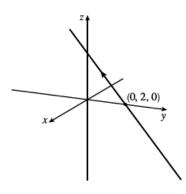
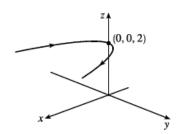
Page 1 Solutions Assignment 5 (Math V1101 - Calculus III - Section 8) Fall 2013

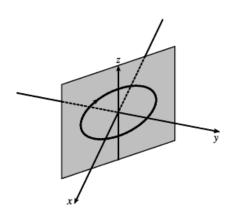
- 2. The component functions $\frac{t-2}{t+2}$, $\sin t$, and $\ln(9-t^2)$ are all defined when $t \neq -2$ and $9-t^2 > 0 \implies -3 < t < 3$, so the domain of ${\bf r}$ is $(-3,-2) \cup (-2,3)$.
- 4. $\lim_{t\to 1}\frac{t^2-t}{t-1}=\lim_{t\to 1}\frac{t\,(t-1)}{t-1}=\lim_{t\to 1}t=1,\ \lim_{t\to 1}\sqrt{t+8}=3,\ \lim_{t\to 1}\frac{\sin\pi t}{\ln t}=\lim_{t\to 1}\frac{\pi\cos\pi t}{1/t}=-\pi$ [by l'Hospital's Rule]. Thus the given limit equals $\mathbf{i}+3\mathbf{j}-\pi\mathbf{k}$.
- $\begin{aligned} \textbf{6.} & \lim_{t \to \infty} t e^{-t} = \lim_{t \to \infty} \frac{t}{e^t} = \lim_{t \to \infty} \frac{1}{e^t} = 0 \quad \text{[by l'Hospital's Rule]}, \\ & \lim_{t \to \infty} \frac{t^3 + t}{2t^3 1} = \lim_{t \to \infty} \frac{1 + (1/t^2)}{2 (1/t^3)} = \frac{1 + 0}{2 0} = \frac{1}{2}, \\ & \text{and } \lim_{t \to \infty} t \sin \frac{1}{t} = \lim_{t \to \infty} \frac{\sin(1/t)}{1/t} = \lim_{t \to \infty} \frac{\cos(1/t)(-1/t^2)}{-1/t^2} = \lim_{t \to \infty} \cos \frac{1}{t} = \cos 0 = 1 \quad \text{[again by l'Hospital's Rule]}. \\ & \text{Thus } \lim_{t \to \infty} \left\langle t e^{-t}, \frac{t^3 + t}{2t^3 1}, t \sin \frac{1}{t} \right\rangle = \left\langle 0, \frac{1}{2}, 1 \right\rangle. \end{aligned}$
- 9. The corresponding parametric equations are $x=t,\ y=2-t,\ z=2t,$ which are parametric equations of a line through the point (0,2,0) and with direction vector (1,-1,2).



12. The parametric equations are $x=t^2$, y=t, z=2, so we have $x=y^2$ with z=2. Thus the curve is a parabola in the plane z=2 with vertex (0,0,2).

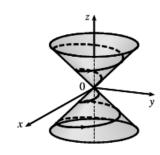


14. If $x = \cos t$, $y = -\cos t$, $z = \sin t$, then $x^2 + z^2 = 1$ and $y^2 + z^2 = 1$, so the curve is contained in the intersection of circular cylinders along the x- and y-axes. Furthermore, y = -x, so the curve is an ellipse in the plane y = -x, centered at the origin.



Page 1 Solutions Assignment 5 (Math V1101 - Calculus III - Section 8) Fall 2013

27. If $x=t\cos t,\ y=t\sin t,\ z=t,$ then $x^2+y^2=t^2\cos^2 t+t^2\sin^2 t=t^2=z^2,$ so the curve lies on the cone $z^2=x^2+y^2.$ Since z=t, the curve is a spiral on this cone.



- 29. Parametric equations for the curve are $x=t,\ y=0,\ z=2t-t^2$. Substituting into the equation of the paraboloid gives $2t-t^2=t^2 \ \Rightarrow \ 2t=2t^2 \ \Rightarrow \ t=0,1$. Since $\mathbf{r}(0)=\mathbf{0}$ and $\mathbf{r}(1)=\mathbf{i}+\mathbf{k}$, the points of intersection are (0,0,0) and (1,0,1).
- 40. The projection of the curve C of intersection onto the xy-plane is the circle $x^2+y^2=4$, z=0. Then we can write $x=2\cos t$, $y=2\sin t$, $0\le t\le 2\pi$. Since C also lies on the surface z=xy, we have $z=xy=(2\cos t)(2\sin t)=4\cos t\sin t$, or $2\sin(2t)$. Then parametric equations for C are $x=2\cos t$, $y=2\sin t$, $z=2\sin(2t)$, $0\le t\le 2\pi$, and the corresponding vector function is $\mathbf{r}(t)=2\cos t\,\mathbf{i}+2\sin t\,\mathbf{j}+2\sin(2t)\,\mathbf{k}$, $0\le t\le 2\pi$.
- 42. The projection of the curve C of intersection onto the xy-plane is the parabola $y=x^2$, z=0. Then we can choose the parameter $x=t \Rightarrow y=t^2$. Since C also lies on the surface $z=4x^2+y^2$, we have $z=4x^2+y^2=4t^2+(t^2)^2$. Then parametric equations for C are x=t, $y=t^2$, $z=4t^2+t^4$, and the corresponding vector function is $\mathbf{r}(t)=t\,\mathbf{i}+t^2\,\mathbf{j}+(4t^2+t^4)\,\mathbf{k}$.

48. The particles collide provided $\mathbf{r}_1(t) = \mathbf{r}_2(t) \Leftrightarrow \langle t, t^2, t^3 \rangle = \langle 1+2t, 1+6t, 1+14t \rangle$. Equating components gives $t=1+2t, t^2=1+6t$, and $t^3=1+14t$. The first equation gives t=-1, but this does not satisfy the other equations, so the particles do not collide. For the paths to intersect, we need to find a value for t and a value for t where $\mathbf{r}_1(t)=\mathbf{r}_2(s) \Leftrightarrow \langle t, t^2, t^3 \rangle = \langle 1+2s, 1+6s, 1+14s \rangle$. Equating components, $t=1+2s, t^2=1+6s$, and $t^3=1+14s$. Substituting the first equation into the second gives $(1+2s)^2=1+6s \Rightarrow 4s^2-2s=0 \Rightarrow 2s(2s-1)=0 \Rightarrow s=0 \text{ or } s=\frac{1}{2}$. From the first equation, $s=0 \Rightarrow t=1$ and $s=\frac{1}{2} \Rightarrow t=2$. Checking, we see that both pairs of values satisfy the third equation. Thus the paths intersect twice, at the point (1,1,1) when s=0 and t=1, and at (2,4,8) when $s=\frac{1}{2}$ and t=2.