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Three references:

Sturmfels, Tevelev, Yu: The Newton polytope of the implicit equation (2007)
Sturmfels, Tevelev: Elimination theory for tropical varieties (2008)

MAC: arXiv:1105.0509 (2011)
(and many, many more!)
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arXiv:1105.0509

Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials fi, f, ..., f, € C[tfﬁl, ceey técl )

Algebraic Output: The prime ideal | defining the Zariski closure Y of
the image of the map:

f=(f,...,f): T - T"

The ideal | consists of all polynomial relations among fi, f, ..., f,.

Existing methods: Grobner bases and resultants.
o GB: always applicable, but often too slow.
@ Resultants: useful when n = d 41 and [ is principal, with limited use.

Geometric Output: Invariants of Y, such as dimension, degree, etc.

Punchline: We can effectively compute them using tropical geometry.

TODAY: Study the case when d = 2 and Y is a surface.
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Example: parametric surface in T3

Input: Three Laurent polynomials in two unknowns:

x=f(s,t) =3+bs+T7t,
y =f(s, t) =17+ 13t + 1152
z = f3(s,t) = 19 + 47 st.

Output: The Newton polytope of the implicit equation g(x, y, z).

STRATEGY: Recover the Newton polytope of g(x,y, z) from the Newton
polytopes of the input polynomials fi, f, f5.
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x=fi(s,t) =3+5bs+T7t,
Y={y=~f(st)=17+13t+11s>  ~> Newton polytope of g(x, y, z).
z = f3(s,t) = 19 + 47 st.
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e I is a balanced weighted planar graph in R3. It is the tropical variety
7 (g(x,y,z)), dual to the Newton polytope of g.
e We can recover g(x,y,z) from I' using numerical linear algebra.
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What is Tropical Geometry?

Given a variety X C T” with defining ideal / € C[x!, ..., xF1], the
tropicalization of X equals:

TX =TI :={w € R"|in,/ contains no monomial}.

@ It is a rational polyhedral fan in R” ~» 7X NS" ! is a spherical
polyhedral complex.

@ If | is prime, then 7 X is pure of the same dimension as X.

© Maximal cones have canonical multiplicities attached to them.
Example (hypersurfaces):

e Maximal cones in 7(g) are dual to edges in the Newton polytope
NP(g), and m, is the lattice length of the associated edge.

e Multiplicities are essential to recover NP(g) from 7 (g).
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What is Geometric Tropicalization?

AIM: Given Z ¢ TN a surface, compute 7 Z from the geometry of Z.
KEY FACT: 7 Z can be characterized in terms of divisorial valuations.
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What is Geometric Tropicalization?

AIM: Given Z ¢ TN a surface, compute 7 Z from the geometry of Z.
KEY FACT: 7 Z can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider TV with coordinate functions x1, ..., xn, and let Z C TN be a
closed smooth surface. Suppose Z O Z is any normal and Q-factorial
compactification, whose boundary divisor has m irreducible components
Di, ..., Dy with no triple intersections (C.N.C.). Let A be the graph:

V(A)={1,....m} ; (i) € E(A) <= D;nD;#0.

Realize A as a graph T C RN by [Dy]:=(valp(x1), - - -, valp,(xn)) € ZV.

Then, T Z is the cone over the graph I.

M.A. Cueto (Columbia Univ.) Tropical Implicitization of surfaces Oct. 7 2011 6 /10



What is Geometric Tropicalization?

AIM: Given Z ¢ TN a surface, compute 7 Z from the geometry of Z.
KEY FACT: 7 Z can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider TV with coordinate functions x1, ..., xn, and let Z C TN be a
closed smooth surface. Suppose Z O Z is any normal and Q-factorial
compactification, whose boundary divisor has m irreducible components
Di, ..., Dy with no triple intersections (C.N.C.). Let A be the graph:

V(A)={1,....,m} ; (i,j)€E(A) < D;nD; 0.

Realize A as a graph T C RN by [Dy]:=(valp(x1), - - -, valp,(xn)) € ZV.
Then, T Z is the cone over the graph I.

Theorem (Combinatorial formula for multiplicities [C.])

mpy.io = (Di - D) [(Z{[Di], [D;))** - Z([Dil, [Dj]) ]
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QUESTION: How to compute 7Y from a parameterization

f=(f,....f,): T2 YCT" ?
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QUESTION: How to compute 7Y from a parameterization

f=(f,....f,): T2 YCT" ?

ANSWER: Compactify the domain X = T? . |J (i = 0) and use the
i=1

map f to translate back to Y.

Proposition

Given f: X C T? — Y C T" generically finite map of degree 6, let X be a
normal, Q-factorial, CNC compactification with intersection complex A.
Map each vertex Dy of A in Z" to a vertex [Dg] of T C R", where

[Di] = valp, (x o f) = £#([Dy]).

Then, TY is the cone over the graph I C R", with multiplicities

(BB % (D: - D) [(Z([D, [B1)™* + Z([D3), [D) ]
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Implicitization of generic surfaces

SETTING: Let f = (f1,...,f): T? ——» Y C T” of deg(f) = 0, where we
fix the Newton polytope of each f; and allow generic coefficients.
GOAL: Compute the graph ' of 7Y from the Newton polytopes {P;}7_;.

IDEA: Compactify X inside the proj. toric variety X 4, where .4 is the
common refinement of all A#'(P;). Generically, X is smooth with CNC.

The vertices and edges of the boundary intersection complex A are
V(A) ={E :dimP; #0,1<i<n} | J{D,: pe M},
e (D,,Dy) € E(A) iff p, p' are consecutive rays in A"
o (Ei,D,) € E(A) iff p € N (P)).
o (E;, Ej) € E(A) iff (f; = f; = 0) has a solution in T?.
Then, I is the realization of A via

[E]l:=e (1<i<n), [D,]:=trop(f)(n,) ¥ rayp (n, prim. vector.)

Theorem [Sturmfels-Tevelev-Yu, C.]: 7Y is the weighted cone over I'.
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Implicitization of non-generic surfaces

Non-genericity <+ CNC condition is violated.

Solution 1: @ Embed X in X 4.
@ Resolve triple intersections and singularities by classical
blow-ups, and carry divisorial valuations along the way.
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Implicitization of non-generic surfaces

Non-genericity <+ CNC condition is violated.

Solution 1: @ Embed X in X 4.
@ Resolve triple intersections and singularities by classical

blow-ups, and carry divisorial valuations along the way.
Solution 2: @ Embed X in P%stu) ~» n+ 1 boundary divisors

E=(f=0) (1<i<n), Ex=(u=0).

@ Resolve triple intersections and singularities by blow-ups
m: X — X, and read divisorial valuations by columns

(fom)*(xi) = 7*(Ei — deg(f;)Exs) = Ef — deg(£,)EL, — > bjH; Vi.
j=1

The graph A is obtained by gluing resolution diagrams and adding
pairwise intersections.
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Example (non-generic surface)

x = fi(s,t) =s—t,
Y=Ry="h(st)=t—s

z=f(s,t) = —1+st,
Affine Charts:

Ey E3 o F
% A N

Ezf(t 3270
b\ Ey:=(1-st=0) E1 E;

By = (~u?+5=0) \ B & E

Ey:=(u=0)
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