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Abstract

T ROPICAL ALGEBRAIC GEOMETRY provides new tools to study elimination theory. Given a
monomial curve t 7→ (1 : ti1 : . . . : tin) in Pn parameterized by a sequence of n coprime

integers i1 < i2 < . . . < in, we wish to study its first secant variety.
The goal of this project is to effectively calculate the TROPICALIZATION of the first

secant variety of any monomial curve in Pn. Using methods from Tropical Impliciti-
zation(Dickenstein, Feichtner and Sturmfels (2007) ; Sturmfels, Tevelev and Yu (2007))
this information will allow is to construct its Chow polytope. In the hypersurface case
(n = 4), the Chow polytope is the Newton polytope and interpolation techniques (i.e.
linear algebra) can give us the defining equation.

The main characters in our story are the rank-2 lattice Λ = 〈1, (0, i1, . . . , in)〉 ⊂ Zn+1 and
a surface in Tn+1 parameterized by binomials. This surface is associated to a certain deho-
mogeneization of our three-fold. We build its tropicalization as a weighted polyhedral complex
in the n-sphere using the theory of Geometric Tropicalization developed by Hacking, Keel and
Tevelev. In particular we enrich this theory providing a formula to compute multiplicities of regular
points (equiv. of maximal cones).

This is joint work with Shaowei Lin (UC Berkeley).

1. What is. . . Geometric Tropicalization?
Definition 1. Let Y ⊂ Tn = (C∗)n be an algebraic variety with defining ideal I = I(Y ) ⊂
C[x±1

1 , . . . , x±n ]. The tropicalization of Y or I is defined as:

T Y = T I = {w ∈ Rn+1 | inw(I) 6= 1},

where inw(I) = 〈inw(f ) : f ∈ I〉, and inw(f ) is the sum of all nonzero terms of f =
∑
α cαx

α

such that α · w is minimum.

T ROPICALIZATIONS of closed subvarieties of tori are rational polyhedral fans. If Y is
irreducible, then T Y is a pure fan of dimension equal to dimY . Regular points (equiv.

maximal cones) in T Y can be endowed with positive integer weights called multiplici-
ties. With these weights, the fan satisfies the so called “balancing condition.”

The aim of Geometric Tropicalization consists of computing T Y without knowing its
defining ideal, by using a parameterization of the variety. The key-step behind Geomet-
ric tropicalization is given by the valuative definition of T Y . Hacking, Keel and Tevelev
(2009) showed that we only need to consider divisorial valuations. This description of
T Y becomes absolutely explicit if Y is smooth and has a known compactification with normally
crossing boundary. In case Y is a surface, we can weaken this condition to combinatorial
normal crossing boudary (CNC), i.e. no three boundary divisors intersect at a point. For
simplicity, we state the results in the surface case.

Theorem 2 (Hacking, Keel, Tevelev). Assume Y ⊂ TN and let Ȳ be any compactification whose
boundary D is a divisor with CNC. Let D1, . . . , Dm denote the irreducible components of D, and
write ∆Y,D for the simplicial complex on {1, . . . ,m} defined by

{ki, kj} ∈ ∆Y,D ⇐⇒ Dki ∩Dkj 6= ∅.

(i.e., ∆Y,D is the intersection complex of the boundary divisor D.)

Define the integer vectors [Dk] = [valDk
] ∈ ZN , and for any σ ∈ ∆Y,D, let [σ] be the cone in ZN

spanned by {[Dk] : k ∈ σ} and let Q≥0[σ] be the cone in QN spanned by the same integer vectors.
Then,

T Y =
⋃

σ∈∆Y,D

Q≥0[σ].

We complement the previous result with a formula giving the multiplicities of regular
points in T Y :

Theorem 3 (—). In the notation of Theorem 2, the multiplicity of a regular point w ∈ T Y in the
tropical surface equals:

mw =
∑

σ∈∆Y,D

w∈Q≥0[σ]

(Dk1
·Dk2

) index
(
(Q⊗Z [σ]) ∩ ZN : Z[σ]

)
,

whereDk1
·Dk2

denotes the intersection number of these divisors and we sum over all 2 dimensional
cones σ whose associated rational cone Q≥0[σ] contains the point w.

• QUESTION: How to obtain a compactification of a surface in TN with CNC?

• TWO ANSWERS:

1. Compactify the surface Y by Y ⊂ PN−1 and resolve the isolated singularities at the
boundary by blow-ups of points on curves.

2. If f : T2→ Y ⊂ CN is a polynomial parameterization:

Step 1: Define X := T2 r
N⋃
k=1

(fk = 0) and extend f to f̃ : X ⊂ P2 99K TN .

Step 2: Resolve X by π : X̃ → X to obtain a compactification of X̃ with CNC boundary.
Step 3: Use the map f̃ ◦ π to push-forward the construction of X̃ and ∆X̃,D̃ to a nice

compactification Z and its intersection complex ∆Z,∂Z .

2. The first secant is a Hadamard product

W E parameterize the first secant of the curve C ⊂ Pn via the secant map:

φ : P1 × C2 99K Pn ((a : b), (p, q)) 7→ a · p + b · q.
Pick p = (1 : ti1 : . . . : tin) and q = (1 : si1 : . . . : sin). By using the monomial change of
coordinates b = −λa, t = ωs we get a new parameterization:

φ̃(a, s, ω, λ) = asik · (ωik − λ) for all k = 0, . . . , n. (1)

Definition 4. We let Y be the surface parameterized by (ω, λ) 7→ (1−λ, ωi1−λ, . . . , ωin−λ).

From (1) it is natural to consider the Hadamard product of subvarieties of tori.
Definition 5. Let X, Y ⊂ TN be subvarieties of tori. The Hadamard product of X and Y is

X � Y = {(x0y0, . . . , xnyn) |x ∈ X, y ∈ Y } ⊂ TN .
Theorem 6 (—, Lin). The affine cone over the first secant variety of the curve C equals the
Hadamard product (C ′ ∩ Tn+1) � Y , where C ′ is the affine cone over the curve C.

Hadamard products interplay nicely with tropicalization (Cueto, Tobis, Yu (2009)), thus:
Corollary 7 (—, Lin). As sets: T Sec1(C) = T C ′ + T Y = R ⊗Z Λ + T Y ⊂ Rn+1,
where Λ = 〈1, (0, i1, . . . , in)〉 ⊂ Zn+1. We provide explicit formulas to compute multiplicities of
regular points in T Sec1(C) from multiplicities in T Y .
Definition 8. By identifying nodes in a graph encoding T Y (the master graph) via a com-
binatorial criterion we construct a weighted graph called the tropical secant graph.
Theorem 9 (—, Lin). The cone over the tropical secant graph describes T Sec1(C) as a collection
of 3-dimensional cones with multiplicities.

3. Computing the Master Graph T Y
THE master graph will be constructed combinatorially by gluing two caterpillar graphs

and a family of star graphs. These graph represent resolution diagrams of a the points
(0 : 0 : 1) and (0 : 1 : 0) (“origin” and “infinity”) and at at families of points in T2 associated
to subsets a ⊂ {0, i1, . . . , in} of at least three boundary divisors (ωij−λ = 0) intersecting in
T2. Combinatorially, the subsets a are obtained by intersecting an arithmetic progression
in Z with the index set {0, i1, . . . , in}.

Figure 1: The graphs glue together along common nodes to form the master graph.

We embed this graph in Rn+1:

Dij := ej (0 ≤ j ≤ n) ; Eij := ( 0, i1, . . . , ij−1, ij, ij, . . . , ij) (1 ≤ j ≤ n− 1);

Fa :=
∑
ij∈a

ej ; hij := (−ij, −ij, . . . ,−ij, −ij,− ij+1, . . . ,− in) (1 ≤ j ≤ n− 1);

and we give arithmetic formulas for the weights at each edge.
Theorem 10 (—, Lin). The tropical surface T Y ⊂ Rn+1 coincides with the cone over the master
graph as a collection of weighted polyhedral cones.

4. Example: the hypersurface case

C ONSIDER the curve (1 : t30 : t45 : t55 : t78) studied by Ranestad (2006). We build the
master graph and the tropical secant graph for this curve, as shown in Figure 2.

The eleven nodes in the tropical secant graph are labeled D0, D30, D45, D55, D78, E45, E55
and F0,30,78, F0,30,45,78, F0,30,45. The unlabeled nodes represent nodes Fa, where the subset
a consists of the indices of nodes Dij adjacent this unlabeled node.

After removing the bivalent node E30, we have a non-planar graph with 10 nodes and 23
edges. The complement of the graph in S2 has 24 connected components. After adding
the 6 missing intersection points, the graph becomes planar:

Figure 2: The master graph and the tropical secant graph of (1 : t30 : t45 : t55 : t78).

Using methods from Tropical Implicitization we conclude:

Proposition 11. The multidegree of the secant variety of the curve (1 : t30 : t45 : t55 : t78) w.r.t.
the rank-2 lattice Λ = 〈1, (0, 30, 45, 55, 78)〉 is (1 820, 76 950). The Newton polytope has f -vector
(24, 28, 16). Its normal fan corresponds to the polyhedral complex on the (RHS) of Figure 2.
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