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The Statistical model F4,2

Hidden

Observed

Figure: The undirected graphical model F4,2.

The set of all possible joint probability distributions (X1,X2,X3,X4) form
an algebraic variety M inside ∆15 with expected codimension one and
(multi)homogeneous defining equation f .

Problem

Find the degree and the defining polynomial/ Newton polytope of f of M
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Geometry of the model

Parameterization of the model: p : R32 → R16,

pijkl =
1∑

s=0

1∑
r=0

asibsjcskdsleri frjgrkhrl for all (i , j , k, l) ∈ {0, 1}4.

Using homogeneity and the distributive law

p : (P1 × P1)8 → P15 pijkl = (
1∑

s=0

asibsjcskdsl) · (
1∑

r=0

eri frjgrkhrl).

So we have a coordinatewise product of two parameterizations of F4,1: the
graphical model corresponding to the 4-claw tree with binary nodes.

But...
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Geometry of the model

Fact

1 The binary 4-claw tree model is Sec1(P1 × P1 × P1 × P1) ⊂ P15.

2 Coordinatewise product of parameterizations corresponds to
Hadamard products of algebraic varieties

Definition

X ,Y ⊂ Pn, the Hadamard product of X and Y is

X � Y = {(x0y0 : . . . : xnyn) | x ∈ C (X ), y ∈ C (Y ), x � y 6= 0} ⊂ Pn,
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Geometry of the model

Proposition

The algebraic variety of the model is M = X � X where X is the first
secant variety of the Segre embedding P1 × P1 × P1 × P1 ↪→ P15.

Remark

The model is highly symmetric. Invariant under relabeling of observed
nodes and by changing role of two states (0 or 1). Therefore, we have an
action of the group B4 = S4 n (S2)4, the group of symmetries of the
4-cube.

Useful facts about X :

1 The ideal I (X ) is a well-studied object: it is the 9-dim irreducible
subvariety of all 2× 2× 2× 2-tensors of tensor rank at most 2.

2 Known set of generators for I (X ): 3× 3-minors of all three
4× 4-flattenings of these tensors.
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Tropicalizing the model

Definition

For an algebraic variety X ⊂ Cn with defining ideal
I = I (X ) ⊂ K [x1, . . . , xn], the tropicalization of X or I is defined as:

T (X ) = T (I ) = {w ∈ Rn+1 | inw (I ) contains no monomial}

where inw (I ) = 〈inw (f ) : f ∈ I 〉, and inw (f ) is the sum of all nonzero
terms of f =

∑
α cαxα such that α · w is maximum.

Example

L = (x + y + 1 = 0) ⊂ C2

gives the well-known picture: T (x+ y + 1)

(0, 0)
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Tropicalizing the model

Remark

Basic features of T (X ) for X ⊂ Pn with homogeneous ideal I = I (X ):

1 It is a rational polyhedral subfan of the Gröbner fan of I .

2 If I is prime, then T (X ) is pure of the same dimension as X
(Bieri-Groves Thm) and it is connected in codimension one.

3 Maximal cones have canonical multiplicities attached to them. With
these multiplicities, T (X ) satisfies the balancing condition.

4 The lineality space of the fan T (X ) is the set

L = {w ∈ T (X ) : inw (I ) = I}.

It describes action of the maximal torus acting on X (diagonal action
by the lattice L ∩ Zn+1.)

5 Morphisms can be tropicalized and monomial maps have very nice
tropicalizations.
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Tropicalizing the model

Theorem (S-T-Y)

Let A ∈ Zd×n, defining a monomial map α : (C∗)n → (C∗)d and a
canonical linear map A : Rn → Rd .
Let V ⊂ (C∗)n be a subvariety. Then

T (α(V )) = A(T (V )).

Moreover, if α induces a generically finite morphism on V , we have an
explicit formula to push-forward the multiplicities of T (V ) to multiplicities
of T (α(V )).
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Main results

In our case M = X � X = α(X × X ) where α is the monomial map
associated to matrix (Id16 | Id16).

In general...

Theorem (—, Yu)

Given X ,Y ⊂ Pn two projective irreducible varieties none of which is
contained in a proper coordinate hyperplane, we can consider the
associated projective variety X � Y ⊂ Pn. Then as sets:

T (X � Y ) = T (X ) + T (Y ).

T (X ) can be computed with Gfan, so we know T (M) as a set! BUT we
want more...
We want to compute multiplicities at regular points of T (M).

Our map α is monomial BUT NOT generically finite but very close to
being gen. finite. We generalize the previous theorem to obtain
multiplicities in T (M)...
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Main results

Tn ⊇ V
α // //

π
����

W ⊆ Td

π
����

V ′ = V /H
ᾱ // W /α(H).

Theorem (—, Yu)

Let V ⊂ (C∗)n be a subvariety with torus action given by a lattice L and
take the quotient by this action V ′ = V /H. Then,

T (ᾱ(V ′)) = A′(T (V ′)).

Moreover, if L′ = A(L) is a primitive sublattice of Zd and if ᾱ induces a
generically finite morphism on V ′, we have an explicit formula to
push-forward the multiplicities of T (V ) to T (α(V )).
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Theorem (—, Yu)

Let X ,Y ⊂ Cm be two irreducible varieties. Then

T (X × Y ) = T (X )× T (Y )

as weighted polyhedral complexes, with mσ×τ = mσmτ for maximal cones
σ ⊂ T (X ), τ ⊂ T (Y ), and σ × τ ⊂ T (X × Y ).
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The Newton polytope of the implicit equation

If I = (f ), we can recover the Newton polytope of f from T (I ).

Why?
1 T (I ) is the union of the codim 1 cones of the normal fan of NP(f ).
2 multiplicity of a maximal cone is the lattice length of the edge of

NP(f ) normal to that cone.

Theorem (D-F-S)

Suppose w ∈ Rn is a generic vector so that the ray (w −R>0 ei ) intersects
T (f ) only at regular points of T (f ), for all i . Let Pw be the vertex of the
polytope P = NP(f ) that attains the maximum of {w · x : x ∈ NP(f )}.
Then the i th coordinate of Pw equals

Pw
i =

∑
v

mv · |lv ,i |,

where the sum is taken over all points v ∈ T (f ) ∩ (w − R>0ei ), mv is the
multiplicity of v in T (f ), and lv ,i is the i th coordinate of the primitive
integral normal vector to T (f ) at v .
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The Newton polytope of the implicit equation

Theorem

The hypersurface M has multidegree (110, 55, 55, 55, 55) with respect to
the grading defined by the matrix

L =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .

Bottleneck: Going through the list of all maximal cones supporting T (M)
(∼ 7 000 000.)

We can do better!

IDEA: Shoot rays and walk along neighboring chambers.

Up to now, we have computed 1 155 072 vertices of NP(f ) (3 030 orbits.)
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Thank you!!!
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