Solutions Practice Problems Ch. 14, S. 1-4 (Math V1101 - Calculus 11l - Section 8) Fall 2013

12. (2) ¢(1,2,3)=1%.22.3/I0—1-2-3=12/1=24

(b) gisdefined onlywhen 10 —z —y—2>0 < 2z<10—z —y,sothedomainis {(z,y,z) | z < 10 — z — y}, the
points on or below the plane x 4y + 2 = 10.

17. v/1 — 22 is defined |:|111‘_3.fw.f1:u3111—a’:2 =0, or
2?2 <1 = —1<z<1 and./1—y?2is defined
onlywhenl—yzz{l,oryggl = —1<y<1.
Thus the domain of f is
{zy)|-1sz<1, —1<y=<1}
y

1

M. Weneed1 — 22 — ¢y — 22 > 0ora® + ¢ + 22 < 1,
so D= {(m?y, 2) |t +yt 427 < 1} (the points inside

or on the sphere of radius 1, center the origin).
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Solutions Practice Problems Ch. 14, S. 1-4 (Math V1101 - Calculus 11l - Section 8) Fall 2013

22. f is defined only when 16 — 422 — 42 — 22 >0 =
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24. z = 2 — x, a plane which intersects the zz-plane in the
line z = 2 — z, y = 0. The portion of this plane for

y >0, z > 01s shown.

(0.0, 2)

2,0,0)

26. z = e~ Y, acylinder.
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Solutions Practice Problems Ch. 14, S. 1-4 (Math V1101 - Calculus 11l - Section 8) Fall 2013

36.
If we start at the origin and move along the z-axis, for example, the z-values of a cone centered at the origin increase at a

constant rate, so we would expect its level curves to be equally spaced. A paraboloid with vertex the origin, on the other hand,
has z-values which change slowly near the origin and more quickly as we move farther away. Thus, we would expect its level

curves near the origin to be spaced more widely apart than those farther from the origin. Therefore contour map I must

correspond to the paraboloid, and contour map II the cone.

45. The level curves are /z +y =kory = —/r + k, a
famuly of vertical translations of the graph of the root
function y = —/.

¥

@x

47. The level curves are ye™ = kory = ke™ ", a famuly of

exponential curves.

59.
z = sin(zy) (a) C (b) 11

Reasons: This function 1s periodic in both = and y, and the function is the same when x 1s mterchanged with y, so its graph is
symunetric about the plane y = . In addition, the function is 0 along the x- and y-axes. These conditions are satisfied only by
C and I
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Solutions Practice Problems Ch. 14, S. 1-4 (Math V1101 - Calculus 11l - Section 8) Fall 2013

60. z = e“cosy (a) A (b) IV
Reasons: This function 1s periodic in y but not , a condition satisfied only by A and IV. Also, note that traces in & = k are

cosine curves with amplitude that increases as x increases.

61. z = sin(z — y) (a) F (b) 1
Reasons: This function 1s periodic in both = and y but is constant along the lines y = x + k, a condition satisfied only
byFand L

62.
zZ=s8Inx —siny (a) E (b) II1

Reasons: This function is periodic in both = and y, but unlike the function in Exercise 61, it is not constant along lines such as
y =« + 7, so the contour map 1s ITI. Also notice that traces in iy = k are vertically shifted copies of the sine wave z = sin z,

so the graph must be E.

63. z=(1—zH)(1 —¢%) (a) B (b) VI
Reasons: This function 1s 0 along the lines # = &1 and y = =£1. The only contour map in which this could occur 1s VI. Also
note that the trace in the zz-plane is the parabola z = 1 — x? and the trace in the yz-plane is the parabola z = 1 — 3/ so the

graph is B.

_ T~y
c= iy @D OV
Reasons: This function 1s not periodic, ruling out the graphs in A, C, E, and F. Also, the values of z approach 0 as we use

points farther from the origin. The only graph that shows this behavior is D, which corresponds to V.

5. f(z,y) = 52% — x%y? is a polynomial, and hence continuous, so( lin} )f(m,y) =f(1,2)= 5(1}3 — {1)2(2)2 =1
@,y)—(1,2

6. —zy is a polynomial and therefore continuous. Since e is a continuous function, the composition e~*¥ is also continuous.
Similarly, 4 y 1s a polynomial and cos t 1s a continuous function, so the composition cos(x + y) is continuous.
The product of continuous functions is continuous, so f(z,y) = €™ " cos(z + y) 1s a continuous function and

lim  flz,y) = f(1,—1) = eV eas(1 4 (—1)) =elcos0=e
(=.3)—(1.—1)

Page 4




Solutions Practice Problems Ch. 14, S. 1-4 (Math V1101 - Calculus 11l - Section 8) Fall 2013

1+y° . . . . : B . : :
8. — —:—y is a rational function and hence continuous on its domain, which includes (1, 0). Int is a continuous function for
xz? 4+ zy
.. 1+ y2 : . 1+ y2 ; ; )
t > 0, so the composition f(z,y) = In is continuous wherever > 0. In particular, f is continuous at
2+ xy x? 4z

. 1+0° 1
[;1?0:! and so {:1y%£r}:11u} f{m,y) = ‘}':[:1j U} =In (m) =In T =0

1. f(z,y) = (y*sin’z)/(z* +v*). Onthe z-axis, f(z,0) =0 forz #£ 0, so f(x,y) — 0as (z,y) — (0,0) along the

2.2 . 9 . 2
x-axis. Approaching (0, 0) along the line y = z, f(z,z) = mff :: = 512n 29: = % (smm) for z # 0 and
*+ by T

limo su;a‘: =1,s0 f(z,y) — % Smce f has two different limits along two different lines, the limit does not exist.
Ty — .
12. f(z,y) = ﬁ_ On the z-axis, f(z,0) =0/(z —1)> =0forz # 1, s0 f(z,y) — 0as (z,y) — (1,0) along

2
the x-axis. Approaching (1,0) along theliney =z — 1, f(z,z — 1) = (ﬂ;(ai 1)12)_'_ (Ef_ ]]})2 = 2(:;; _]1})2 = % forz # 1,

so f(z,y) — % along this line. Thus the limit does not exist.

13. flz.y) = ——Y __ We can see that the limit along any line through (0,0) is 0, as well as along other paths through

(0,0) such as z = y* and y = z?. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

xy

assertion. 0 <
x? +y?

< |z| since |y| < /2? + %, and |z| — O as (z,y) — (0,0). So( %im(u 0 flz,y) =0
=y,

18. f(z,y) = zy*/(z® +¢°). Onthe z-axis, f(z,0) = 0 forz # 0, so f(z,y) — 0as (z,y) — (0,0) along the z-axis.
Approaching (0, 0) along the curve z = y* gives f(y*, y) = v°/2y° = 3 for y # 0, so along this path f(z,y) — 3 as

(z,y) — (0,0). Thus the limit does not exist.
19. e’ isa composition of continuous functions and hence continuous. xz is a continuous function and tan ¢ is continuous for
t # 3 +nm (n an integer), so the composition tan(zz) is continuous for xz # § + nw. Thus the product
2 R . .
f(z,y,z) = e¥ tan(xz) 1s a continuous function for xz # § +nw. Ifx = mand z = % then xz #  + nm, so

Flz,y,2) = f(r,0,1/3) = €* tan(r - 1/3) = 1 - tan(r/3) = V3.

lim
(z,y.2)—(w,0.1/3)
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3r.

41.

26.

28.

30.

39.

40.

49.

xly’ :
= if () #(0,0) _ - _
flz,y) =4 22° +y The first piece of f 1s a rational function defined everywhere except at the

1 if (z,y) = (0,0)
origin, so f 1s continuous on R? except possibly at the origin. Since z? < 22? + 4%, we have ‘xzyaf (23‘:2 + y2)| < ‘y3|. We

23
know that |y3| — 0as (z,y) — (0,0). So, by the Squeeze Theorem, (z,ylji_r‘r}m,o) flz.y) = l::c:yl}iin(ﬂ:ﬂ) ﬁ

But £(0,0) =1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set {(z,y) | (z,%) # (0,0)}.

2 2 2 2
) e Y —1 . oe T —1 .e T (—2r) o -
(z,y%.l_;nto,u) T2ty r]irl?'l- r? o v-l_lfll:a 2r [using I'Hospital’s Rule]
= lim —e " = —€®=—1
r—0+

u(r,0) = sin(rcos@) = ur(r,8) = cos(reosf) - cos @ = cos 8 cos(r cos 9),

ug(r,8) = cos(rcos@)(—rsin ) = —r sin @ cos(r cos 8)

flz,y)=2¥ = fu(r,y)=yz*", fy(z,y) =2'Inz

3
F(a,,ﬁ):f VEFldt =

2 o o

F.(a,8) = Bif 1.."t"‘"+14::".t=ai [—f 1/t3+]dt} =—3if /13 + 1dt = —+/a? 4 1 by the Fundamental

{3 & (i3 a {3 a

3

Theorem of Calculus, Part 1; Fg(a,ﬁ):a—‘?ﬁﬁ \It3+1dt=\.r‘,83+1.

VIl +xl+ a2l

u=/x?+z3+---+z2 Foreachi=1___ n us; = %[wf + a3 -|—-——+:r:,23)_1';2(2me.;}

u = sin(z1 + 222 + -+ +nx,). Foreachi=1, ..., n, u,, =tcos(z1 + 222 + -+ + nay).
ef =zyz = i(ez)—ﬁ(m z) = ez%— m%—l—z-l = ez@—m %— z =
TR T = O Y az  \" oz oz Yoz Y
. _ 0z  yz
(e my}a =yz,50 o= = pr——
E(tﬂf’)—ﬂ(:cy.ar} = ez%—m(y&—i—z-]) = e“ﬁ—xy&—mz = (ez—my)%—xz 50
Oy oy Oy Ox oy Oy oy ’
9z zz
dy e —azxy
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_ 2 K _ 9 a 3 _ .. 0z .0z 8z
5. yz+xlhy=2" = Bm(yz+mlny)—am(z) = Y3 +Iny = 223 = lny_2z@m_y3m =
Oz Oz Iny
1ny-l:22—y)E=SDa—gz__y
7] 0,4 Oz 1 9z x _, 9z Oz
a—y(yz+wlny)—a—y(z) = ya—y—i—z 1+ x- E_Qzﬁ'_y = z—l—y—Qzay yay
r 32: Bz_z-l—(ﬁ-",/y)_ T+ yz
Py T gy T Ty Ty
. oz dz
. @z=flz)+9ly) = 5= =71 (2) a—y—g(@:‘)
B B 9z _ df du _ df oo
(b) z= f(r+vy). Letu ==z +y. Then — il (]) fw) = flz+y),
az df&u af
. oz 0z ;
2. () z=f)o(y) = zz=F()l). 7 =1(=)d Q)
_ _ Jdu du dz _df du df -
(b) z = f(zy). Letu = zy. Then B 1 and 3y — x. Hence — 7 T =yf (u) = yf'(zy)
oz _dfdu _df .. .
anday_duay_du z=zf'(u) =af (zy).
— (= T Then Pl = 9z _dfdu _ o \1_ f'(z/y)
(c)z_f(y)_ Letu_y_'Ihenam_yanday_ yz_Heuceam_duam_f(u]y_ ”
&_ dfaﬁ ' L zf'(z/y)
and 3y~ dudy =f (u)(— yz) =-—7
65. f(z,y,2) = Vs o fo =€"¥ Ly = yzze"'” fay =y2%- e=v=’ (z2?) +emve’ L2 — (zyz* —I—zz)e""‘za,

foy= = (zyz* +2%) - e7vs" (2zyz) + eve’ | (4zyz® + 22) = (22%y*2° + 6ay2® + Qz)e”'zz_

72. Let f(z,y,2z) = /1 +zzand h(z,y,2) = /T —xysothatg = f + h Then f, =0 = f,o = fyz- and
h. =0= h., = h.,. But (since the partial derivatives are continous on their domains) fo.y. = fye- and Azy> = h.zy, s0

Ouy= = f:!:yz +hz:'yz — 0"‘0 =0
2 z2=flz,y) =3z -1 +2¥+3)°+7 = folz.y)=6(z—-1), fy(z,y) =4y +3),s0 f-(2,—2) = 6 and
fy(2, —2) = 4. By Equation 2, an equation of the tangent plane is z — 12 = f.(2, -2)(x — 2) + f,(2,-2) [y — (-2)] =

z—12=6(z—2)+4(y+2)orz=6z+4y+8.
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4 2= f(z,y) =ze™ = fo(z,9) = zye™ + €%, fu(z,y) = 2%, s0 f.(2,0) = 1, £,(2,0) = 4, and an equation of

13.

15.

18.

19.

the tangent plane is z — 2 = f-(2,0)(z — 2) + f,(2,0)(y —0) = z—-2=1z—2)+4(y—0) or z =z + 4y.

T . L 1z +y)—=(1)
T = ——_ The partial derivatives are f.(z, y) = ——————
f(z,y) prary p fz(z,v) EEE

=y/(z +y)* and

fulzy) =z(-1)(z+y)"? 1=—z/(z+y) so0 fz(2,1) = } and f,(2,1) = —2_ Both f, and f, are continuous
functions for y # —a, so f is differentiable at (2, 1) by Theorem 8. The linearization of f at (2, 1) is given by
L(z,y)=f2 )+ f2)=z-2)+ L2 Ny-1)=3+5@-2) - Fu-1) =52 — v+ 3

f(z,y) = e Y ecosy. The partial derivatives are fz(z,y) = e “Y(—y) cosy = —ye " cosy and

fulz,y) = e ¥ (—siny) + (cosy)e ™Y (—z) = —e “¥Y(siny + xcosy), so fz(m,0) = 0and f,(m,0) = —m.

Both f, and f,, are continuous functions, so f is differentiable at (7, 0), and the linearization of f at (7, 0) is

L(z,y) = f(m.0) + fo(m,0)(z — 7) + fu(m,0)(y —0) =1+ 0(z —7) —7(y —0) =1 —7y.

Let f(z,y) = /¥ + cos? z. Then fo(z,y) = 2(y + cos® x)"/2(2 cos z)(—sinz) = — coszsinz/+/y + cos? z and
fu(z,¥) = %(y + cos? a:)_uz(l) =1/ (2 y + cos? :c) Both £, and f, are continuous functions for y > —cos” . so f
is differentiable at (0, 0) by Theorem 8. We have £, (0,0) = 0 and £, (0,0) = 3. so the linear approximation of f at (0, 0) is
f(z,y) = £(0,0) + £2(0,0)(z —0) + £,(0,0)(y —0) =1+ 0z + sy =1+ 3v.

We can estimate f(2.2,4.9) using a linear approximation of f at (2, 5), given by
fley) =~ f(2,5) + f2(2,5)(z —2) + f,(2,5)(y —5) =€+ 1z —2) + (-1)(y — 5) =« —y + 9. Thus

F(22,49)~22-49+9=63
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20.

26.

27.

32.

flz,y) =1 —zyecosTy = falz,y) = —ycosmy and
fu(z,y) = —zly(—msinmy) + (cos my)(1)] = mxysinmy — zeosmy, so f=(1,1) =1, fy(1,1) = 1. Then the linear
approximation of f at (1, 1) is given by
flzy)= f(LY) + (1L 1)(=z-1) + f,(1,1)(y - 1)
=2+(M-)+Wy-)=2z+y
Thus £(1.02,0.97) ~ 1.02 + 0.97 = 1.99. We graph f and its

tangent plane near the point (1, 1, 2) below. Notice near y = 1 the

surfaces are almost identical.

u=+/z2+ 3 = (mz +3y2)1';2 =

du = %dm - %dy = (= +3y?) V2 (2z) dz + §(2* + 3y*) /2 (6y) dy =

T Jy

—dr+ ————=d
JErae o JErae Y

om om
m=p"¢ = dm= a—pdp+3—qdq:5p4q3dp+3p5q2dq

dr =Ar=-004,dy=Ay=005z=2> —2y+3’ 2. =2z —y, z, =6y —z. Thus whenz = Jandy = —1,

dz = (T)(—0.04) + (—9)(0.05) = —0.73 while Az = (2.96)* — (2.96)(—0.95) +3(—095)> — (9 +3+3) = —0.7189.

. Let VV be the volume. Then V' = 7rih and AV ~ dV = 2nwrh dr - 7r? dh is an estimate of the amount of metal. With

dr = 0.05 and dh = 0.2 we get dV = 2m(2)(10)(0.05) + 7(2)*(0.2) = 2.807 =~ 8.8 cm’.
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