Solutions Assignment 2 (Math V1101 - Calculus III - Section 8) Fall 2013

- 1. (a) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, and the dot product is defined only for vectors, so $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ has no meaning.
 - (b) $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$ is a scalar multiple of a vector, so it does have meaning.
 - (c) Both $|\mathbf{a}|$ and $\mathbf{b} \cdot \mathbf{c}$ are scalars, so $|\mathbf{a}|$ $(\mathbf{b} \cdot \mathbf{c})$ is an ordinary product of real numbers, and has meaning.
 - (d) Both \mathbf{a} and $\mathbf{b} + \mathbf{c}$ are vectors, so the dot product $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$ has meaning.
 - (e) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, but \mathbf{c} is a vector, and so the two quantities cannot be added and $\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$ has no meaning.
 - (f) $|\mathbf{a}|$ is a scalar, and the dot product is defined only for vectors, so $|\mathbf{a}| \cdot (\mathbf{b} + \mathbf{c})$ has no meaning.
- 7. $\mathbf{a} \cdot \mathbf{b} = (2\mathbf{i} + \mathbf{j}) \cdot (\mathbf{i} \mathbf{j} + \mathbf{k}) = (2)(1) + (1)(-1) + (0)(1) = 1$
- 11. \mathbf{u} , \mathbf{v} , and \mathbf{w} are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between \mathbf{u} and \mathbf{v} is 60° and $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos 60^\circ = (1)(1)(\frac{1}{2}) = \frac{1}{2}$. If \mathbf{w} is moved so it has the same initial point as \mathbf{u} , we can see that the angle between them is 120° and we have $\mathbf{u} \cdot \mathbf{w} = |\mathbf{u}| |\mathbf{w}| \cos 120^\circ = (1)(1)(-\frac{1}{2}) = -\frac{1}{2}$.
- 19. $|\mathbf{a}| = \sqrt{4^2 + (-3)^2 + 1^2} = \sqrt{26}$, $|\mathbf{b}| = \sqrt{2^2 + 0^2 + (-1)^2} = \sqrt{5}$, and $\mathbf{a} \cdot \mathbf{b} = (4)(2) + (-3)(0) + (1)(-1) = 7$. Then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{7}{\sqrt{26} \cdot \sqrt{5}} = \frac{7}{\sqrt{130}}$ and $\theta = \cos^{-1} \left(\frac{7}{\sqrt{130}}\right) \approx 52^\circ$.
- 43. $|\mathbf{a}| = \sqrt{4+1+16} = \sqrt{21}$ so the scalar projection of \mathbf{b} onto \mathbf{a} is $\text{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{0-1+2}{\sqrt{21}} = \frac{1}{\sqrt{21}}$ while the vector projection of \mathbf{b} onto \mathbf{a} is $\text{proj}_{\mathbf{a}} \mathbf{b} = \frac{1}{\sqrt{21}} \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{1}{\sqrt{21}} \cdot \frac{2\mathbf{i} \mathbf{j} + 4\mathbf{k}}{\sqrt{21}} = \frac{1}{21}(2\mathbf{i} \mathbf{j} + 4\mathbf{k}) = \frac{2}{21}\mathbf{i} \frac{1}{21}\mathbf{j} + \frac{4}{21}\mathbf{k}$.
- **49.** The displacement vector is $\mathbf{D} = (6 0)\mathbf{i} + (12 10)\mathbf{j} + (20 8)\mathbf{k} = 6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}$ so, by Equation 12, the work done is $W = \mathbf{F} \cdot \mathbf{D} = (8\mathbf{i} 6\mathbf{j} + 9\mathbf{k}) \cdot (6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) = 48 12 + 108 = 144$ joules.
- 53. First note that $\mathbf{n} = \langle a, b \rangle$ is perpendicular to the line, because if $Q_1 = (a_1, b_1)$ and $Q_2 = (a_2, b_2)$ lie on the line, then $\mathbf{n} \cdot \overrightarrow{Q_1Q_2} = aa_2 aa_1 + bb_2 bb_1 = 0$, since $aa_2 + bb_2 = -c = aa_1 + bb_1$ from the equation of the line. Let $P_2 = (x_2, y_2)$ lie on the line. Then the distance from P_1 to the line is the absolute value of the scalar projection of $\overrightarrow{P_1P_2}$ onto \mathbf{n} . $\mathbf{comp_n}\left(\overrightarrow{P_1P_2}\right) = \frac{|\mathbf{n} \cdot \langle x_2 x_1, y_2 y_1 \rangle|}{|\mathbf{n}|} = \frac{|ax_2 ax_1 + by_2 by_1|}{\sqrt{a^2 + b^2}} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$ since $ax_2 + by_2 = -c$. The required distance is $\frac{|(3)(-2) + (-4)(3) + 5|}{\sqrt{3^2 + (-4)^2}} = \frac{13}{5}$.

Solutions Assignment 2 (Math V1101 - Calculus III - Section 8) Fall 2013

56.

Consider a cube with sides of unit length, wholly within the first octant and with edges along each of the three coordinate axes.

 $\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j}$ are vector representations of a diagonal of the cube and a diagonal of one of its faces. If θ is the angle

between these diagonals, then $\cos\theta = \frac{(\mathbf{i}+\mathbf{j}+\mathbf{k})\cdot(\mathbf{i}+\mathbf{j})}{|\mathbf{i}+\mathbf{j}+\mathbf{k}|\,|\mathbf{i}+\mathbf{j}|} = \frac{1+1}{\sqrt{3}\sqrt{2}} = \sqrt{\frac{2}{3}} \quad \Rightarrow \quad \theta = \cos^{-1}\sqrt{\frac{2}{3}} \approx 35^{\circ}.$

4.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 7 \\ 2 & -1 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 7 \\ -1 & 4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 0 & 7 \\ 2 & 4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & 1 \\ 2 & -1 \end{vmatrix} \mathbf{k}$$

= $[4 - (-7)]\mathbf{i} - (0 - 14)\mathbf{j} + (0 - 2)\mathbf{k} = 11\mathbf{i} + 14\mathbf{j} - 2\mathbf{k}$

Since $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (11\mathbf{i} + 14\mathbf{j} - 2\mathbf{k}) \cdot (\mathbf{j} + 7\mathbf{k}) = 0 + 14 - 14 = 0$, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} .

Since $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (11\mathbf{i} + 14\mathbf{j} - 2\mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j} + 4\mathbf{k}) = 22 - 14 - 8 = 0$, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{b} .

8.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \mathbf{k}$$

$$= 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$

15. If we sketch ${\bf u}$ and ${\bf v}$ starting from the same initial point, we see that the angle between them is 60° . Using Theorem 9, we have

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| \, |\mathbf{v}| \sin \theta = (12)(16) \sin 60^{\circ} = 192 \cdot \frac{\sqrt{3}}{2} = 96 \sqrt{3}.$$

By the right-hand rule, $\mathbf{u} \times \mathbf{v}$ is directed into the page.

20. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

$$(\mathbf{j} - \mathbf{k}) \times (\mathbf{i} + \mathbf{j}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \mathbf{k} = \mathbf{i} - \mathbf{j} - \mathbf{k}$$

Thus two unit vectors orthogonal to both given vectors are $\pm \frac{1}{\sqrt{3}}(\mathbf{i} - \mathbf{j} - \mathbf{k})$, that is, $\frac{1}{\sqrt{3}}\mathbf{i} - \frac{1}{\sqrt{3}}\mathbf{j} - \frac{1}{\sqrt{3}}\mathbf{k}$ and

$$-\frac{1}{\sqrt{3}}\,\mathbf{i} + \frac{1}{\sqrt{3}}\,\mathbf{j} + \frac{1}{\sqrt{3}}\,\mathbf{k}$$

Solutions Assignment 2 (Math V1101 - Calculus III - Section 8) Fall 2013

34.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = 0 + 1 + 0 = 1.$$

So the volume of the parallelepiped determined by \mathbf{a} , \mathbf{b} , and \mathbf{c} is 1 cubic unit.

- **39.** The magnitude of the torque is $|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin \theta = (0.18 \text{ m})(60 \text{ N}) \sin(70 + 10)^{\circ} = 10.8 \sin 80^{\circ} \approx 10.6 \text{ N} \cdot \text{m}$.
- 44.
- (a) Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$. Then

$$\langle 1, 2, 1 \rangle \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 1 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k} = (2v_3 - v_2)\mathbf{i} - (v_3 - v_1)\mathbf{j} + (v_2 - 2v_1)\mathbf{k}.$$

If $\langle 1,2,1\rangle \times \mathbf{v} = \langle 3,1,-5\rangle$ then $\langle 2v_3-v_2,v_1-v_3,v_2-2v_1\rangle = \langle 3,1,-5\rangle \Leftrightarrow 2v_3-v_2=3$ (1), $v_1-v_3=1$ (2), and $v_2-2v_1=-5$ (3). From (3) we have $v_2=2v_1-5$ and from (2) we have $v_3=v_1-1$; substitution into (1) gives $2(v_1-1)-(2v_1-5)=3 \Rightarrow 3=3$, so this is a dependent system. If we let $v_1=a$ then $v_2=2a-5$ and $v_3=a-1$, so \mathbf{v} is any vector of the form $\langle a,2a-5,a-1\rangle$.

(b) If $\langle 1, 2, 1 \rangle \times \mathbf{v} = \langle 3, 1, 5 \rangle$ then $2v_3 - v_2 = 3$ (1), $v_1 - v_3 = 1$ (2), and $v_2 - 2v_1 = 5$ (3). From (3) we have $v_2 = 2v_1 + 5$ and from (2) we have $v_3 = v_1 - 1$; substitution into (1) gives $2(v_1 - 1) - (2v_1 + 5) = 3 \implies -7 = 3$, so this is an inconsistent system and has no solution.

Alternatively, if we use matrices to solve the system we could show that the determinant is 0 (and hence the system has no solution).