If mult. four, no hyperflexes: type star (5b) (6b)							(6b)				
$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$							1				
Thm.[L-M'20]: Local solns. for mult 1 in $\mathbb{Q}(\overline{a_{ij}})$ but for mult 2 in $\mathbb{Q}(\sqrt{\overline{a_{ij}}})$ .											
M.A. C	ueto (Oh	io State)		Tropical Bita	angents	to Plane Quart	ics		Se	pt 15th 2020	23 / 27

THM 2: Lifting multiplicities over  $\mathbb{C}\{\{t\}\}\$  for all 40 bitangent classes

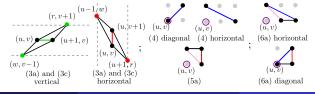


#### THM 3: Total lifting multiplicity over $\mathbb{R}\{\{t\}\}\$ for each shape is 0 or 4.

**Proof technique:** determine when relevant radicands are positive and compare/combine constraints for different members of the same shape.

type	condition for real solutions	coeff.	end of $\Lambda$
(22)	$(-1)^{w+v+1}(s_{uv}s_{u,v+1})^{w+v}s_{u-1,w}s_{u,v+1}\operatorname{sign}(\bar{n}) > 0$	т	horizontal
(3a) –	$(-1)^{w+u+1}(s_{uv}s_{u+1,v})^{w+u}s_{w,v-1}s_{u+1,v}\operatorname{sign}(\bar{n}) > 0$	m/n	vertical
(3c) —	$(-1)^{r+w}(s_{uv}s_{u,v+1})^{r+w}s_{u+1,r}s_{u-1,w}>0$	т	horizontal
	$(-1)^{r+w}(s_{uv}s_{u+1,v})^{r+w}s_{r,v+1}s_{w,v-1}>0$	m/n	vertical
(4),(6a)	$-\operatorname{sign}(ar{n})s_{uv}s_{u+1,v+1}>0$	т	diagonal
(4),(0a)	$-\operatorname{sign}(\overline{m})s_{u,v+1}s_{u+2,v}>0$	п	horizontal
(5a) -	$sign(\bar{n})s_{u+1,v}s_{u,v+1} > 0$	т	diagonal
	$sign(\overline{m})s_{u+1,\nu+1}s_{u+1,\nu}>0$	п	horizontal

- $s_{ij} = \text{sign of initials } \overline{a_{ij}} \in \mathbb{R}$ .
- Indices in formulas come from relevant cells in Newton subdivision:



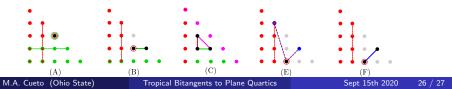
M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

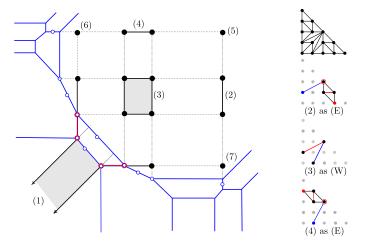
Real lifting sign conditions for each representative bitangent class:

Shape	Lifting conditions			
(A)	$(-s_{1v}s_{1,v+1})^{j}s_{0i}s_{22}>0$ and $(-s_{u1}s_{u+1,1})^{j}s_{j0}s_{22}>0$			
(B)	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21} > 0$ and $(-s_{21})^{j+1}s_{31}^{j}s_{1\nu}s_{1,\nu+1}s_{j0} > 0$			
	$\int (-s_{11}s_{12})^{i}s_{0i}s_{20} > 0 \text{ and } (-s_{21}s_{12})^{k}s_{k,4-k}s_{20} > 0 \text{ if } j = 2,$			
(C)	$\Big  \ \Big( (-s_{11})^{i+1} s_{12}^i s_{21} s_{0i} s_{j0} > 0 \ \text{and} \ (-s_{21})^{k+1} s_{12}^k s_{11} s_{k,4-k} s_{j0} > 0  \text{if} \ j = 1, 3.$			
(H),(H')	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1\nu}s_{1,\nu+1}s_{21}s_{40}<0$			
(M)	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1\nu}s_{1,\nu+1}s_{30}s_{31}>0$			
(D)	$(-s_{10}s_{11})^i s_{0i}s_{22} > 0$			
(E),(F),(J)	$(-s_{1v}s_{1,v+1})^i s_{0i} s_{20} > 0$			
(G)	$(-s_{10}s_{11})^i s_{0i} s_{k,4-k} > 0$			
(I),(N)	$s_{10}s_{11}s_{01}s_{k,4-k} < 0$			
(K),(T),(U),(U'),(V)	$s_{00}s_{k,4-k}>0$			
(L),(O),(P)	$s_{10}s_{11}s_{01}s_{22} < 0$			
(L'),(Q),(R),(S)	$s_{00}s_{22} > 0$			
rest	no conditions			

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.



#### Sample sign choices for our running example:



Negative signs	Real bitangent classes	Number of Real lifts	Topology	
—	(1) and (3)	8	2 non-nested ovals	
<i>s</i> ₃₁	(1), (2), (3) and (7)	16	3 ovals	
<i>s</i> ₁₃ , <i>s</i> ₃₁	$(1), \dots, (7)$	28	4 ovals	
<i>s</i> ₁₃ , <i>s</i> ₃₁ , <i>s</i> ₂₂	(3)	4	1 oval	