Practice Midterm 2 Calculus III Section 8 - Fall 2013

- The use of class notes, book, formulae sheet, calculator is not permitted.
- In order to get full credit, you **must**:
 - a) get the correct answer, and
 - b) show all your work and/or explain the reasoning that lead to that answer.
- Each solution must have a clearly labeled problem number and start at the top of a new page.
- Please make sure the solutions you hand in are **legible and lucid**. You may only use techniques we have developed in class.
- You have **one hour and fifteen minutes** to complete the exam.
- Do not forget to write your name and UNI in the space provided below and on the top of each page.

Enjoy the exam, and good luck!

FULL NAME (print): ____

Exercise 1. [10 points] Fix a triangle T as in the picture defined by two edges of size x and y, and an angle a between them. Assume that the edge x is increasing at the rate of 3 cm/sec, y is decreasing at the rate of 2 cm/sec and a is increasing at the rate of 0.5 rad/sec. Find the rate of change of the are of the triangle T when x = 40 cm, y = 50 cm and $a = \pi/6 rad$.

Exercise 2. [15 points] Evaluate the limit or show that it does not exist:

a)
$$\lim_{(x,y)\to(0,0)} \frac{2x\sin y}{x^2 + 2y^2}$$
, b) $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$, c) $\lim_{(x,y)\to(1,0)} \frac{e^y(xy-y)}{\sqrt{x^2 + y^2 - 2x + 1}}$

Exercise 3. [20 points] Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by the formula

$$f(x,y) = \begin{cases} 0 & \text{if } y \le 0 & \text{or} \quad y \ge x^2, \\ 1 & \text{if } 0 < y < x^2. \end{cases}$$

- a) Show that $f(x, y) \to 0$ as $(x, y) \to (0, 0)$ along any line through (0, 0).
- b) Despite part (a), show that f is discontinuous at (0,0).
- c) Show that f is discontinuous along two entire curves and write these curves explicitly.

Exercise 4. [10 points] The ellipsoid $4x^2 + 3y^2 + 2z^2 = 16$ intersects the plane y = 2 in an ellipse. Find the parametric equations of the tangent line to this ellipse at the point (1, 2, 0).

Exercise 5. [15 points] Consider the surface $yz + x \ln(y) - z^2 = 0$.

- a) Find $\partial z/\partial x$ and $\partial z/\partial y$.
- b) What is the domain of the function z? When is the function z differentiable?

Exercise 6. [30 points] True/False. Justify your answer with a proof if true, or a counterexample if false.

- a) For two parameteric curves $\vec{r_1}(t)$ and $\vec{r_2}(t)$ we have $\frac{d(\vec{r_1}(t) \times \vec{r_2}(t))}{dt} = \vec{r_1}'(t) \times \vec{r_2}'(t)$.
- b) The expression 1 + y/3 gives a linear approximation to the function $\sqrt{y + \cos^2 x}$ near the point (0, 0).
- c) The domain of the function $f(x, y) = (sin^{-1}(x^2 + y^2) ln(1 + x^2), \frac{e^x}{x + y 1})$ is obtain by removing the line x = 1 y from the disc of radius 1 centered at (0, 0).
- d) The derivate $F_{\alpha,\alpha}$ of the function $F(\alpha,\beta) = \int_{\beta}^{\alpha^2} \sqrt{1+t^3} dt$ equals $\frac{2+5\alpha^3}{\sqrt{1+\alpha^3}}$.
- e) The cross derivatives of the function $f(x,y) = x^3 e^y \sin(y) ln(1+x^2)$ match.
- f) The angle of intersection of the curves $\vec{r_1}(t) = \langle t, t^2, t^3 \rangle$ and $\vec{r_2}(t) = \langle \sin 2t, \sin 4t, 2t \rangle$ is $\pi/2$.

-	1	2			3			4	5		6						TOTAL
a	b	a	b	с	a	b	с		a	b	a	b	с	d	е	f	