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What is tropical geometry?

• Trop. semiring Rtr :=(R ∪ {−∞},⊕,�), a⊕ b =max{a,b}, a� b =a+b.
• Fix K = C{{t}} field of Puiseux series, with valuation given by lowest
exponent, e.g. val(t−4/3 + 1 + t + . . .) = −4/3, val(0) =∞.

F (x) in K [x±1 , . . . , x
±
n ] Trop(F )(ω) in Rtr[ω

�±
1 , . . . , ω�±n ]

F :=
∑
α

cαxα 7→Trop(F )(ω) :=
⊕
α

− val(cα)�ω�α= max
α
{− val(cα)+〈α,ω〉}.

(F = 0) in (K ∗)n Trop(F ) = {ω ∈ Rn : max in Trop(F )(ω) is not unique}

Example: g = −t3 x3 + t3y3 + t2y2 + (4 + t5)xy + 2x + 7y + (1 + t).
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Tropical Geometry is a combinatorial shadow of algebraic geometry

Input: X ⊂ (K ∗)n irred. of dim d defined by an ideal I ⊂ K [x±1 , . . . , x
±
n ].

Output: Its tropicalization Trop(I ) =
⋂

f ∈I Trop(f ) ⊂ Rn

• Trop(I ) is a polyhedral complex of pure dim. d & connected in codim. 1.

• Gröbner theory: Trop(I ) = {ω ∈ Rn| inω(I ) 6= 1}.
Weight of ω ∈ mxl cone = #{ components of inω(I )} (with mult.)
With these weights, Trop(I ) is a balanced complex (0-tension condition)

• Fund. Thm. Trop. Geom.: Trop(I ) = {(− val(xi ))n
i=1 : x ∈ X}.

• (K ∗)r action on X via A ∈ Zr×n  Row span (A) in all cones of Trop(I ).
 Mod. out Trop(I ) by this lineality space preserves the combinatorics.

• The ends of a curve Trop(X ) in R2 give an ambient toric variety ⊃ X .

Conclusion: Trop(I ) sees dimension, torus actions, initial degenerations,
compactifications and other geometric invariants of X (e.g. degree)

Notice: Trop(X ) is highly sensitive to the embedding of X
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Grassmannian of lines in Pn−1 and the space of trees

Definition: Gr(2, n) = {lines in Pn−1} := K 2×n
rk 2 /GL2 (dim = 2(n − 2)).

The Plücker map embeds Gr(2, n) ↪→ P(n
2)−1 by the list of 2× 2-minors:

ϕ(X ) = [pij := det(X (i , j))]i<j ∀ X ∈ K 2×n.

Its Plücker ideal I2,n is generated by the 3-term (quadratic) Plücker eqns:

pijpkl − pikpjl + pilpjk (1 6 i < j < k < l 6 n).

Note: (K ∗)n/K ∗ acts on Gr(2, n) via t ∗ (pij) = ti tj pij .

 Tropical Plücker eqns: max{xij + xkl , xik + xjl , xil + xjl}.

Theorem (Speyer-Sturmfels)

The tropical Grassmannian Trop(Gr(2, n) ∩ ((K ∗)(n
2)/K ∗)) in R(n

2)/R·1 is
the space of phylogenetic trees on n leaves:
• all leaves are labeled 1 through n (no repetitions);
• weights on all edges (non-negative weights for internal edges).
It is cut out by the tropical Plücker equations. The lineality space is
generated by the n cut-metrics `i =

∑
j 6=i eij , modulo R·1.
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pijpkl − pikpjl + pilpjk (1 6 i < j < k < l 6 n).

Note: (K ∗)n/K ∗ acts on Gr(2, n) via t ∗ (pij) = ti tj pij .
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The space of phylogenetic trees Tn on n leaves

• all leaves are labeled 1 through n (no repetitions);
• weights on all edges (non-negative weights for internal edges).

From the data (T , ω), we construct x ∈ R(n
2) by xpq =

∑
e∈p→q

ω(e):

(ij |kl){
xij = ωi + ωj ,

xik = ωi + ω0 + ωk , . . .

(ij |kl) ∩ (im|kl) ∩ (jm|kl) ∩ . . .

Claim: (T , ω) oo 1−to−1 // x satisfying Tropical Plücker eqns.

Why? (1) max{xij + xkl , xik + xjl , xil + xjk} ⇐⇒ quartet (ij |kl).

(2) tree T is reconstructed form the list of quartets,

(3) linear algebra recovers the weight function ω from T and x.
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Examples:

T4/R3 has f -vector (1, 3). T5/R4 is the cone over the Petersen graph.
f -vector = (1, 10, 15).

dim Gr(2, n) = dim(Trop(Gr(2, n) ∩ R(n
2)−1) = 2(n − 2).
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How to compactify Tn?

• Write TP(n
2)−1 := (R ∪ {−∞})(n

2) r (−∞, . . . ,−∞))/R·(1, . . . , 1)

• Compactify Tn using Trop(Gr(2, n)) ⊂ TP(n
2)−1.

• Cell structure? Generalized space of phylogenetic trees [C.].
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Problem: find nice embeddings or repair bad ones

GOAL 1: Find embeddings of a plane curve C into nice toric varieties
such that Trop(C ) better reflects the geometry of C .

GOAL 2: Given a bad embedding of C , repair it by effective methods.

Example: Plane elliptic cubics E/K with val(j(E )) < 0

•Thm [Katz–Markwig2]: Trop(E ) has a cycle of length 6 − val(j(E )), and
have equality for generic coefficients with fixed Trop(g) (g =cubic eqn).
• If E is given in Weierstrass form y2 = (x3 + ax + b) ⇒ no cycle at all!
• If the cycle is shorter than expected, can we find a re-embedding that
prolongs it, without changing the structure of the curve? Answer: YES!

[Chan-Sturmfels] Any plane elliptic cubic admits a honeycomb form in R2.

Example: g = y2 − t3x3 − 5tx + 4t2

Weierstrass form

[Ch-St]
//

honeycomb form
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Re-embeddings via linear tropical modifications

We construct the modification of R2 along a linear tropical polynomial F :

1 Fix F = max{A,B + X ,C + Y } = A⊕ B � X ⊕ C � Y a linear
tropical polynomial in R2, with A,B,C ∈ R ∪ {−∞}.

2 Take the graph of F in R3: it has at most three linear pieces.

3 At each break-line, we attach two-dimensional cells spanned by the
vector (0, 0,−1) and assign mult 1 to it ( balanced fan!).

• Given a plane curve C defined by a polynomial g ∈ K [x , y ], we define a
new linear re-embedding of C by the ideal

Ig ,f := 〈g , z − f 〉 ⊂ K [x , y , z ],

where f = a + bx + cy ∈ K [x , y ] be a Puiseux series lift of F , i.e.
− val(a) = A, − val(b) = B and − val(c) = C .

Notice: The curve Trop(Ig ,f ) lies in the tropical plane Trop(z − f ).
The projection πXY gives Trop(g).
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Linear tropical modification of R2 along {X = `}

σ1 = {X 6 `,Z = `}, σ2 = {X > `,Z = X}, σ3 = {X = `,Z 6 `}.
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Generic modification of a plane cubic along {X = `}

σ1 = {X 6 `,Z = `}, σ2 = {X > `,Z = X}, σ3 = {X = `,Z 6 `}.
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Special modification of a plane cubic along {X = `}

σ1 = {X 6 `,Z = `}, σ2 = {X > `,Z = X}, σ3 = {X = `,Z 6 `}.
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The cycle of a smooth tropical plane elliptic cubic

Theorem (C.–Markwig)

Let g define a plane elliptic cubic where the cycle of Trop(g) has length
< − val(j(g)). Then, we can recursively repair it (in dim. 4) with linear
tropical modifications along straight lines.

Example: g := t3x3 + t5x2y + t3xy 2 + ty 3 + x2 + 3xy + t2y 2 + (2 + 3
2
t)x + (3 + t2)y + 1

in(0,0)(g) = (1 + x)2 + 3(x + 1)y = (x + 1)((1 + x) + 3y)) ζ = 1.
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Make a cycle appear from a high multiplicity edge

Theorem (C.–Markwig)

Let g be a plane elliptic cubic where Trop(g) has no cycle but it contains
a vertical bounded edge e of multiplicity n > 2 with trivalent endpoints. If
ine(g) has n components then we can unfold this edge into a cycle using
the tropical modification along the line R〈e〉.

Example: g = t3x3 + x2y + t3xy 2 + ty 3 + t4x2 + (1 + t2)xy + t2y 2 + t5x + (1 + t)y + t

∆e =c2
1,1 − 4c1,2c1,0 = −3 ; ine(g)=y(1 + x + x2)  ζ = 1±

√
−3

2
.

Angie Cueto (Columbia U) Combinatorics in Tropical Geometry October 16th 2014 15 / 15


