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What is tropical geometry?

• Trop. semiring Rtr :=(R ∪ {−∞},⊕,�), a⊕ b=max{a,b}, a� b=a+b.
• Fix K = C{{t}} field of Puiseux series, with valuation given by lowest
exponent, e.g. val(t−4/3 + 1 + t + . . .) = −4/3, val(0) =∞.

F (x) in K [x±1 , . . . , x
±
n ] Trop(F )(ω) in Rtr[ω

�±
1 , . . . , ω�±n ]

F :=
∑
α

cαxα 7→Trop(F )(ω) :=
⊕
α

− val(cα)�ω�α= max
α
{− val(cα)+〈α,ω〉}.

(F = 0) in (K ∗)n Trop(F ) = {ω ∈ Rn : max in Trop(F )(ω) is not unique}

Example: g = −t3 x3 + t3y3 + t2y2 + (4 + t5)xy + 2x + 7y + (1 + t).
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Tropical Geometry is a combinatorial shadow of algebraic geometry

Input: X ⊂ (K ∗)n irred. of dim d defined by an ideal I ⊂ K [x±1 , . . . , x
±
n ].

Output: Its tropicalization Trop(I ) =
⋂

f ∈I Trop(f ) ⊂ Rn.

• Trop(I ) is a polyhedral complex of pure dim. d & connected in codim. 1.

• Gröbner theory: Trop(I ) = {ω ∈ Rn| inω(I ) 6= 1}.
Weight of ω ∈ mxl cone = #{ components of inω(I )} (with mult.)
With these weights, Trop(I ) is a balanced complex (0-tension condition)

• Fund. Thm. Trop. Geom.: Trop(I ) = {(− val(xi ))n
i=1 : x ∈ X}.

• (K ∗)r action on X via A ∈ Zr×n  Row span (A) in all cones of Trop(I ).
 Mod. out Trop(I ) by this lineality space preserves the combinatorics.

• The ends of a curve Trop(X ) in R2 give a compact toric variety ⊃ X .

Conclusion: Trop(I ) sees dimension, torus actions, initial degenerations,
compactifications and other geometric invariants of X (e.g. degree)

Notice: Trop(X ) is highly sensitive to the embedding of X .
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Grassmannian of lines in Pn−1 and the space of trees

Definition: Gr(2, n) = {lines in Pn−1} := K 2×n
rk 2 /GL2 (dim = 2(n − 2)).

The Plücker map embeds Gr(2, n) ↪→ P(n
2)−1 by the list of 2× 2-minors:

ϕ(X ) = [pij := det(X (i , j))]i<j ∀ X ∈ K 2×n.

Its Plücker ideal I2,n is generated by the 3-term (quadratic) Plücker eqns:

pijpkl − pikpjl + pilpjk (1 6 i < j < k < l 6 n).

Note: (K ∗)n/K ∗ acts on Gr(2, n) via t ∗ (pij) = ti tj pij .

 Tropical Plücker eqns: max{xij + xkl , xik + xjl , xil + xjl}.

Theorem (Speyer-Sturmfels)

The tropical Grassmannian Trop(Gr(2, n) ∩ ((K ∗)(n
2)/K ∗)) in R(n

2)/R·1 is
the space of phylogenetic trees on n leaves:
• all leaves are labeled 1 through n (no repetitions);
• weights on all edges (non-negative weights for internal edges).
It is cut out by the tropical Plücker equations. The lineality space is
generated by the n cut-metrics `i =

∑
j 6=i eij , modulo R·1.
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The space of phylogenetic trees Tn on n leaves

• all leaves are labeled 1 through n (no repetitions);
• weights on all edges (non-negative weights for internal edges).

From the data (T , ω), we construct x ∈ R(n
2) by xpq =

∑
e∈p→q

ω(e):

(ij |kl){
xij = ωi + ωj ,

xik = ωi + ω0 + ωk , . . .

(ij |kl) ∩ (im|kl) ∩ (jm|kl) ∩ . . .

Claim: (T , ω) oo 1−to−1 // x satisfying Tropical Plücker eqns.

Why? (1) max{xij + xkl , xik + xjl , xil + xjk} ⇐⇒ quartet (ij |kl).

(2) tree T is reconstructed form the list of quartets,

(3) linear algebra recovers the weight function ω from T and x.
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Examples:

T4/R3 has f -vector (1, 3). T5/R4 is the cone over the Petersen graph.
f -vector = (1, 10, 15).

dim Gr(2, n) = dim(Trop(Gr(2, n) ∩ R(n
2)−1) = 2(n − 2).
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Constructing nice coordinates for Gr(2, n) from tree space

• We stratify the classical Grassmannian by collecting points according to
the vanishing of prescribed coordinates:

GrJ(2, n) = {p ∈ P(n
2)−1 : pkl = 0⇐⇒ kl ∈ J} for J ∈

(
[n]

2

)
.

Example: For J = ∅ we get Gr∅(2, n) = Gr(2, n) ∩ ((K ∗)(n
2)/K ∗).

Remark: Most J will give GrJ(2, n) = ∅. Meaningful J’s determine m
blocks (of the rank-2 matrix in K 2×n) of maximal linear independent
columns and a (possibly empty) block of (0, 0) columns:

GrJ(2, n) 3
(

x11 x12 . . . x1n

x21 x22 . . . x2n

)
≡
(

B1 . . . Bn 0 . . . 0
)

We identify it with a point in Gr∅(2,m) (pick one column per block!).

Proposition [C.]: Trop(GrJ(2, n)) = Tm with leaves labeled by B1, . . . ,Bm.

Angelica Cueto (Columbia U) Combinatorics in Tropical Geometry May 4th 2015 7 / 16



Constructing nice coordinates for Gr(2, n) from tree space

• We stratify the classical Grassmannian by collecting points according to
the vanishing of prescribed coordinates:

GrJ(2, n) = {p ∈ P(n
2)−1 : pkl = 0⇐⇒ kl ∈ J} for J ∈

(
[n]

2

)
.

Example: For J = ∅ we get Gr∅(2, n) = Gr(2, n) ∩ ((K ∗)(n
2)/K ∗).

Remark: Most J will give GrJ(2, n) = ∅. Meaningful J’s determine m
blocks (of the rank-2 matrix in K 2×n) of maximal linear independent
columns and a (possibly empty) block of (0, 0) columns:

GrJ(2, n) 3
(

x11 x12 . . . x1n

x21 x22 . . . x2n

)
≡
(

B1 . . . Bn 0 . . . 0
)

We identify it with a point in Gr∅(2,m) (pick one column per block!).

Proposition [C.]: Trop(GrJ(2, n)) = Tm with leaves labeled by B1, . . . ,Bm.

Angelica Cueto (Columbia U) Combinatorics in Tropical Geometry May 4th 2015 7 / 16



How to compactify Tn?

• Write TP(n
2)−1 := (R ∪ {−∞})(n

2) r (−∞, . . . ,−∞))/R·(1, . . . , 1)

• Compactify Tn using Trop(Gr(2, n)) ⊂ TP(n
2)−1.

• Cell structure? Generalized space of phylogenetic trees [C.].
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Choosing coordinates for Gr(2, n): from tropical to classical

Write: Gr(2, n) =
⋃
i<j

Uij , where Uij = {p ∈ Gr(2, n) : pij 6= 0}.

Can fix pij = 1, so

Trop(Uij) = {x ∈ Trop(Gr(2, n)) : xij = 0} ∈ R(n
2)−1

.

Now change coordinates to ukl := pkl/pij for kl 6= ij . The Plücker eqns

pijpkl − pikpjl + pilpjk (1 6 i < j < k < l 6 n).

yield the dependency ukl = uikujl − uilujk .

Conclusion: We parameterize Uij by the 2(n − 2) coordinates

{uik , ujk : k 6= i , j}.

BIG ISSUE: these coordinates are not well adapted to the tree space.
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• We view Trop(Gr(2, n)) =
⋃

T∈Tn
CT inside T(n

2)−1.

Remark: A pt. lies in CT if and only if it satisfies the 4-pt conds. for T .

For each valid J, we pick ij /∈ J and view each tree in “caterpillar form”

Figure: From left to right: the caterpillar tree on n leaves with endpoint leaves i
and j , and the path from leaf i to j on a tree arranged in caterpillar-like form.
The labeled triangles indicate subtrees of the original tree. The backbone of the
caterpillar tree is the chain graph with m + 2 nodes given by the horizontal path
from i to j . The trees T1, . . . ,Tm need not be trivalent.
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GOAL: Adapt our choice of 2(n − 2) coords. I ∈
([n]

2

)
for Uij ⊂ GrJ(2, n)

to:
(1) the indexing pair ij ,
(2) the tree T and,
(3) a vanishing set J, with ij /∈ J.

We do so by first constructing a suitable partial order � on [n] r {i , j}:

Definition

Let i , j be a pair of indices, and let � be a partial order on the set
[n] r {i , j}. Let T be a tree on n leaves arranged in caterpillar form with
backbone i–j . We say that � has the cherry property on T with respect to
i and j if the following conditions hold:

(i) Two leaves of different subtrees Ta and Tb can’t be compared by �.

(ii) The partial order � restricts to a total order on the leaf set of each
Ta, a = 1, . . . ,m.

(iii) If k ≺ l ≺ v , then either {k , l} or {l , v} is a cherry of the quartet
{i , k , l , v} (and hence also of {j , k , l , v}).

Angelica Cueto (Columbia U) Combinatorics in Tropical Geometry May 4th 2015 12 / 16



GOAL: Adapt our choice of 2(n − 2) coords. I ∈
([n]

2

)
for Uij ⊂ GrJ(2, n)

to:
(1) the indexing pair ij ,
(2) the tree T and,
(3) a vanishing set J, with ij /∈ J.

We do so by first constructing a suitable partial order � on [n] r {i , j}:

Definition

Let i , j be a pair of indices, and let � be a partial order on the set
[n] r {i , j}. Let T be a tree on n leaves arranged in caterpillar form with
backbone i–j . We say that � has the cherry property on T with respect to
i and j if the following conditions hold:

(i) Two leaves of different subtrees Ta and Tb can’t be compared by �.

(ii) The partial order � restricts to a total order on the leaf set of each
Ta, a = 1, . . . ,m.

(iii) If k ≺ l ≺ v , then either {k , l} or {l , v} is a cherry of the quartet
{i , k , l , v} (and hence also of {j , k , l , v}).

Angelica Cueto (Columbia U) Combinatorics in Tropical Geometry May 4th 2015 12 / 16



Figure: Inductive definition of the order �a on the leaves of the subtree Ta

(s ≺a t, t is maximal) by example. We add one leaf or one cherry at a time so
that the corresponding new leaf or leaves are smaller than the previous ones in
the order �a. When adding a cherry, we arbitrarily order its two leaves as well.
The grey dot with label 0 in Ta is internal in T . Broken leaf edges, such as the
one in the third tree from the left, should be thought of as straight edges. The
edge adjacent to the grey node with label 0 could be contracted.
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• Fix two indices {i , j}, a “caterpillar like” tree T with backbone i–j , and
a vanishing set J. Fix a partial order � on [n] r {i , j} having the cherry
property on T . Let I ⊂

([n]
2

)
be a set of size 2(n − 2) not containing ij .

• J(ij) := J ∩ {ik , jk : k 6= i , j}, and

Definition

We say that I is compatible with � and J(ij) if for each index a = 1, . . . ,m
and each leaf k ∈ Ta, exactly one of the following condition holds:

(i) ik and jk ∈ I , and for all l ≺ k we have il or jl ∈ J(ij); or

(ii) ik /∈ I , jl ∈ I for all l ∈ Ta, and there exists t ≺ k in Ta where
it, jt /∈ J(ij). If t is the maximal element with this property, then
kt ∈ I ; or

(iii) jk /∈ I , il ∈ I for all l ∈ Ta and there exists t ≺ k in Ta where
it, jt /∈ J(ij). If t is the maximal element with this property, then
kt ∈ I .

Theorem [C.-Häbich-Werner]: The coordinates I are well adapted as
liftings of points from CT ∩ Trop(GrJ(2, n)) to GrJ(2, n).
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Why pick these compatibility properties? Fix T as in the figure. For
each a = 1, 2, 3, we let Ia := {kl ∈ I : k or l ∈ Ta}. Thus, I = I1 t I2 t I3.
• |T1| = 1, so I1 = {i1, j1} independently of J.
• If i2 or j2 ∈ J, then I3 = {i2, j2, i3, j3} in agreement with condition (i).
On the contrary, if i2, j2 /∈ J then we can choose between
I3 = {i2, j2, j3, 32} (since (ii) is satisfied) or I3 = {i2, j2, i3, 32} (by (iii)).
• Choice of I2, depends on J2(ij) := {ik ∈ J : k ∈ T2} ∪ {jk ∈ J : k ∈ T2}.
Example 1: If ∅ 6= J2(ij) ⊆ {i4, j4}, then we can take either
I2 = {i4, j4, i5, j5, i6, 65, i7, 76} or I2 = {i4, j4, i5, j5, j6, 65, j7, 76}.
Notice that in both cases i5, j5 ∈ I2 by condition (i).
Example 2: If ∅ 6= J2(ij) ⊆ {i7, j7}, we can take either
I2 = {i4, j4, i5, 54, i6, 65, i7, 76} or I2 = {i4, j4, j5, 54, j6, 65, j7, 76}.
Example 3: Finally, assume J2(ij) = {j5, j6}. Then, we may choose
I2 = {i4, j4, i5, 54, i6, 64, i7, 74} or I2 = {i4, j4, j5, 54, j6, 64, j7, 74}.

• i = 1, j = 2,
• ≺ is the natural order on
{3, . . . , 7}.
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Example:Coordinate changes when n = 4 and i = 1, j = 2.

• If T is the quartet (13|24) or (14|23), we pick our coordinates to be
u13, u23, u14, u24. We derive the value of u34 from u34 = u13u24 − u14u23.

• If T is the quartet (12|34), then the choice of coordinates depends on J.
We choose the order 3 ≺ 4:

(1) If 13, 23 /∈ J, we take I = {13, 23, 34, 14}. The expression for u24 is

u24 = u−1
13 (u34 + u14u23)

Note: we must have u13 6= 0 (this follows from 13 /∈ J).

(2) If 13 or 23 ∈ J, then I = {13, 23, 14, 24} and u34 = u13u24 − u14u23.
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