ral Tropicalizatioss of splica tye surface singularities
M. Angelica lueto
(The Ohio State Univesity)
jout with Patuck Prpessu-Pampu \& I mity Stepanor (arXiv: 2108.05912)
$G:$

Restutum Gragh
Γ :

$$
z_{1}^{2}+z_{2}^{3}+z_{3}^{5}=0 \quad\left(E_{8} \text { - negdainy }\right)
$$

Splice -Type Surface Singularities

- Generalize Brieskorn complete intersections $\sum\left(p_{1}, \ldots, p_{k}\right)$ (inducing A_{n}, E_{6}
- Input: A splice type diagram Γ with 2 properties
- I = thee with wo valmcy z vertices $\begin{aligned} & \text { (nodes }=\text { vertices with valency }>1 \text {) } \\ & \text { leases }=\end{aligned}$
- I has pritise integer weights m the edges surrounding each node.

Pupenties: (1) "Edge Determinant condition" or each pair of adjacent nodes

$$
\operatorname{det}([u, v]):=p q-a_{1} \cdots a_{s} b_{1} \cdots b_{t}>0
$$

(2) "Semigroup Condition" fr each pair (v, e)) $\begin{gathered}\text { vo edge, vie }\end{gathered}$ $\ell v, \omega=$ "linking number of vertices $v \& \omega "=$ product of all wrights adjacent To but NOT ON the path joining $v \& \omega \mathrm{~m} \Gamma$.
$d_{v}=l_{v, v}=$ product of all wrights around v
$\rightarrow \operatorname{Semigroup}_{(v, e)}$ Conc: $\quad d_{v} \in \mathbb{N}_{0}<l_{v, \lambda}: \lambda$ leaf of $\Gamma \&$ e in path $[v, \lambda] \subseteq \Gamma>$

EXAMPLES: (1)

$$
\begin{array}{ll}
d_{v}=30=2.3 .5 \\
30 \in \mathbb{N}_{0}\langle 15\rangle & \\
30 \in \mathbb{N}_{0}\langle 10\rangle \checkmark & \left(v,\left[v, \lambda_{1}\right]\right) \\
30 \in \mathbb{N}_{0}\langle 6\rangle, ~ & \left.\left(v, \lambda_{2}\right]\right) \\
\left(v,\left[v, \lambda_{3}\right]\right)
\end{array}
$$

Obs: Semigoup and is antmatically thee fr pairs $(v,[v, \lambda])$ with λ leat of Γ.
(2)

$$
\text { - } \operatorname{det}([u, v])=7 \cdot 11-2 \cdot 3 \cdot 2 \cdot 5=77-60=17>0
$$

- Nm-tririal Semigp. Conditims τ_{0} check: $(u,[u, v]) \&(v,[u, v])$
- $(u,[u, v]) \quad d_{u}=42 \in \mathbb{N}_{0}\left\langle\ell_{u}, \lambda_{3} ; \ell_{u, \lambda_{4}}\right\rangle=\mathbb{N}_{0}\langle 2.3 .2,2.3 .5\rangle=\mathbb{N}_{0}\langle 12,30\rangle$
$\Longleftrightarrow 7 \in \mathbb{N}_{0}\langle 2,5\rangle \quad \checkmark \quad$ since $7=1.2+1.5$
- $(v,[u, v]) \quad d_{v}=110 \in N_{0}\left\langle l_{v}, \lambda_{1} ; \imath_{v}, \lambda_{2}\right\rangle=N_{0}\langle 2.3 .5,2.5 .2\rangle=N_{0}\langle 30,20\rangle$
$\Longleftrightarrow 11 \in \mathbb{N}_{0}\langle 3,2\rangle \quad \checkmark$ in 2 ways
$I I=1 \cdot 3+4 \cdot 2$
$11=3.3+1 \cdot 2$

Q: Why these 2 conditions? $(x, 0) \hookrightarrow\left(\mathbb{C}^{n}, 0\right)$ sol normal surf sing

- Siebenmann (1980) caprine splice diagrams (paiwrise coprime weights near each node) encode \mathbb{Z}-homology sphere links $\left(H^{\prime}(\Sigma, \mathbb{Z})=0\right.$) that are graph manifolds (by "plumbing")
- Eiseubad-Neumann (1985) Isolated surface singularities ore © with \mathbb{Z} - HS^{3} links arise fum coprime splice diagrams with edge determinant condition.
- Newman (1983): quasi-honogeueres normal complex surface singularitees with Q-homology sphere links ($\left.H^{\prime}(\Sigma, Q)=0\right)$ have Brieshorn complete intersections as universal abelian corers.
(Pham-Brieshom-Hamm systems)
- Numann-Wahl (2005) Copnime splice diagrams give isolated complete intessectim surface singularities with $\mathbb{Z}-H \mathbb{S}^{3}$ links if Γ satisfies the semigp condition. m splice Type systems
- Neumann-Wahl (2002-2005) Fix a splia diagram I with edge dec \& semigroup conditions fum a Q-H ${ }^{3}$ link. Then, its universal abelion cover is of splia type.
- Okeema (2006) Unisersal ab corers of ratumal or Q-HS ${ }^{3}$ minimally elliptic \& won cespidal surface singularities are of splice type.

Q: How to build splice type systems from I?
A: Use the semigroup condition to build val $(v)-2$ equations for each node v of Γ with the same support (Pham-Brieskorn-Hamm systems)

$$
\text { variables }=\text { leases of } \Gamma
$$ (x in total)

$$
\left\{\begin{array}{c}
a_{11} z_{1}^{P_{1}}+a_{12} z_{2}^{P_{2}}+\cdots+a_{1 n} z_{n}^{P_{n}}=0 \\
\vdots \\
\vdots \\
a_{n-2,1} z_{1}^{P_{1}}+a_{n-2,2} z_{2}^{P_{2}}+\cdots+a_{n-2} z_{n}^{z_{n}}=0
\end{array}\right.
$$

Pham-Brieshom-Hamm: All maximal mines of ($a_{i j}$) are womsero ms (isolated sing)

- Splice system by example:

$$
\begin{align*}
& 7=1 \cdot 2+1 \cdot \lambda_{4} \quad(4(x,-, 7) \\
& \left\{\begin{array}{l}
11=1 \cdot 3+4 \cdot 2 \\
11=3 \cdot 3+1 \cdot 2
\end{array}(v,[4,0])\right.
\end{align*}
$$ ma 2 different splice systems :

$$
\text { (II) }\left\{\begin{array}{l}
z_{1}^{2}+z_{2}^{\lambda_{1}}+\underline{z_{3} z_{4}}=0 \\
\underline{z_{1}^{3} z_{2}^{1}}+z_{3}^{5}+\underline{z_{4}^{2}}=0
\end{array}\right.
$$

- Neman - Wall $(x, 0) \hookrightarrow\left(\mathbb{C}^{4}, 0\right)$

Each T_{i} gives one monomial $z^{m_{v, e_{i}}}$ ria the semigroup condition for $\left(v, e_{i}\right)$ (admissible moumials)
strict splice syst.

- Coefficients: $\left(a_{i, j}^{(r)}\right)_{i, j}$ has all maximal minors nu sew. (Phrm-Brieshorn-Hamm determinant condition)
- $S(\Gamma)$:Splice Type systems: Allow Tails of convergent power series on strict' splice systems.
- Tails fr : each monomial must hare weight $>d_{v}$ with respect T_{0} the weight vector $W_{v}:=\left(\ell_{v, \lambda_{1}}, \ldots, \ell_{v, \lambda_{n}}\right) \in \mathbb{Z}_{>0}^{u}$.

EXAMPLE:

$$
\begin{aligned}
& W_{u}=(21,14,12,30) \\
& W_{v}=(30,20,22,55)
\end{aligned}
$$

NW: Splice systems are quasi-homogenerees with respect to $\left\{W_{v}: v\right.$ node $\left.I T\right\}$
Thurem (NW 2005) If Γ satisfies the edge determinant \& semigp. conditions, then $S(\Gamma)$ (with tails) determines an ICIS.
Proof. $V\left(S(\Gamma), z_{\lambda}=z_{\mu}=0\right)=\left\{\underline{0}\left\{\right.\right.$ in \mathbb{C}^{u} for each pain of haves $\lambda \neq \mu$ $\Rightarrow \operatorname{dim}^{V}(S(\Gamma))=2$ \& we set $C I$.

- Inductive explicit resolutions of $V(S(\Gamma)) \subseteq\left(\mathbb{C}^{n}, 0\right)$ by wrights blow-ups (with analytic patches) confirm O is an isolated singularity.

NATURALNESS of $S(\Gamma)$
Q: Why do we need tails \& how does the construction depend in the choice of admissible monomials?
. $\mathcal{H}=\left\{z^{m_{r, e}}: v, e\right\}$ a set of admissible momuials for Γ.

- $S(\Gamma)_{06}:=\{$ splice type systems using mommials from $\sqrt{6}\}$
- $X_{\sqrt{6}:=} 3$ germ $(x, 0) \hookrightarrow \mathbb{Q}^{n}$ defined by syateres fran $\left.S(\Gamma)_{r}\right\}$

THMI (NW, CPPS): If Γ is coprime, $X_{\kappa<}$ is independent of $\sqrt{6}$. (can swap admissible mommials by adding Toils)
THM2(NW): If Γ is general, we are OK if we only use equivariant Tails w.r.t. the discriminant group of the stating plumbing graph it the singularity.
1 For geneal Γ, THMI is false

MAIN RESULTS [C, Prescu-Pampu,Stepawr]
THM 1: Elementary combinatrial proof of NW Therem. (via Topical gevantey)

THM 2: $S(\Gamma)$ is a Newton non-degenerate CI system in the Khovanstic sense.

- $3 f_{v, i} t_{v, i}$ is a nagular sequence in $\mathbb{C}_{\left\{z, \ldots, z_{n}\right\} \text {; }}$
- For each $\omega \in\left(\mathbb{R}_{>0}\right)^{n} \quad\left\{\text { in }_{\omega} f_{v, i}=0\right\}_{v, i}$ definess a normal cosssings divisor in

THM 3: We view $\Gamma \subseteq \Delta_{n-1}=(n-1)$ standard simplex in \mathbb{R}^{n} \& consider the fan $\mathcal{F}_{\Gamma}=\mathbb{R}_{\geqslant 0} \Gamma$. Then, the binatimal map $\pi_{\vec{F}_{\Gamma}}: \dot{X}_{\tilde{\mathcal{F}}_{\Gamma}}^{\tilde{r}_{\Gamma} \longrightarrow \mathbb{C}^{n} \text { micity }} \mathbb{C}^{n}$ induces a moditication $\pi: \tilde{x}=\pi^{-1}(x) \longrightarrow X=V(S(\Gamma))$ such that $\left(\tilde{x}, \partial x_{\widetilde{F_{\Gamma}}} \cap \tilde{x}\right)$ is a Toridal pain ($m>$ msolve \tilde{x} by Tric modificatims!)

- Then 3 extends usult of [LFelipe, Gonzalerz-Pues, Mountade (2021)] = "Ary germ of a plame mure

EXAMPLE:

$$
S(\Gamma)=\left\{\begin{array}{l}
z_{1}^{2}+z_{2}^{3}+z_{3} z_{4}=0 \\
z_{1} z_{2}^{4}+z_{3}^{5}+z_{4}^{2}=0
\end{array}\right.
$$

$$
\begin{aligned}
& \Gamma \longrightarrow \Delta_{3} \subseteq \mathbb{R}^{4} \\
& v \longmapsto \frac{w_{v}}{\left|w_{v}\right|} \quad v=\text { whole } \\
& \lambda_{i} \longmapsto e_{i} \quad \lambda_{i}=\text { leaf }
\end{aligned}
$$

$$
\begin{aligned}
& w_{u}=(21,14,12,30) \\
& w_{v}=(30,20,22,55) \\
& \left|w_{u}\right|=77,\left|w_{v}\right|=127
\end{aligned}
$$

+ extend linearly along edges
- Storing anverity profuties unsure this map is inyective (inductive paredere = simplies them "stan - full sub trees of Γ ")
- Check initial forms of a equations fr ω in $\Gamma \cap \Delta_{3}^{0} \quad r$ in $\Delta_{\downarrow}^{0}, \Gamma$

$$
\text { (x) }\left\{\begin{array}{l}
-5 \text { edges } \\
-2 \text { motes }
\end{array}\right.
$$

$(x) I_{n}$ all 7 cases $\left\{m_{w}\left(f_{u}\right)\right.$, in $\left.w\left(f_{v}\right)\right\}$ is a ngeular sequence in $\mathbb{C}_{\left\{z_{1}, \ldots, z_{4}\right\}}$

Main Technique: Lral Toppalizatim (PP-S (2013))

- Slogan: Vessin of topical gementy in the loral sttting $\left(D_{0} \mathbb{Q}_{\left\{z_{1}, \ldots z_{n}\right\}}=i n g\right)$
. $(x, 0) \subseteq\left(\mathbb{Q}^{n}, 0\right)$ difined by an ideal $I \subseteq O$
- $\operatorname{Trop}(X, 0)=\left\{\omega \in(\mathbb{R} \geqslant 0)^{n}: \quad m_{\omega}(I)=\left\langle m_{\omega} f: f \in I\right\rangle\right.$ has no mimuial $\}$
- $T_{\operatorname{cop}>}(x, 0)=3 \omega \in\left(\mathbb{R}_{>0}\right)^{n}:$
$\longrightarrow\}$
- Key example: If I is geneated by polynumials $\left.3 f_{1}, \ldots f_{s}\right\}$, et $Y=V\left(f_{1}, \ldots f_{s}\right)$

$$
\left.T_{\text {nop }}(X, 0)=T_{\text {nop }}\left(Y_{\cap}\left(\mathbb{0}^{+}\right)^{n}\right) \cap \mathbb{R}_{\geqslant 0}^{n} \quad \text { (ustuct yobal tuop.to } \mathbb{R}_{\geqslant 0}^{n}\right)
$$

Thurum: - Toop $(X, 0)$ is a fan in $\mathbb{R}_{\geq 0}^{n}$ of dimensinn $=\operatorname{dim} X$ (localBiei-quores)
[PP, s]. If $(x, 0)$ is pere dimile, then $T_{\text {nop, }}(x, 0)$ is a balanced fan along wdim-1 paces (if top-faces are weighted approppiately as on the global case)

Ex: $X=V(f) \quad T_{\text {rop }}(X, 0)=$ codimin skeleton of Newtor fan of f.

Ex: ($E_{8}-$ singularity $) \quad z_{1}^{2}+z_{2}^{3}+z_{3}^{5}=0$

Resolution dual graph

Q: What does $T_{\text {crop }}(x, 0)$ know about $(x, 0)$?
Thurem [C, PP, S] (local Version of Teseler's Lemma)
Assume $(X, 0) \hookrightarrow\left(\mathbb{C}^{n}, 0\right)$ is the doseene of $X \cap\left(\mathbb{C}^{*}\right)^{n} 2 X$ is equidiom. Fix a fan \mathcal{F} with $\left|\mathcal{F}_{\mathcal{F}}\right| \subseteq \mathbb{R}_{\geqslant 0}^{n}$ \& let $\pi_{\tilde{J}}: \dot{X}_{\mathcal{F}} \longrightarrow \mathbb{C}^{n}$ be the doric morphism defined by $\mathcal{F}_{\mathcal{F}}$.
Consider $\tilde{X}_{\tilde{X}}$ the strict Transform of X by $\pi_{\tilde{\sigma}}$ a the ustriction $\pi: \tilde{X} \rightarrow X$
Then: (1) π is proper $\Longleftrightarrow|F| \geqslant \operatorname{Trop}(x, 0)$
(2) If $|\mathfrak{F}| \geqslant \operatorname{Trop}(X, 0)$, then:
$|F|=|T \operatorname{nop}(x, 0)| \Leftrightarrow \operatorname{colim}_{\tilde{x}}\left(ण_{\sigma} \cap \tilde{x}\right)$ is the expected one.
$=\operatorname{dim} \sigma$

Def: A standard hopicalizing f- fun fr $(x, 0) \longrightarrow\left(\mathbb{C}^{n}, 0\right)$ is a fan \mathcal{F} with $|F|=|\operatorname{Trop}(X, 0)| \&$ with in ωI constant along $\omega \in G^{\circ}$ in each cone ζ of F
Thurem [P.P,S] Standard tropicalizing fans always exist. (cmstmet topical bases - enhanced standard bases)

- Extended Vasim is weeded T_{0} study $x \cap V_{\left(z_{i}, \ldots, z_{i k}\right)} \quad\left(\sim k_{a j i w m a-P a y n e}\right.$ global extended top)

Ex

3 boundary strata

Theron $[C, P-P, S]$ The cone \mathcal{F}_{Γ} oren the embedded splice diagram $\Gamma \subseteq \Delta_{n-1}$ is a standard hopicaliging fan for $S(\Gamma)$.

Theorem $[C, P-P, S]$ The cone F_{Γ} ore e the embedded splice diagram $\Gamma \subseteq \Delta_{n-1}$ is a standard Topicaliging fan for $S(\Gamma)$.
Proof outline:
(1) $\left|T_{\operatorname{mop}}(x, 0)\right| \hookrightarrow\left|\mathcal{F}_{\Gamma}\right|:$ by stellar subdisiscoss of Δ_{n-1} using $\frac{w_{n}}{\left|w_{n-1}\right|}$ exploiting convexity properties of subtrees of Γ, rumoring simplices $\left|W_{v}\right|$ until only $\Gamma \cap \Delta_{n-1}^{\circ}$ remains.
Then : use extended Roficalization T_{0} conclude $\left|T_{\text {mop }}(x, 0) \cap \partial \Delta_{n-1}\right|=$ standard \& $\operatorname{Tap}(x, 0)$ is pure of $\operatorname{dim}=2$.
(2) $\left|\mathcal{F}_{\Gamma}\right| \longrightarrow\left|T_{\text {sup }}(X, 0)\right|:$ by balancing condition (after assigning. weights T_{0} top -cones of \vec{v}_{Γ}.)
(3) \tilde{J}_{Γ} is a standard Thopicalizing fan (check $\left.3 m_{\omega} f_{v, i}\right\}_{v, i}$ is a mg. sep. in $\left.\mathbb{C}_{\{ } \underline{Z}\right\}$ \& use a Lemma of $N W$ that implies $\left\{m_{\omega} f_{v, i}\right\}_{v, i}$ generate the initial ideal in $\omega\left(\left\langle S_{(\Gamma)}\right\rangle\right)$.
Poof of NND: Explicit computation \& analysis of $\left.3 m_{w} f_{v, i}\right\}$ ir w in each call of $\Gamma \cap \mathbb{R}_{>0}^{n}$.

