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@ GOAL: Study the affine cone over the first secant variety of a

monomial curve ‘ ‘ .
b (1" ot 0 t™).

o STRATEGY: Compute its tropicalization, which is a pure, weighted
balanced rational polyhedral fan of dim. 4 in R"*! with a
2-dimensional lineality space

R(1, (0, 41,42, ..., in)).

We encode it as a weighted graph in an (n — 2)-dim’l sphere.
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@ GOAL: Study the affine cone over the first secant variety of a
monomial curve ‘ ‘ .
b (1" ot 0 t™).

o STRATEGY: Compute its tropicalization, which is a pure, weighted
balanced rational polyhedral fan of dim. 4 in R"*! with a
2-dimensional lineality space

R(1, (0, 1,42, . .. ,in))-

We encode it as a weighted graph in an (n — 2)-dim’l sphere.

@ Why? Given the tropicalization 7 X of a projective variety X, we can
recover useful information about X. E.g.: its Chow polytope (hence,
its degree, ...).

e Main examples: monomial curves C' in P*.
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@ GOAL: Study the affine cone over the first secant variety of a
monomial curve ‘ ‘ .
b (1" ot 0 t™).

o STRATEGY: Compute its tropicalization, which is a pure, weighted
balanced rational polyhedral fan of dim. 4 in R"*! with a
2-dimensional lineality space

R(1, (0, 1,42, . .. ,in))-

We encode it as a weighted graph in an (n — 2)-dim’l sphere.

@ Why? Given the tropicalization 7 X of a projective variety X, we can
recover useful information about X. E.g.: its Chow polytope (hence,
its degree, ...).

e Main examples: monomial curves C in P4, ~» Compute Newton
polytope of the defining equation of Sec!(C).
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sect(C)={a-p+b-q|(a:b) €PL p,qe C}c (CHL
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sect(C)={a-p+b-q|(a:b) €PL p,qe C}c (CHL

e Pick points p = (1 : ¢ :...:tn), g=(1:s":...:5™)in C. Use the
monomial change of coordinates b = —\a, t = ws, and rewrite
v=a-p+b-q, as

vp = as™ - (W% — \) for all k =0,...,n.

~———
eC € surface Z
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sect(C)={a-p+b-q|(a:b) €PL p,qe C}c (CHL

e Pick points p = (1 : ¢t :...:t"), g=(1:s":...:5")in C. Use the
monomial change of coordinates b = —\a, t = ws, and rewrite
v=a-p+b-q, as

vp = as™ - (W% — \) for all k =0,...,n.
R
eC € surface Z
Definition

Let X,Y C (C*)V be two subvarieties of tori. The Hadamard product of
X and Y equals X .Y = {(zoyo,...,Tnyn) |7 € X,y € Y} C (C*)V.
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Theorem ([C. - Tobis - Yu], [Allermann-Rau], ...)

Let X, Y C (C*)N be closed subvarieties and consider their Hadamard
product X .Y C (C*)N. Then as sets: T(X.Y)=TX +7TY.

Corollary ([C. - Lin])

Given a monomial curve C: t +— (1 : ¢ : ... : "), and the surface Z:
A w) = (1= wh — X ... wn —X) C (C)FL. Then:

TSec!(C)=TZ+R®z A

where A = Z(1, (0,11, ...,i,)) generates the lineality space of T Sec'(C).

v
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Theorem ([C. - Tobis - Yu], [Allermann-Rau], ...)

Let X, Y C (C*)N be closed subvarieties and consider their Hadamard
product X .Y C (C*)N. Then as sets: T(X.Y)=TX +7TY.

Corollary ([C. - Lin])

Given a monomial curve C: t +— (1 : ¢ : ... : "), and the surface Z:
(A w) = (L= A wit — A,...,win — A) C (C)™L. Then:

TSec!(C)=TZ+R®z A

where A = Z(1, (0,11, ...,i,)) generates the lineality space of T Sec'(C).

v

Strategy
@ Construct the weighted graph 7 Z.

e Modify TZ to get a weighted graph representing 7 Sec!(C) as a
weighted set.
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Construction of 77

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider (C*)N with coordinate functions t1,...,tx, and let Z C (C*)N
be a closed smooth surface. Suppose Z O Z is any compactification
whose boundary D is a smooth divisor with C.N.C. Let D+, ..., D,, be the
irred. comp. of D, and write A for the graph on {1,...,m} defined by

{k;, kj} €EA < DN ij £ 0.
We realize A in RN via {k} — [Dy]:=(valp,(t1), ..., valp,(tn))EZY.

Then, T Z is the cone over this graph in RY.
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Construction of 77

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider (C*)N with coordinate functions t1,...,ty, and let Z C (C*)N
be a closed smooth surface. Suppose Z O Z is any compactification
whose boundary D is a smooth divisor with C.N.C. Let D+, ..., D,, be the
irred. comp. of D, and write A for the graph on {1,...,m} defined by

{ki,k}j} €A <— Dkl N Dk]. =£ 0.
We realize A in RN via {k} — [Dy]:=(valp,(t1), ..., valp,(tn))EZY.

Then, T Z is the cone over this graph in RV,

Theorem ([C.])

Combinatorial formula for computing the weights of the edges of A.
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e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~ Find nice
compactification by resolving singularities!
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e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~ Find nice
compactification by resolving singularities!
e Recall: 8: X — Z C (CH)™, (\w) — (1 =X\ wh — )\ ... wh — )

and .
X =(CH2~ | wh —X=0).
=0

e |dea: work with X instead of Z and use 3 to translate back to Z.
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e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~ Find nice
compactification by resolving singularities!
e Recall: 8: X — Z C (CH)™, (\w) — (1 =X\ wh — )\ ... wh — )

and
n

X =(CH2~ | wh —X=0).
§=0
e |dea: work with X instead of Z and use 3 to translate back to Z.
e Compactify X inside P? and extend 3 to 3: P? D X «— (C*)"+1,

Our boundary divisors in X C P? are D;, = (wiﬂ' —A=0) (j=0,...,n), Do.
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e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~ Find nice
compactification by resolving singularities!
e Recall: 8: X — Z C (CH)™, (\w) — (1 =X\ wh — )\ ... wh — )

and
n

X =(CH2~ | wh —X=0).
§=0
e |dea: work with X instead of Z and use 3 to translate back to Z.
e Compactify X inside P? and extend 3 to 3: P? D X «— (C*)"+1,
Our boundary divisors in X C P? are D;, = (wiﬂ' —A=0) (j=0,...,n), Do.

e Triple intersections at: the origin, a point at infinity and at points in
(C*)2. ~» Three types of points to blow-up!
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e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~ Find nice
compactification by resolving singularities!
e Recall: 8: X — Z C (CH)™, (\w) — (1 =X\ wh — )\ ... wh — )
and .
X =(CH2~ | wh —X=0).

§=0
e |dea: work with X instead of Z and use (3 to translate back to Z.
e Compactify X inside P? and extend 3 to 3: P? D X «— (C*)"+1,
Our boundary divisors in X C P? are D;, = (wiﬂ' —A=0) (j=0,...,n), Do.

e Triple intersections at: the origin, a point at infinity and at points in
(C*)2. ~» Three types of points to blow-up!

e The resolution diagrams come in three flavors: two caterpillar trees
and families of star trees. We glue together these graphs along common
nodes to obtain the intersection complex A from the theorem.
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Three flavors of resolution diagrams

E; E;, ‘- Eij Eij+1 By, Ei,,

D;, D, ‘- Dij Dij+1 ©o+ D, , D;,_,

ij i1 " in—2 in—1 D;

D,

7

hiy hiy -+ hij h'ij+1 ot hiy oy hi,, a= {Zjﬂ e 7ij}

for all subsets a C {0,41,...,i,} of size > 2 obtained by intersecting an
arithmetic progression in Z with the index set.

e Glue together along common nodes D;;'s.
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Our favorite example: {0, 30,45, 55,78} (K. Ranestad)

(0<j<n)
M.A. Cueto (UC Berkeley)

Tropical Secant Graphs

e 15 vertices (excluding degree
2 nodes E;;(), Fijaik)

e Five red non-bivalent (unla-
beled) nodes F;:

Fo304555,78 = (1,1,1,1,1),
Fos0a578 = (1,1,1,0,1),
Fosoasss = (1,1,1,1,0),
Fo 30,45 =(1,1,1,0,0),
Fo,30,78 =(1,1,0,0,1).

8/
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Reduction rules: from 727 to TSec'C =TZ +R® A

° Fﬂ,il,.-.,’in =1eR® A ) Eij = h”ij (mOd R® A)
Eiy=i1-Fiy i, 5 Ei,, = (in — in—1) - Fovilv---vin—l(mOd R®A)
with Eil, and F07Z'17.,,"

~~ Eliminate all hij, Foiv,...in: glue F .

In? yin
with E; ., in the graph of 7 2.
e Eliminate all edges o in the graph of 7Z s.t. R>g(c) + R® A is not
4-dim’l.
Theorem ([C. - Lin])

We describe T Sec'C' by a weighted graph obtained by gluing the graphs
Eiy Ei, - By B D;. Ds Di;,

i1 " Din—g Hin_y

Di, Di, - Di; Dy, D, Di i

C_L7'é {O,il,...,in}
along all nodes Dij, and gluing together E;, = Fy, ., Ei, = Fo. 4, ;-
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e Known degree: 1820 (K. Ranestad).

e Using out tropical approach:

o multidegree w.r.t. A:
(1820, 76 950)

@ Newton polytope of
Sect(C). Ess
e f-vector=(24, 38, 16). F,30,45,55
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