Practice Midterm 1 Calculus III Section 8 - Fall 2013

- The use of class notes, book, formulae sheet, calculator is not permitted.
- In order to get full credit, you **must**:
 - a) get the correct answer, and
 - b) show all your work and/or explain the reasoning that lead to that answer.
- Each solution must have a clearly labeled problem number and start at the top of a new page.
- Please make sure the solutions you hand in are **legible and lucid**. You may only use techniques we have developed in class.
- You have one hour and fifteen minutes to complete the exam.
- Do not forget to write your name and UNI in the space provided below and on the top of each page.

Enjoy the exam, and good luck!

Exercise 1. [15 points] Let A = (1, 0, 1), B = (3, 1, 0) and C = (3, 2, 2) and D = (-2, -2, 1) be four points in \mathbb{R}^3 .

- a) Find the volume of the parallelopiped formed by edges AB, AC and AD.
- b) Find the coordinates of the point E opposite to A in this parallelopiped.
- c) Find the angle $\angle EAB$.

Exercise 2. [16 points] Find the equation of the plane which containing the point (6, 7, 0) and the line

$$L: \quad x-1 = y-2 = z/2$$

Exercise 3. [15 points] Write the parametric equations describing the line

- passing through the point (0, 1, 2),
- is parallel to the plane x + y + z = 2, and
- is perpendicular to line x 1 = 1 y = 2z.

Exercise 4. [24 points] True/False. Justify your answer with a proof if true, or a counterexample if false.

- a) $|\vec{v} \times \vec{u}|^2 = |\vec{u}|^2 |\vec{v}|^2 (\vec{u} \cdot \vec{v})^2$.
- b) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|.$
- c) $(\vec{u} \vec{w}) \times (\vec{u} + \vec{w}) = 2(\vec{u} \times \vec{w}).$
- d) A plane Π in \mathbb{R}^3 can contain a pair of skew lines.
- e) The vectors $\vec{u} = \mathbf{i} + 5\mathbf{j} 2\mathbf{k}$, $\vec{v} = 3\mathbf{i} \mathbf{j}$ and $\vec{w} = 5\mathbf{i} + 9\mathbf{j} 4\mathbf{k}$ are coplanar.
- f) The surface x 3y = z + 4y is a cylindrical surface.

Exercise 5. [25 points] Consider the equation $(a-1)z = ax^2 + y^2$.

- a) Sketch the traces for a = -1, 0, 1.
- b) Sketch the surfaces for a = -1, 0, 1 and classify them.

Exercise 6. [15 points]

- a) Show that if $\vec{u} + \vec{v}$ and $\vec{u} \vec{v}$ are perpendicular, then the vectors \vec{u} and \vec{v} have the same length.
- b) Let \vec{w} be a nonzero vector. Prove that $\operatorname{Orth}_{\vec{w}}(\vec{z}) = \vec{0}$ if and only if \vec{z} and \vec{w} are parallel.

1			2	3	4						5		6		TOTAL
a	b	с			a	b	с	d	е	f	a	b	a	b	