## Implicitization of surfaces via Geometric Tropicalization

### María Angélica Cueto

Columbia University

ELGA 2011 - Advanced Workshop La Cumbre, Córdoba, Argentina August 8th 2011

#### Three references:

Sturmfels, Tevelev, Yu: The Newton polytope of the implicit equation (2007)
Sturmfels, Tevelev: Elimination theory for tropical varieties (2008)
MAC: arXiv:1105.0509 (2011)

(and many, many more!)

## Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials  $f_1, f_2, \ldots, f_n \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$ .

Algebraic Output: The *prime* ideal I defining the Zariski closure Y of the image of the map:

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^d \dashrightarrow \mathbb{T}^n$$

The ideal I consists of all polynomial relations among  $f_1, f_2, \ldots, f_n$ .

Existing methods: Gröbner bases and resultants.

- GB: always applicable, but often too slow.
- Resultants: useful when n = d + 1 and I is *principal*, with limited use.

## Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials  $f_1, f_2, \ldots, f_n \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$ .

Algebraic Output: The *prime* ideal I defining the Zariski closure Y of the image of the map:

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^d \dashrightarrow \mathbb{T}^n$$

The ideal I consists of all polynomial relations among  $f_1, f_2, \ldots, f_n$ .

Existing methods: Gröbner bases and resultants.

- GB: always applicable, but often too slow.
- Resultants: useful when n = d + 1 and I is *principal*, with limited use.

Geometric Output: Invariants of Y, such as dimension, degree, etc.

## Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials  $f_1, f_2, \ldots, f_n \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$ .

Algebraic Output: The *prime* ideal I defining the Zariski closure Y of the image of the map:

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^d \dashrightarrow \mathbb{T}^n$$

The ideal I consists of all polynomial relations among  $f_1, f_2, \ldots, f_n$ .

Existing methods: Gröbner bases and resultants.

- GB: always applicable, but often too slow.
- Resultants: useful when n = d + 1 and I is *principal*, with limited use.

Geometric Output: Invariants of Y, such as dimension, degree, etc.

**Punchline:** We can *effectively* compute them using tropical geometry.

**TODAY:** Study the case when d = 2 and **Y** is a surface.

## Example: parametric surface in $\mathbb{T}^3$

Input: Three Laurent polynomials in two unknowns:

$$\begin{cases} x = f_1(s, t) = 3 + 5 s + 7 t, \\ y = f_2(s, t) = 17 + 13 t + 11 s^2, \\ z = f_3(s, t) = 19 + 47 st, \end{cases}$$

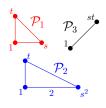
Output: The Newton polytope of the implicit equation g(x, y, z).

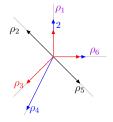
The Newton polytope of g is the convex hull in  $\mathbb{R}^3$  of all lattice points (i,j,k) such that  $x^i y^j z^k$  appears with *nonzero* coefficient in g(x,y,z).

STRATEGY: Recover the Newton polytope of g(x, y, z) from the **Newton** polytopes of the input polynomials  $f_1$ ,  $f_2$ ,  $f_3$ .

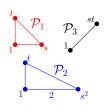
$$Y = \begin{cases} x = f_1(s, t) = 3 + 5s + 7t, \\ y = f_2(s, t) = 17 + 13t + 11s^2, & \text{where } x = f_3(s, t) = 19 + 47st, \end{cases}$$
 where \text{Newton polytope of } g(x, y, z).

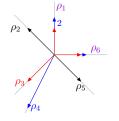
$$Y = \begin{cases} x = f_1(s, t) = 3 + 5s + 7t, \\ y = f_2(s, t) = 17 + 13t + 11s^2, & \text{where } \text{Newton polytope of } g(x, y, z). \\ z = f_3(s, t) = 19 + 47st, \end{cases}$$

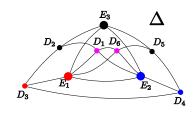




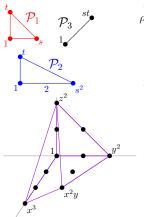
$$Y = \begin{cases} x = f_1(s, t) = 3 + 5 s + 7 t, \\ y = f_2(s, t) = 17 + 13 t + 11 s^2, \\ z = f_3(s, t) = 19 + 47 st, \end{cases}$$
 \times Newton polytope of  $g(x, y, z)$ .

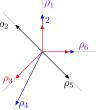


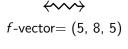


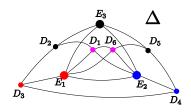


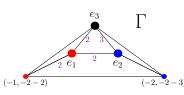
$$Y = \begin{cases} x = f_1(s, t) = 3 + 5s + 7t, \\ y = f_2(s, t) = 17 + 13t + 11s^2, & \text{where } x = f_3(s, t) = 19 + 47st, \end{cases}$$
 where \text{Newton polytope of } g(x, y, z).



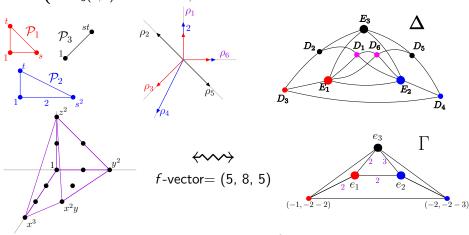








$$Y = \begin{cases} x = f_1(s, t) = 3 + 5s + 7t, \\ y = f_2(s, t) = 17 + 13t + 11s^2, \\ z = f_3(s, t) = 19 + 47st, \end{cases}$$
 \times Newton polytope of  $g(x, y, z)$ .



- $\Gamma$  is a balanced weighted *planar* graph in  $\mathbb{R}^3$ . It is the tropical variety  $\mathcal{T}(g(x,y,z))$ , dual to the Newton polytope of g.
- We can recover g(x, y, z) from  $\Gamma$  using numerical linear algebra.

## What is Tropical Geometry?

Given a variety  $X \subset \mathbb{T}^n$  with defining ideal  $I \subset \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ , the tropicalization of X equals:

 $TX = TI := \{ w \in \mathbb{R}^n | \text{in}_w(I) \text{ contains no monomial} \}.$ 

## What is Tropical Geometry?

Given a variety  $X \subset \mathbb{T}^n$  with defining ideal  $I \subset \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ , the tropicalization of X equals:

$$TX = TI := \{ w \in \mathbb{R}^n | \operatorname{in}_w(I) \text{ contains no monomial} \}.$$

- **1** It is a rational polyhedral fan in  $\mathbb{R}^n \rightsquigarrow \mathcal{T}X \cap \mathbb{S}^{n-1}$  is a spherical polyhedral complex.
- ② If I is prime, then TX is pure of the same dimension as X.
- **1** Maximal cones have canonical multiplicities attached to them. With these multiplicities, TX satisfies the balancing condition.

#### **Example (hypersurfaces):**

- T(g) is the union of all codim. 1 cones in the (inner) normal fan of the Newton polytope NP(g).
- Maximal cones in T(g) are dual to edges in NP(g), and  $m_{\sigma}$  is the lattice length of the associated edge.
- Multiplicities are essential to recover NP(g) from T(g).

### What is Geometric Tropicalization?

**AIM:** Given  $Z \subset \mathbb{T}^N$  a **surface**, compute TZ from the *geometry* of Z.

**KEY FACT:** TZ can be characterized in terms of divisorial valuations.

## What is Geometric Tropicalization?

**AIM:** Given  $Z \subset \mathbb{T}^N$  a surface, compute TZ from the *geometry* of Z. **KEY FACT:** TZ can be characterized in terms of divisorial valuations.

## Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider  $\mathbb{T}^N$  with coordinate functions  $\chi_1, \ldots, \chi_N$ , and let  $Z \subset \mathbb{T}^N$  be a closed smooth **surface**. Suppose  $\overline{Z} \supset Z$  is any smooth compactification, whose boundary divisor has m irreducible components  $D_1, \ldots, D_m$  with no triple intersections (**C.N.C.**). Let  $\Delta$  be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i,j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize  $\Delta$  as a graph  $\Gamma \subset \mathbb{R}^N$  by  $[D_k]:=(val_{D_k}(\chi_1),\ldots,val_{D_k}(\chi_N)) \in \mathbb{Z}^N$ . Then, TZ is the cone over the graph  $\Gamma$ .

## What is Geometric Tropicalization?

**AIM:** Given  $Z \subset \mathbb{T}^N$  a surface, compute TZ from the *geometry* of Z. **KEY FACT:** TZ can be characterized in terms of divisorial valuations.

## Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider  $\mathbb{T}^N$  with coordinate functions  $\chi_1, \ldots, \chi_N$ , and let  $Z \subset \mathbb{T}^N$  be a closed smooth **surface**. Suppose  $\overline{Z} \supset Z$  is any smooth compactification, whose boundary divisor has m irreducible components  $D_1, \ldots, D_m$  with no triple intersections (**C.N.C.**). Let  $\Delta$  be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i,j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize  $\Delta$  as a graph  $\Gamma \subset \mathbb{R}^N$  by  $[D_k]:=(val_{D_k}(\chi_1),\ldots,val_{D_k}(\chi_N)) \in \mathbb{Z}^N$ .

Then, TZ is the cone over the graph  $\Gamma$ .

## Theorem (Combinatorial formula for multiplicities [C.])

$$m_{([D_i],[D_j])} = (D_i \cdot D_j) \left[ \left( \mathbb{Z}\langle [D_i],[D_j] \rangle \right)^{sat} : \mathbb{Z}\langle [D_i],[D_j] \rangle \right]$$

#### **QUESTION:** How to compute TY from a parameterization

$$\mathbf{f} = (f_1, \dots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$$
?

**QUESTION:** How to compute TY from a parameterization

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$$
?

**ANSWER:** Compactify the domain  $X = \mathbb{T}^2 \setminus \bigcup_{i=1}^n (f_i = 0)$  and use the map  $\mathbf{f}$  to translate back to Y.

#### Proposition

Given  $\mathbf{f}: X \subset \mathbb{T}^2 \to Y \subset \mathbb{T}^n$  generically finite map of degree  $\delta$ , let  $\overline{X}$  be a smooth, CNC compactification with associated intersection complex  $\Delta$ . Map each vertex  $D_k$  of  $\Delta$  in  $\mathbb{Z}^n$  to a vertex  $\widetilde{D_k}$  of  $\Gamma \subset \mathbb{R}^n$ , where

$$[\widetilde{D_k}] = \operatorname{val}_{D_k}(\chi \circ f) = f^\#([D_k]).$$

Then, TY is the cone over the graph  $\Gamma \subset \mathbb{R}^n$ , with multiplicities

$$m_{([\widetilde{D_i}],[\widetilde{D_j}])} = \frac{1}{\delta} (D_i \cdot D_j) \left[ \left( \mathbb{Z} \langle [\widetilde{D_i}], [\widetilde{D_j}] \rangle \right)^{sat} : \mathbb{Z} \langle [\widetilde{D_i}], [\widetilde{D_j}] \rangle \right].$$

### Implicitization of generic surfaces

**SETTING:** Let  $f = (f_1, \ldots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$  of  $\deg(f) = \delta$ , where

- each  $f_i \in \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}]$  is irreducible and has **fixed Newton polytope**,
- we assume **generic coefficients**.

**GOAL:** Compute the graph  $\Gamma$  of TY from the Newton polytopes  $\{\mathcal{P}_i\}_{i=1}^n$ .

### Implicitization of generic surfaces

**SETTING:** Let  $f = (f_1, \ldots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$  of  $\deg(f) = \delta$ , where

- each  $f_i \in \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}]$  is irreducible and has **fixed Newton polytope**,
- we assume **generic coefficients**.

**GOAL:** Compute the graph  $\Gamma$  of TY from the Newton polytopes  $\{\mathcal{P}_i\}_{i=1}^n$ .

**IDEA:** Compactify X inside the proj. toric variety  $X_{\mathcal{N}}$ , where  $\mathcal{N}$  is the common refinement of all  $\mathcal{N}(P_i)$ . Generically,  $\overline{X}$  is smooth with CNC.

## Implicitization of generic surfaces

**SETTING:** Let  $f = (f_1, \ldots, f_n) : \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$  of  $\deg(f) = \delta$ , where

- each  $f_i \in \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}]$  is irreducible and has **fixed Newton polytope**,
- we assume **generic coefficients**.

**GOAL:** Compute the graph  $\Gamma$  of TY from the Newton polytopes  $\{\mathcal{P}_i\}_{i=1}^n$ .

**IDEA:** Compactify X inside the proj. toric variety  $X_{\mathcal{N}}$ , where  $\mathcal{N}$  is the common refinement of all  $\mathcal{N}(P_i)$ . Generically,  $\overline{X}$  is smooth with CNC.

The vertices and edges of the boundary intersection complex  $\Delta$  are

$$V(\Delta) = \{E_i : \dim \mathcal{P}_i \neq 0, 1 \leq i \leq n\} \bigcup \{D_\rho : \rho \in \mathscr{N}^{[1]}\},\$$

- $(D_{\rho}, D_{\rho'}) \in E(\Delta)$  iff  $\rho, \rho'$  are consecutive rays in  $\mathscr{N}$ .
- $(E_i, D_\rho) \in E(\Delta)$  iff  $\rho \in \mathcal{N}(\mathcal{P}_i)$ .
- $(E_i, E_j) \in E(\Delta)$  iff  $(f_i = f_j = 0)$  has a solution in  $\mathbb{T}^2$ .

Then,  $\Gamma$  is the realization of  $\Delta$  via

$$[E_i] := e_i \quad (1 \le i \le n) \quad , \quad [D_\rho] := \left( \min_{\alpha \in \mathcal{P}_i} \{\alpha \cdot \eta_\rho\} \right)_{i=1}^n \ \forall \rho \in \mathscr{N}^{[1]},$$

where  $\eta_{\rho}$  is the primitive lattice vector generating  $\rho$ .

## Tropical implicitization of generic surfaces

### Theorem (Sturmfels-Tevelev-Yu, C.)

The tropical variety TY is the cone over the graph  $\Gamma$ , with multiplicities

- $m_{([D_{\rho}],[D_{\rho'}])} = \frac{1}{\delta} \frac{\gcd\{2\text{-minors of }([D_{\rho}]|[D_{\rho'}])\}}{|\det(\eta_{\rho}|\eta_{\rho'})|}$ , for  $\rho,\rho'$  consec. rays in  $\mathscr N$ .
- $m_{(e_i,[D_{\rho}])}=rac{1}{\delta}\left(|\mathit{face}_{
  ho}\mathcal{P}_i\cap\mathbb{Z}^2|-1
  ight)\, \mathsf{gcd}\{[D_{
  ho}]_j:j
  eq i\}$ , for  $ho\in\mathscr{N}_i^{[1]}$ .
- $m_{(e_i,e_j)} = \frac{1}{\delta} length((f_i = f_j = 0) \cap \mathbb{T}^2)$ , if  $dim(\mathcal{P}_i + \mathcal{P}_j) = 2$ .

Under further genericity assumptions,

$$length((f_i = f_j = 0) \cap \mathbb{T}^2) = MV(\mathcal{P}_i, \mathcal{P}_j).$$

## Implicitization of non-generic surfaces

 $Non-genericity \leftrightarrow CNC/smoothness$  condition is violated, i.e. triple intersections among:

$$E_i = (f_i = 0)$$
's only or  $E_i$ 's and  $D_\rho$ 's combined.

### Implicitization of *non-generic* surfaces

*Non-genericity*  $\leftrightarrow$  CNC/smoothness condition is violated, i.e. triple intersections among:

$$E_i = (f_i = 0)$$
's only or  $E_i$ 's and  $D_{\rho}$ 's combined.

### **Solution 1:** • Embed X in $X_N$ .

Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.

## Implicitization of *non-generic* surfaces

*Non-genericity*  $\leftrightarrow$  CNC/smoothness condition is violated, i.e. triple intersections among:

$$E_i = (f_i = 0)$$
's only or  $E_i$ 's and  $D_{\rho}$ 's combined.

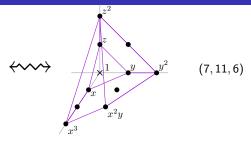
- **Solution 1:** Embed X in  $X_N$ .
  - Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.
- **Solution 2:** ① Embed X in  $\mathbb{P}^2_{(s,t,u)} \rightsquigarrow n+1$  boundary divisors  $E_i = (f_i = 0) \quad (1 \le i \le n), \quad E_\infty = (u = 0).$ 
  - **2** Resolve triple intersections and singularities by blow-ups  $\pi \colon \tilde{X} \to X$ , and read divisorial valuations by *columns*

$$(f\circ\pi)^*(\chi_i)=\pi^*(E_i-\deg(f_i)E_\infty)=E_i'-\deg(f_i)E_\infty'-\sum_{i=1}^r b_{ij}H_j\quad\forall i.$$

The graph  $\Delta$  is obtained by gluing resolution diagrams and adding pairwise intersections.

## Example (non-generic surface)

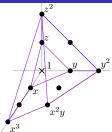
$$Y = \begin{cases} x = f_1(s, t) = s - t, \\ y = f_2(s, t) = t - s^2, \\ z = f_3(s, t) = -1 + s t, \end{cases}$$



## Example (non-generic surface)

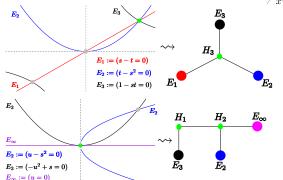
$$Y = \begin{cases} x = f_1(s, t) = s - t, \\ y = f_2(s, t) = t - s^2, \\ z = f_3(s, t) = -1 + s t, \end{cases}$$



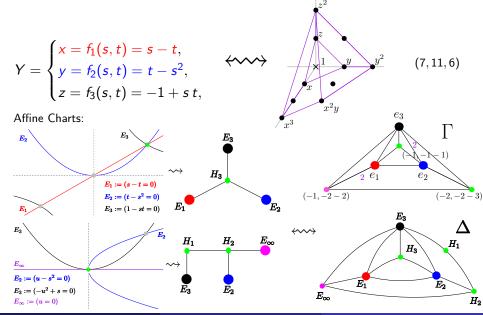


(7, 11, 6)

Affine Charts:



# Example (non-generic surface)



### Further remarks

**1** If dim Z > 2, geometric tropicalization requires the boundary of a compactification  $\overline{Z}$  to have **simple** normal crossings.

## Theorem ([C.])

We can replace S.N.C. with combinatorial N.C. in any dimension.

Can we take advantage of this fact to gain effectiveness?

### Further remarks

**1** If dim Z > 2, geometric tropicalization requires the boundary of a compactification  $\overline{Z}$  to have **simple** normal crossings.

## Theorem ([C.])

We can replace S.N.C. with combinatorial N.C. in any dimension.

- ► Can we take advantage of this fact to gain effectiveness?
- Special surfaces are tropicalized via resolution of singularities, which is hard to do in practice.
  - ▶ Is there an alternative approach? → combinatorial resolutions?
  - ▶ Can we predict the graph  $\Gamma$  from the topology/geometry of the singularities on the domain  $X? \leadsto \text{Enriques/dual diagrams, clusters of infinitely near points, . . .$

#### Further remarks

**1** If dim Z > 2, geometric tropicalization requires the boundary of a compactification  $\overline{Z}$  to have **simple** normal crossings.

## Theorem ([C.])

We can replace S.N.C. with combinatorial N.C. in any dimension.

- ▶ Can we take advantage of this fact to gain effectiveness?
- Special surfaces are tropicalized via resolution of singularities, which is hard to do in practice.
  - ▶ Is there an alternative approach? → combinatorial resolutions?
  - ▶ Can we predict the graph  $\Gamma$  from the topology/geometry of the singularities on the domain  $X? \leadsto \text{Enriques/dual diagrams, clusters of infinitely near points, . . .$
- What if we allow coefficients on an arbitrary closed non-archimedean valued field, e.g.  $\mathbb{C}\{\{t\}\}, \mathbb{Q}_p, \ldots$ ?  $\leadsto$  Berkovich spaces! (For curve case, go to Sam Payne's talk [Baker-Payne-Rabinoff, 2011])