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Outline

1 Introducing our favorite graphs: the abstract tropical secant surface
graph and the master graph.

2 What is behind these graphs?  A surface in Pn parameterized by
binomials, and its tropicalization.

3 Geometric tropicalization by example (with lots of blow-ups!)

4 Towards the first secant of monomial curves in Pn  Our other two
favorite graphs: the tropical secant graph and its planar buddy, the
Gröbner tropical secant graph.

5 The hypersurface case: from the tropical secant graph to the Newton
polytope.
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The abstract tropical secant surface graph

• Fix n ≥ 4 and n coprime distinct integers I := {0 = i0 < i1 < . . . < in}.
• Consider all sequences a ⊂ I arising from arith. prog. in Z, with |a| ≥ 2.

• Build two caterpillar trees GE,D, Gh,D and a family of star trees GFa,D:

a = {ij1 , . . . , ijk}

• Glue the graphs GE,D, Gh,D and GFa,D along common nodes to form
the abstract tropical secant surface graph.

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 3 / 16



The abstract tropical secant surface graph

• Fix n ≥ 4 and n coprime distinct integers I := {0 = i0 < i1 < . . . < in}.
• Consider all sequences a ⊂ I arising from arith. prog. in Z, with |a| ≥ 2.
• Build two caterpillar trees GE,D, Gh,D and a family of star trees GFa,D:

a = {ij1 , . . . , ijk}

• Glue the graphs GE,D, Gh,D and GFa,D along common nodes to form
the abstract tropical secant surface graph.

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 3 / 16



The abstract tropical secant surface graph

• Fix n ≥ 4 and n coprime distinct integers I := {0 = i0 < i1 < . . . < in}.
• Consider all sequences a ⊂ I arising from arith. prog. in Z, with |a| ≥ 2.
• Build two caterpillar trees GE,D, Gh,D and a family of star trees GFa,D:

a = {ij1 , . . . , ijk}

• Glue the graphs GE,D, Gh,D and GFa,D along common nodes to form
the abstract tropical secant surface graph.

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 3 / 16



The master graph (a.k.a. the tropical secant surface graph)

It is defined by a weighted embedding of the abstract graph in Rn+1.

Definition (master graph)

1 Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

2 Eij = (0, i1, . . . , ij−1, ij , . . . , ij) (1 ≤ j ≤ n− 1),

3 hij = (−ij ,−ij , . . . ,−ij ,−ij+1, . . . ,−in) (1 ≤ j ≤ n− 1),

4 Fa =
∑

ij∈a ej for a ⊆ {0, i1, . . . , in} arith. progr., |a| ≥ 2.

The edges have weights:

1 mDij
,Eij

= gcd(i1, . . . , ij), mDij
,hij

= gcd(ij , . . . , in),

2 mDi0
,hi1

= 1, mDin ,Ein−1
= gcd(i1, . . . , in−1), mDin ,hin−1

= in,

3 mEij
,Eij+1

= gcd(i1, . . . , ij), mhij
,hij+1

= gcd(ij+1, . . . , in),

4 mFa,Dij
=
∑

r ϕ(r), where we sum over all common diff. r of all
possible arith. prog. containing ij and giving a. Here, ϕ is Euler’s phi.
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Our favorite example: I = {0, 30, 45, 55, 78} (K. Ranestad)

• 9 bivalent nodes Fij ,ik are
eliminated from the picture
and replace its two adjacent
edges by edge DijDik .
• 16 vertices (incl. bivalent
node E30), and 36 edges.
• Five red non-bivalent (unla-
beled) nodes Fa:

F0,30,45,55,78 = (1, 1, 1, 1, 1),
F0,30,45,78 = (1, 1, 1, 0, 1),
F0,30,45,55 = (1, 1, 1, 1, 0),
F0,30,45 = (1, 1, 1, 0, 0),
F0,30,78 = (1, 1, 0, 0, 1).
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Remark (Disclaimer)

1 If a = {ij , ik}, we eliminate the bivalent node Fa, replacing its two
adj. edges by a single edge DijDik , with the inherited weight.

2 Ei1 is bivalent node, but we keep this one to simplify notation.

3 Fij1 ,...,ijk
is a node ⇐⇒ gcd(ijk − ij1 , . . . , ij2 − ij1) 6= 1,

k maximal with the same gcd.

Theorem ( — - Lin)

The master graph satisfies the balancing condition.
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The master graph is a tropical surface

Definition

For an irreducible algebraic variety X ⊂ TN = (C∗)N with defining ideal
I = I(X) ⊂ C[x±1

1 , . . . , x±1
N ], the tropicalization of X or I is defined as:

T (X) = T (I) = {w ∈ QN | 1 /∈ inw(I)}

where inw(I) = 〈inw(f) : f ∈ I〉, and inw(f) is the sum of all nonzero
terms of f =

∑
α cαx

α such that α · w is minimum.

Remark
1 T (X) is a pure dimX-dim’l poly. subfan of the Gröbner fan of I(X).

2 The lineality space of the fan T (X) is the set

L = {w ∈ T X : inw(I) = I}.
It describes action of the maximal torus acting on X (by the lattice
Λ := L ∩ Zn+1).

 View T X in the (N − rk Λ− 1)-sphere of RN/L.
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• A point w ∈ T X is regular if T X is a linear space locally near w.

• We can assing a positive multiplicity to every maximal cones in T X, and
give regular points the multiplicity of the corresp. mxl. cone.

• Tropical varieties satisfy the balancing condition.

Theorem (— - Lin)

Let Z ⊂ Tn+1 be the surface parameterized by

(λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ).

Then, the cone over the master graph is the tropical surface T Z.

• Main tool: “Geometric Tropicalization” (Hacking-Keel-Tevelev)

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 8 / 16



• A point w ∈ T X is regular if T X is a linear space locally near w.

• We can assing a positive multiplicity to every maximal cones in T X, and
give regular points the multiplicity of the corresp. mxl. cone.

• Tropical varieties satisfy the balancing condition.

Theorem (— - Lin)

Let Z ⊂ Tn+1 be the surface parameterized by

(λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ).

Then, the cone over the master graph is the tropical surface T Z.

• Main tool: “Geometric Tropicalization” (Hacking-Keel-Tevelev)

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 8 / 16



• A point w ∈ T X is regular if T X is a linear space locally near w.

• We can assing a positive multiplicity to every maximal cones in T X, and
give regular points the multiplicity of the corresp. mxl. cone.

• Tropical varieties satisfy the balancing condition.

Theorem (— - Lin)

Let Z ⊂ Tn+1 be the surface parameterized by

(λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ).

Then, the cone over the master graph is the tropical surface T Z.

• Main tool: “Geometric Tropicalization” (Hacking-Keel-Tevelev)

M.A. Cueto et al. (UC Berkeley) Tropical Secant Graphs January 25th 2010 8 / 16



Geometric tropicalization for SURFACES: an overview

• IDEA: Given β :T2⊃X ↪→TN, compute T β(X) from the geometry of X.

Theorem (Geometric Tropicalization [Hacking-Keel-Tevelev])

Consider TN with coordinate functions t1, . . . , tN , and let Y ⊂ TN be a
closed smooth surface. Suppose Ȳ ⊃ Y is any compactification whose
boundary D is a smooth divisor with C.N.C. Let D1, . . . , Dm be the irred.
comp. of D, and write ∆ for the graph on {1, . . . ,m} defined by

{ki, kj} ∈ ∆ ⇐⇒ Dki
∩Dkj

6= ∅.

Let [Dk]:=(valDk
(t1), . . . , valDk

(tN ))∈ZN,and [σ] := N0〈[Dk] : k ∈ σ〉, for
σ ∈ ∆. Then,

T Y =
⋃
σ∈∆

Q≥0[σ].

Our contribution

mw =
∑

σ∈∆ s.t. w∈Q≥0[σ](Dk1 ·Dk2) index
(
(Q⊗Z [σ]) ∩ ZN : Z[σ]

)
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• How to proceed if Y doesn’t satisfy the hypothesis?  Find nice
compactification!

• Instead: work over the domain. Compactify X inside P2 and pick the
map: β : P2 ⊃ X → Tn+1, where

βj := fhij (ω, λ, u)/udeg fij =
(
udeg fij fij (ω/u, λ/u)

)
/udeg fij .

Our boundary divisors in X̄ are Dij = (fhij = 0), D∞ = (u = 0), and

β∗(tj) = Dij − deg(fij )D∞,

• These divisors have triple intersections at: the origin, at infinity and at
points in T2.  Three types of points to blow-up!
• The resolution diagrams at each one of these singularities are the three
types of subgraphs of our original abstract graph, after contracting
bivalent exc. divisors. The exceptional divisors will give us the nodes Eij ,
hij or Fa resp. and the graph ∆ is our abstract graph.
• Why Fa? If Dij1

, . . . , Dijk
intersect at p ∈ T2 then p = (ζ, ζij1 ) and ζ is

a prim. qth-root of unity for some q | gcd(ij2 − ij1 , . . . , ijk − ij1). So

a = {ij1 , . . . , ijk} 
∑
q

ϕ(q) exc. divisors Fa,ζ , BUT [Fa,ζ ] = [Fa,ζ′ ] := Fa.
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From the master graph to the secant of monomial curves

Let C be the monomial projective curve (1 : ti1 : . . . : tin) parameterized
by n coprime integers 0 < i1 < . . . < in. By def.

Sec1(C) = {a · p(t) + b · p(s) : (a : b) ∈ P1, p(t), p(s) ∈ C} ⊂ Tn+1.

• Use the monomial change of coordinates b = −λa, t = ωs, and rewrite
v = a · p(t) + b · p(s) as

vk = asik︸︷︷︸
∈C̃

· (ωik − λ)︸ ︷︷ ︸
∈Z

for all k = 0, . . . , n,

where C̃ is the cone in Tn+1 over the curve C.

Definition

Let X,Y ⊂ TN be two subvarieties of tori. The Hadamard product of X
and Y equals X � Y = {(x0y0, . . . , xnyn) |x ∈ X, y ∈ Y } ⊂ TN .

• Hadamard products have nice tropicalizations...
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Theorem (— -Tobis-Yu, Fink)

Let X,Y ⊂ TN closed subvarieties and consider their Hadamard product
X � Y ⊂ TN . Then as weighted sets: T (X � Y ) = T X + T Y.

Corollary (— - Lin)

Given a monomial curve C: t 7→ (1 : ti1 : . . . : tin), and the surface Z:
(λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ) ⊂ Tn+1. Then:

T (Sec1(C)) = T Z + T C̃ = T Z + R⊗Z Λ

where Λ = Z〈1, (0, i1, . . . , in)〉 is the intrinsic lin. lattice of T (Sec1(C)).

Corollary

Modify the master graph (T Z) to get a weighted graph representing
(T (Sec1(C))) as a set. We call it the tropical secant graph (TSG).

• Question: How to compute weights/multiplicities?
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Theorem (Sturmfels-Tevelev-Yu)

Let A ∈ Zd×N , defining a monomial map α : TN → Td and a canonical
linear map A : RN → Rd. Let V ⊂ TN be a subvariety. Then

T (α(V )) = A(T (V )).
Moreover, if α induces a generically finite morphism on V of degree δ, the
multiplicity of T (α(V )) at a regular point w equals

mw =
1
δ
·
∑
v

mv · index (Lw ∩ Zd : A(Lv ∩ ZN )),

where the sum is over all points v ∈ T (V ) with Av = w. We also assume
that the number of such v’s is finite, all of them are regular in T (V ), and
Lv,Lw are linear spans of nbd. of v ∈ T (V ) and w ∈ A(T (V )) resp.

In our case: V = C̃ × Z and α is the monomial map associated to the
matrix (Idn+1 | Idn+1). Here v = (c, z) and mv = mc ·mz = mz.

Proposition

The generic fiber of α|V has size δ = 2.

(Reason: Almost all points in Sec1(C) lie in a unique secant line.)
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Lemma (Which edges σ of the master graph survive in the tropical
secant graph TSG and what are their fibers)

1 The points F0,i1,...,in , D0 + hi1 , (in − in−1)Din + Ein−1 and
(in − in−1)Din + hin−1 ∈ Λ, so the corresp. edges dissapear in TSG.

2 Eij ≡ hij modulo the lattice Λ, so all nodes hij dissapear in TSG.

3 The fibers of A at points in the cones 〈FaDij 〉+ R⊗Λ (a 6= b, e) and
〈DijDik〉+ R⊗ Λ have size 1 (e = I r {0}, b = I r {in}.)

4 i1Fe = Ei1 . Hence the fiber of A at pts. in 〈Ei1 , Di1〉+R⊗ Λ has
size 2 (if ∃Fe) or 1 (if @Fe). The edges FeDi1 and Di1Ei1 coincide in
the TSG.

5 Fb ≡ Ein−1 mod Λ. Hence, the fiber of A at pts in
〈Ein−1 , Din−1〉+ R⊗ Λ has size 2 (if ∃Fb) or 1 (if @Fb). The edges
FbDin−1 and Ein−1Din−1 coincide in the TSG.

6 All other fibers have size one and the edges survive in the TSG.
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Theorem (— - Lin)

• Complete description of the tropical secant graph:

Nodes(TSG) := {D0, Din}
⋃
{Dij , Eij : 1 ≤ j ≤ n− 1}

⋃
{Fa : a},

where a ( {0, i1, . . . , in} varies among all proper maximal arithmetic
progression containing at least two elements and such that a 6= b, e.

Edges(TSG):={EijEij+1}1≤j≤n−2

⋃
{DijEij}1≤j≤n−1

⋃
{FaDij |ij ∈ a},

plus the sets {Ein−1Dij}0≤j≤n−2 (if ∃Fb) and/or {Ei1Dij}2≤j≤n (if ∃Fe).

• We give explicit formulas to compute all multiplicities.
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The first secant of the curve (1 : t30 : t45 : t55 : t78)

• Known degree: 1820 (K. Ranestad).

• Our method: gives the multidegree (1820, 76950) w.r.t. Λ and the
Newton polytope. In part., f -vector=(24, 38, 16).
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Note: 6 green nodes ↔ crossings of edges in TSG. (hidden from us!)
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