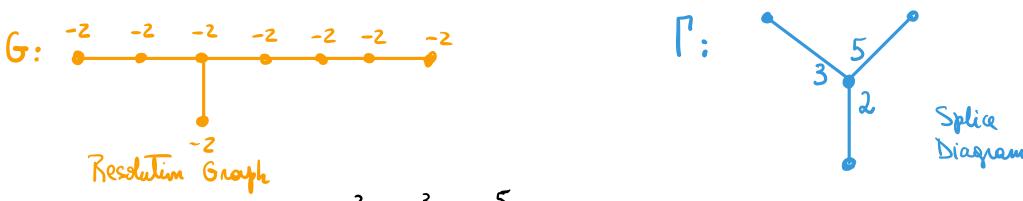


M. Angelica Cueto (The Ohio State University)

joint with Patrick Popescu-Pampu & Dmitry Stepanor (arXiv: 2108-05912)



$$z_1^2 + z_2^3 + z_3^5 = 0$$
 (E_8 - singularity)

SPLICE-TYPE SURFACE SINGULARITIES

- Generalize Brieshorn complete intersections $Z(P_1, ..., P_K)$ (including A_n , E_6 & E_8 de Val sing)

 INPUT: A splice type diagram Γ with z projections $\Gamma = \text{tree}$ with no value z rections (nodes = rections with value > 1)

 leaves =

 - I has protère integer weights on the edges surrounding each node.
- Properties: 1 "Edge Determinant andition" for each pair of adjacent nodes

$$\frac{a_1 u}{a_s r} \frac{v_b}{r} = \frac{v_b}{r} =$$

- 2 "Semigroup anditin" for each pair (v,e): e edge, vee
- $|l_{v,\omega}| =$ linking number of vertices $v \approx \omega'' = \text{product of all weights adjacent}$ To but NOT ON the path joining $v \approx \omega$ in Γ .
- dr = lv, v = product of all weights around v
- → Semigroup Cond: dr ∈ No<lux: X haf of [& ein path [v, X] ∈ [>

Props
$$\begin{cases} 0 & \text{det}([u,v]) := pq - a_1 - a_s b_1 - b_t > 0 \\ 0 & \text{det}([u,v]) := pq - a_1 - a_s b_1 - b_t > 0 \end{cases}$$

EXAMPLES: (1)
$$\lambda_2$$

Britisher n_2
 λ_1
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_2
 λ_2
 λ_1
 λ_2
 λ_2
 λ_2
 λ_2
 λ_1

$$\frac{1}{2} = 30 = 2.3.5$$

$$30 \in \mathbb{N}_{0} < 15 > \checkmark \qquad (v, [v, \lambda_{1}])$$

$$30 \in \mathbb{N}_{0} < 10 > \checkmark \qquad (v, [v, \lambda_{2}])$$

$$30 \in \mathbb{N}_{0} < 6 > \checkmark \qquad (v, [v, \lambda_{3}])$$

Obs: Semigroup and is autmatically true for pairs (v, (v, 2]) with I har of [.

·Nm-trivial Semigp. (mailins to check: (u, [u,v]) & (v, [u,v])

$$\frac{(u,(u,\sigma))}{\omega} = \frac{4z}{4z} \in \mathbb{N}_0 < \frac{1}{2} + \frac{1}{2} = \frac{1}{$$

Q: Why these Z conditions? $(x,0) \hookrightarrow (0^n,0)$ isol normal surfaing $\Sigma = X \cap S_{\varepsilon}^{2n-1}$ link (copt conn.)

Sieben mann (1980) Coprime splice diagrams (pairwise coprime weights near each node)

- . <u>Jieben mann (1980)</u> Coprime splice déagrams (pairwise coprime weights near each node) encode \mathbb{Z} -homology sphere links ($H'(\Sigma, \mathbb{Z}) = 0$) that are graph manifolds (by "plumbing")
- Eisenbud-Neumann (1985) Isolated surface singularities over a with 2-H 53 links arise from coprime splice diagrams with edge determinant andition.
- Neumann (1983): Guasi-homogeneous normal amplex surface singularities with Q-homology sphere links (H'(Z,Q)=0) have Brieshven complete intersections as universal abelian corers. (Pham-Brieshven-Hamm systems)
- · Neumann-Wahl (2005) Copreme splice diagrams give isolated complete intersection surface singularities with Z-HS³ links if I satisfies the semigp andition. ms splice type systems
- · Neumann-Wahl (2002-2005) Fix a splice diagram I with edge det & semi-group anditions from a Q-HS3 link. Then, its universal abelian were is of splice type.
- · Okuma (2006) Universal als corers of ratural or Q-HS3 minimally elliptic & non cuspidal surface singularities ere of splice type.

Q: How to build splice type systems from [?

A: Use the semigroup condition to build val(v)-2 equations for each noch v of [with the same support (Pham-Brieskorn-Hamm systems)

variables = haves of
$$\Gamma$$
, # eqns = Σ (val(v)-2) = # haves of Γ -2 (n in total) (ms expect dim 2)

• Brieskorn
$$(X_{,0}) \hookrightarrow (C_{,0}^{n})$$

$$\lambda_{n}$$

Pham-Brieshorn-Hamm: All maximal nivors of (aij) are nonzero us lisolated sing)

• Splice system by example:
$$\lambda_1 = \frac{\lambda_1}{3} = \frac{\lambda_2}{3} = \frac{\lambda_3}{3} = \frac{\lambda_4}{3} = \frac{\lambda_4}{3} = \frac{\lambda_5}{3} = \frac{\lambda_5}$$

ms 2 different splice systems:

$$(T) \begin{cases} z_1^2 + z_2^3 + z_3^2 z_4 = 0 \\ z_1^2 z_2^2 + z_3^2 + z_4^2 = 0 \end{cases}$$

Neumann-Wahl $(X,0) \longrightarrow (C',0)$ T_{s} $V = e_{2}$ T_{z} S = val(v)

Each Ti gives on nonmial z^{moje}i via the semigroup audition (57 (v,ei) (admissible normials)

 $\begin{array}{lll}
\bullet(s-2) & \text{ Equations at } v \\
\bullet(s-2) & \text{ Equations$

- · Coefficients: (ai,j) i,j has all maximal minors un zero. (Phem-Brieskorn-Hamme)
- . S(T): Splice Type systems: Allow Tails of convergent power series on strict splice systems.
- Tails for v: each monomial must have weight > dv with respect to the weight vector $W_{\mathbf{r}} := (l_{v,\lambda_1}, \ldots, l_{v,\lambda_n}) \in \mathbb{Z}^n$.

$$\frac{\lambda_1}{\lambda_2}$$
 $\frac{2}{3}$
 $\frac{7}{u}$
 $\frac{11}{v}$
 $\frac{2}{5}$
 $\frac{\lambda_2}{\lambda_3}$

 $W_u = (21, 14, 12, 30)$

EXAMPLE:
$$\lambda_1$$
 λ_2 λ_3 λ_4 λ_4 λ_5 λ_5 λ_6 λ

Wrut 60 60 77 lu,v Wrut 110 110 110 dv

NW: Splice systems are quesi-homogeneous with respect to 3 Wr: v node of I}

Thurum (NW 2005) If [satisfies the edge determinant & sunigp. unditions, then $S(\Gamma)$ (with tails) determines an ICIS.

Broof V(S(I), Z=Zn=0) = 208 in Ch for each pair of haves 174 => dim V(S(P)) = 2 & we get CI.

. Inductive explicit resolutions of $V(S(T)) \subseteq (T^n \circ)$ by weights blow-ups (with analytic patches) confirm o is an isoluted singularity.

NATURALNESS OF S(T)

- Q: Why do we need tails a how does the construction depend on the choice of admissible monomials?
- . 16 = 3 2 " v, et a set of admissible numerials for [
- . S(r) x:= } splice type systems using mannials from 16}
- · X 16:= 3 germs (x,0) => In defined by systems from S(T) }
- THMI (NW, CP-PS): If I is coprime, Xx is independent of 16. (can swap admissible manuals by adding tails)
- THM2(NW): IF [is general, we are OK if we only use equivariant tails w.r.t. the discriminant group of the starting plumbing graph of the singularity.

EXAMPLE:
$$\frac{\lambda_1}{2} = \frac{\lambda_2}{4} = 0$$
 (24>24) $\frac{\lambda_3}{4} = \frac{\lambda_1^2 + \lambda_2^2 + \lambda_3 + \lambda_4^2 = 0}{4 = 2 + 2}$ (24>24) $\frac{\lambda_3}{4} = \frac{\lambda_1^2 + \lambda_2^2 + \lambda_3 + \lambda_4^2 = 0}{4 = 2 + 2}$ (24>24) $\frac{\lambda_3}{4} = \frac{\lambda_1^2 + \lambda_2^2 + \lambda_3 + \lambda_4^2 = 0}{4 = 2 + 2}$ (24>24)

MAIN RESULTS [C, Popescu-Pampu, Stepanor]

THM 1: Elementary combinatorial proof of NW Theorem. (via tropical geometry)

THMZ: S(P) is a Newton non-degenerate CI system in the Khovanskie suise.

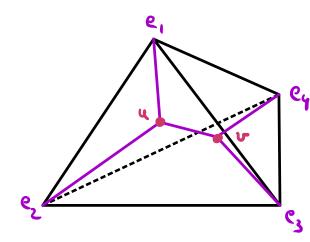
- . It vails, is a regular sequence in C12, ..., 2n1;
 . For each $w \in (\mathbb{R}_{>0})^n$ $in_w f_{v,i} = 0$ v,i defines a normal crossings divisor in a neighborhood of $\bigcap_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty. [equin 3 $\bigvee_{v,i} V(m_w + v,i) \subseteq (\mathbb{C}^k)^n$ if nonempty.

THM3: We view $\Gamma \subseteq \Delta_{n-1} = (n-1)$ standard simplex in \mathbb{R}^n & consider the face $\Gamma = \mathbb{R}$ Γ . Then, the binational map $\Gamma = \mathcal{X}_{\Gamma} = \mathcal{X}_{\Gamma}$ induces a modification $T: \widetilde{X} = T'(X) \longrightarrow X = V(S(P))$ such that $(\widetilde{X}, \partial \mathcal{X}_{F} \cap \widetilde{X})$ is a Toroidal pair (no resolve \widetilde{X} by Toric modifications!)

. Thm 3 extends result of [de Felipe, González-Peres, Mourtada (2021)] = "Any germ of a plane were can be resolved by me Tou's modification after reembedding its ambient sm. germ of surface in sme (1,0)

EXAMPLE:
$$\lambda_1$$
 λ_2 λ_3 λ_4 λ_5 λ_4

$$S(r) = \begin{cases} z_1^2 + z_3^3 + z_3 z_4 = 0 \\ z_1 z_2^2 + z_3^5 + z_4^2 = 0 \end{cases}$$



$$W_{u} = (21, 14, 12, 30)$$

 $W_{v} = (30, 20, 22, 55)$
 $|W_{u}| = 77, |W_{v}| = 127$

- . Stornez convexity projecties ensure this map is impetire (industive procedure = simplices from "star - full sub Trees of [")
- . Check initial forms of 2 equations for w in $\Gamma \cap \Delta_3^\circ$ (x) $\int_{-2}^{2} rodes$

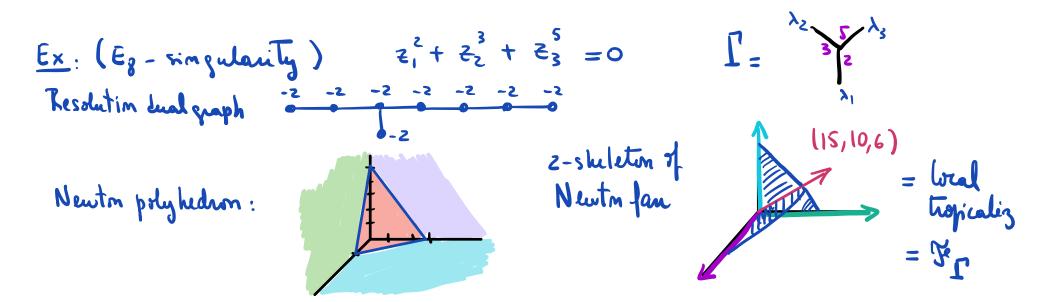
n in Ds. T get a minimial in (f-span of some 3 in w for, it; (so \$ intersection in (1x))

(*) In all 7 cases 3 mw (fu), in w (for) { is a nighter sequence in Ofzi, -, 24}

fu=	2,	+ 22 +	- 2 ₃ 2 ₄		mw(fu) (terms u	ofh MIN W-weight)
Wu -wt	42	42	42	(du)	Fu	>
[2,,4]-wt	24+(1- <u>4)42</u> 77	(1-d) 42 	(1-2) <u>42</u>		23 + 23 24	
[de,u]-wt	11-2) <u>42</u> 77	>	(1-2) <u>42</u>		2 2 + 23 24	>
wr-wt	60	60	77	(L u,v)		
[\	K	K	>		ξ ² + ξ ³	
(dy,v)-wt	*	K	>			
[u,v]-wt	~	K	>		J	>
	Z, 24 +	- 23 +	2 24		inω(f σ)	
W v-uT	110	110	110 [8	_v)	t ⁿ	>— E (
Wu-ut	77	<u>60</u>	60 (0,	(4,4))	
[1,4]	7	*	K		23724	
[hein]	>	*	K			
[4,v] [23,v]	>	K -	*		J 3 4 , 3 2	
[\(\lambda_{4,\text{\text{\$\sigma}}} \)	K	>	*		2,22 + 23 2,24 + 23	>— K

Main Technique: Loral Tropicalization (PP-S (2013))

- . Slogan: Version of tropical germetry in the local setting (U= (12,... 2n3 = ring)
- . $(X_{,o}) \subseteq (\mathbb{C}^{n}, \circ)$ defined by an ideal $I \subseteq \mathcal{O}$
- . Trop $(X,o) = \frac{1}{2} \omega \in (\mathbb{R}_{\geq 0})^n$: $m_{\omega}(I) = \langle m_{\omega} f : F \in I \rangle$ has no manufally
- $T_{wp} = \{ x_{,0} \} = \{ w \in (\mathbb{R}_{>0})^n :$
- <u>Key example</u>: If I is generated by polynomials $\{f_1,...,f_5\}$, set $Y = V(f_1,...,f_5)$ They $(X,o) = \text{Trop}(Y \cap (C^4)^n) \cap \mathbb{R}^n$ (restrict global trop to $\mathbb{R}^n_{\geqslant 0}$)
- Therem: Trop (X,0) is a fan in $\mathbb{R}^n_{>0}$ of dimension = $\dim X$ (local Bieri-Groves) [P-P,S]. If (X,0) is pure $\dim I$, then $\operatorname{Trop}_{>}(X,0)$ is a balanced fan along $\operatorname{culim}_{-1}$ face (if top-faces are weighted appropriately as in the global case)
 - Ex: X=V(f) Trop (X,0) = codin 1 skeleton of Newton fan of f.



Q: What does Trop (X,0) know about (X,0)?

Thurem [C, P-P, S] (Iscal Versin of Tercho's Lemma)

Assume $(X,o) \hookrightarrow (C,o)$ is the dozene of $X \cap (C^{\times})^n \ge X$ is equidim. Fix a fan \mathcal{F} with $|\mathcal{F}| \subseteq \mathbb{R}^n$ & let $\mathbb{T}_{\mathcal{F}} \colon \mathcal{X}_{\mathcal{F}} \longrightarrow C^n$ be the trice morphism defined by \mathcal{F} . Consider X the strict transform of X by $\mathbb{T}_{\mathcal{F}}$ & the restriction $\mathbb{T}: X \to X$. Then:

(1) It is proper \iff $|\mathcal{F}| \supseteq \operatorname{Trop}(X,o)$.

(2) If $|\mathcal{F}| \supseteq \operatorname{Trop}(X,o)$, then:

 $|\mathcal{F}| = |\mathsf{Trop}(\mathsf{X}, o)| \iff \mathsf{codim}_{\mathsf{X}}(\mathcal{O}_{\mathsf{T}} \cap \mathsf{X}) \text{ is the expected one} = \dim \mathsf{G}$

Def: A standard tropicalizing fan $fr(X,0) \longrightarrow (C,0)$ is a fan F with IFI = |Trop(X,0)| & with in U constant along $U \in G^{\circ}$ for each one G of F

Therem [P.P.S] Standard tropicalizing fans always exist. (construct tropical bases)

. Extended Versim is needed to study XNV (3:1,--, 3:1k) (~ Kajiwara-Payne global extended trop)

$$\frac{\text{Ex}}{\text{Trop}(\mathbb{C}^2,0)} = (\mathbb{R}_{>0})^2$$

$$\text{Extended Trop}(\mathbb{C}^2,0)$$

$$\text{Extended Trop}(\mathbb{C}^2,0)$$

Therem [C, P-P, S] The core \mathcal{F}_{Γ}^{c} over the embedded splice diagram $\Gamma \subseteq \Delta_{n-1}$ is a standard tropicalizing for \mathcal{F}_{Γ}^{c} $S(\Gamma)$.

Therem [C, P-P, S] The crue \mathcal{T}_{Γ}^{c} over the embedded splice diagram $\Gamma \subseteq \Delta_{n-1}$ is a standard tropicalizing for \mathcal{T}_{Γ}^{c} $\mathcal{S}(\Gamma)$.

Proof outline:

(1) | Trop (X,0) | $C > |\mathcal{T}_{\Gamma}|$: by stillar subdivisions of Δ_{n-1} using \underline{W}_{Γ} exploiting convexity properties of subtrees of Γ , removing simplices until only $\Gamma \cap \Delta_{n-1}^{\circ}$ remains.

Then: use extended tropicalization to conclude $|\text{Trop}(X,o) \cap \partial \Delta_n| = \frac{\text{standard}}{n-1} = \frac{1}{n}$.

- (2) | Try | C > | Trop (X,0)|: by balancing andition (after assigning weights to top-ones of Fr.)
- 3 In is a standard hopicalizing fan (check 3 mw hv, i $\{v, i\}$ is a rug. seg. in $\{1\}_{2}$ & use a Lemma of NW that implies $\{m_{i}, i\}_{i}$ $\{v, i\}_{i}$ $\{v$

Proof of NND: Explicit computation & analysis of 3 mw fr, if fr w in each all of [n R".