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ABSTRACT. In this paper we analyze “tropical” mixtures of tree metrics of the same topological type.
Although the resulting dissimilarity map need not be a tree metric (in fact, it need not be either tree
additive) an interesting question is to characterize algebraically in which cases we get a tree metric of the
same topology as the mixed ones and in which cases we get a different one. We also discuss about the
geometric structure of these mixtures and we present several examples showing that unexpected results
may appear in practice.

1. INTRODUCTION

In the present paper we study weighted trees on four taxa and the tropical mixture of two trees of the
same topological type. This question was inspired by a recent work by E. Matsen and M Steel [2]. In that
article, they study phylogenetic mixtures of two trees of the same topological type, and they characterize
in which situations they obtain a tree of a different topology. For their work, they consider pylogenetic
mixtures of trees, i.e. convex combinations of two tree metrics. Namely, a weighted average of site pattern
frequencies derived from two phylogenetic trees. The importance of this concept relies on the fact that
phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in experimental
data.

Their motivation for studying this situation was that in certain parameter regimes, phylogenetic recon-
struction methods tend to return a tree topology of a different type than the ones used to generate the
mixture data. In particular, they concentrate on a phenomenon called branch repulsion, that correspond
to the case where two neighboring pendant edges which alternate being long and short. After mixing
the two trees, these edges may fail to be adjacent in the new tree. They also discuss this point to show
that some common assumptions made for reconstructing methods may not hold. Namely, it is not correct
to assume that a mixture of trees of one topological type gives site pattern frequencies than that of a
(unmixed) tree of a different topology.

In our case, rather than being interested in phylogenetic mixtures we focus our attention on tropical
mixtures. This concept is based on mixtures of probabilities. Suppose we are mixing two tree metrics
D® and D@ (or in general any finite number of tree metrics). As stated at the end of Chapter ITI in [1]
(page 122), we can consider each tree metric D®) as a random variable X(*) on the pairs of taxa, with
probability distribution

(1) Prob(X ") = {i,j}) ~ exp(~D}"),

where 7 denotes the time parameter (i.e. we consider a multivalued Poisson distribution for X ®)).
Assume we have 7 random variables X (*), with mixing probabilities p1, ..., p, (ie. p; € [0,1] and i pi =
1). Assume, moreover, that all p; > 0. We want to analyze the behaviour of the mixture of these g?ldom

variables for 7 > 0. Therefore, if we call X the random variable resulting from mixing all X(*) together,
we get

Prob(X = {i,j}) = > _ p,Prob(X") = {i,j}) ~ Y peap(—7D)).
v=1 v=1

1
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Assume that for all i # j DE;) # 0 (we know that they are non-negative real numbers). Thus,

(2) Zpye:vp(fTDg;)) —exp(—T1 max{Dg-/) (v}) = Zpy(exp(fTDg)) —exp(—T1 maX{Dl(;) :v}) —0

v=1 v=1

as 7 — 00. Thus, under this hypothesis (that hold for generic tree metrics) for 7 > 0 we get

Prob(X = {i,j5}) ~ Zpyexp(—TDg-j)) ~ erp(—T1 maX{DE;) (v} = exp(—T@Dg»j))
v=1

v=1
for all i # j, where @ is the tropical addition in the maz-plus-algebra. In case i = j we know by definition
of a dissimilarity map that DZ(Z»V) = 0. Thus Prob(X = {i,i}) ~ 1 = exp(—7 P Dz(f)) Therefore, we see
v=1

that tropical mixture arises in a natural way in this setting.

We should also mention that the distribution chosen in (1) and the approximation in (2) comes from
the LogDet distances and the logdet transform defined in [3] in the context of Markov models on trees.
We refer the interested reader to Theorem 8.4.3 for more details on this subject.

Let us go back to the treatment in [2]. To approach the characterization of mixed branch repulsion, the
authors point out that this notion has a relative nature. Therefore, any algebraic characterization must
rely on the difference between the edge weights of corresponding edges of each tree, instead of absolute
branch lengths themselves. In addition, they rely on two of the main tools in theoretical phylogenetics:
the Hadamard transform and phylogenetic invariants.

Inspired by this observation and by the four-point condition that is an algebraic characterization of
tree metrics, we also approach the algebraic characterization of “tropical” mixtures of trees of the same
topological type in a relative way. However, since we are provided with tree metrics we shouldn’t expect
to express everything in terms of the branch lenghts. Instead, we characterize the mixture in terms of
the differences between the entries of the tree metrics, and the weight of the inner edge of one of the
trees we’re mixing together. On the other hand, since the tropical mixture is defined in terms of the tree
metrics, we should always consider the entries of the matrices above the branch lenghts of the two trees.

In the next section we discuss the algebraic characterization of mixtures of trees on four taxa of the same
topological type. We also discuss the geometric structure of the corresponding pairs of trees according to
the resulting mixed topology. In particular, we discuss the convexity of this set. Finally, in Section §4 we
provide a wide range of examples showing that the behaviour of mixtures is far from being predictable
beforehand.

2. DISSIMILARITY MAPS, TREE METRICS AND TOPOLOGICAL TYPES

In the present and forthcoming sections we will assume all trees to be laminar families and, moreover,
all labeled nodes in our trees must be leaves. This is not a restriction at all, since if we have a general
laminar family with weighted edges and we have a labeled node, say x, with degree > 3, we can attach an
edge of weight zero to this node and label the corresponding leaf by x, removing the label on the internal
node. As a consequence of this property, given a finite number of taxa X we have a finite number of trees
with their leaves labeled by X and all internal nodes of degree > 3. Therefore, when analyzing trees, we
only have to deal with a finite number of posible tree topologies and labelings.

We now analyze some properties of dissimilarity maps and metrics on the taxa X. For basic definitions,
we refer the reader to [4].

Remark 2.1. An important remark to make is the following. If we have two metrics H, H we have
that H V' H is also a metric (i.e. Dy = 0 for all i, D;; = Dj; for all i,j and the triangular inequality
D;j < Djj,+ Dyj holds). The only nontrivial point to check would be the triangular inequality, but this will
be an immediate consequence of the triangular inequality for H and H plus the definition of a mazimum
between two real numbers.
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In addition to this, we may warn the reader on one point: a mixture of tree additive dissimilarity maps
with respect to a fixed tree T need not be tree additive w.r.t. the same T or w.r.t. any other tree. Recall
that the property of being tree additive can be checked with the weak four-point conditions. Moreover, by
tautology, in the generic case, the result of such mixture won’t be tree additive. In a similar way, mixing
two generic tree metrics of the same or different topological type won’t give a tree metric, nor even a tree
additive dissimilarity map. We will see some examples of this in Section §4.

One final remark to make is the following. Trees can be described completely in many different ways.
For example, we can present it as a set of nodes and edges (like any graph), or as the set of splitings on
the n taxa. In this case, we choose to use another representation, by means of a set of quartets. There are
several works in the literature that deal with the minimal number of quartets needed to describe completely
a tree. In this case, we won’t be interested in minimizing this number. Moreover, we will assume we are
given the complete list of quartets. This representation will allow us to reduce our characterization of
mixtures of trees on four taxa.

Definition 2.2. Given a set X = {1,...,n} we define a set.” C {(ijlkl) : i,j,k,l € X,i < j, k <l,i <k}
to be a complete set of quartets on X iff for all four different indices i < j < k < | in X we have
S 0 {(ij|kl), (ik|j1), (il| k) } # 0.

Alternatively, we can relax our restrictions on a quartet by defining an equivalence relation on quartets
as (ij|kl) ~ (2j|tk) ~ (jillk) ~ (jilkl) ~ (kl|ij) ~ (kl|ji) ~ (k|ij) ~ (Ik[ji).

Proposition 2.3. A complete set of quartets on a tree determines the topology on T, i.e. the map
T +— (complete set of quartets on T ) is injective.

Proof. By induction on the number of taxa (n = |X|). The base case will be n = 4. In this case quartets
on T are splittings on T, so a complete list of quartets is given by a single quartet (ij|kl) (if we have a
tree with six nodes, four leaves and a unique inner node as in Figure 1, in case i = 1,5 = 2,k = 3,1 = 4),
or by more that one quartet (if we have a tree on four taxa with the star topology).

Assume the result holds for n > 1 and consider a tree on n 4+ 1 taxa. W.l.o.g., we may assume that
n+1is aleaf in T. Consider the leaf labeled by n + 1 and the corresponding adjacent node. Since n > 4,
we know that the adjacent node is an internal node (thus of degree > 3) and so it must be unlabeled. If
its degree is > 3, then by removing the edge corresponding to n + 1 we still get an honest tree (it will still
be a tree satisfying the labeling restrictions). So we remove the leaf n + 1 and the adjacent edge. On the
other hand, if the degree of this node is exactly three we need to perform a different operation. In this
case, we remove the leaf n 4 1, the adjacent edge and we delete also the inner node, glueing together the
remaining two internal edges adjacent to this inner node. Call T” the resulting tree.

By inductive hypothesis, T” is determined uniquely by the subset of quartets of T not involving the
index n + 1. To finish, we only need to show that the set of quartets . will allow us to reconstruct 7" in
a unique way, i.e. they will give a unique way to attach the leaf n + 1 to T” to recover T.

Assume T” is not a star tree. Since we have n > 4, on X’ we must have four indices s.t. 7" has four
leaves labeled i, j, k, 1 s.t. and (ij|kl) € .. Thus, T" is of the form:
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where the dashed edges correspond to subtrees of 7" and e is an honest edge in 77. We want to know
where the leaf n+1 should be attached. We can attach it to a node in 7" or to an edge in T, in which case
we simply add an internal node to the edge and we attach the leaf n 4+ 1 to this node, in correspondence
with our construction of 7" from the original tree 7'
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FIGURE 1. Tree on four taxa corresponding to the quartet (12|34)

The answer to this will be given by .. We have five cases to analyze, but by symmetry we can reduce
to two cases.

The first case corresponds to . N{(i(n+1)|jk), (j(n+1)|ik), (k(n+1)|l5), ({(n+1)|jk)} # 0. W.lo.g.,
assume (i(n + 1)[jk) € . Then we know that the edge n + 1 must be attached in the tree T7. In this
case, we have (ik|j(n + 1)) € .7 iff the leaf n + 1 should be attached at the (LHS) vertex of edge e. If
(j(n 4+ 1)|ik) ¢ ., then the leaf will be attached in T} but not on this vertex. Assume the latter. Since
the number of taxa nq involved in T} is less than n — 3, we need only to analyze the cases ny =1,2,3 or
ny > 4. This last case will be completely determined by the inductive hypothesis. Concerning the case
n1 = 1, we have only one choice since 77 consists of one edge with two nodes. If ny = 2 or 3, by working
with quartets involving all taxa in 7} and j, k we can determine how to attach n+ 1 to T3 (i.e., we reduce
to the case of four taxa and how to add one leaf to this subtree).

Moreover, we have that the leaf n+1 must be attached to the tree T iff (s(n+1)|_-) € . (for s =i, j, k
or [).

On the contrary, if . N {(i(n+ 1)|jk), (ik|j(n + 1)), (|jlk(n + 1)), (jk|l(n 4+ 1))} = 0, there is only one
thing we can do: attach the leaf n 4+ 1 to the edge e by adding an internal node to e.

Thus, by construction there is a unique way of reconstructing 7" by means of 7" and the quartets in
<. Since T" is completely determined by .#, the result follows. O

3. MIXTURES OF TREES

We will concentrate our attention on dissimilarity maps on four taxa X = {1,2,3,4}. This will suffice
our needs, since the tree topology for arbitrary number of taxa will be determined by quartets, as we
explained in the previous section. And, in addition the property of being a tree metric is determined
by the four-point condition. For simplicity, after relabelling if necessary, we will assume that our tree
metrics H and H correspond to trees of topological type (12]34). For the moment, we will consider the
star topology as a different case, although all the computations for this special case will follow from the
previous one by considering weight zero in the middle edge.

Let us label our edge weights as follows. We will use variables a, b, c,d, e for H and @, b, ¢, d, € for the
corresponding edges in H, as in Figure 1.

In this way, our dissimilarity maps denote again by H and H are given by two 4 x 4 symmetric matrices
with O entries in the diagonal, and with rows and columns labeled 1 through 4 in increasing order. For
simplicity we will only show the values of the coefficientes above the diagonal (i.e. a;; with i < j):

0 a+d a+b+c a+b+e

g 0 d+bt+ec d+b+te
' 0 c+e
0

0 a+d a+b+¢ a+b+e

i 0 d+b+ec d+b+e
' 0 c+e
0
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As we said before, the mixture of H and H will correspond to taking the maximum of the corresponding
entries on each matrix. Therefore if D = H V H is the resulting mixture, we get the upper right triangular
component of D as follows

Dy =max{a+d,a+d}; Di3=max{a+b+c,a+b+¢}; Dy=max{a+b+ea+b+e};
Do =max{d +b+c,d+b+¢}; Dy =max{d+b+e,d+b+e}; Dy =max{c+ec+eé}.

As we said in the introduction, to determine if D is a tree metric it suffices to check the four-point
condition. Since we have only four taxa, and we already know that D is a metric (i.e. it satisfies the
triangular inequality), we need only the check the four point condition for our four indices 1,2,3 and 4.
This gives:

Diy+ D3y = max{a+d,a+d}+max{c+e,c+e} -
(*) D13+ D2y = max{a+b+c,a+b+c}+max{d+b+e,d+b+eé}
Diy+ D3 = max{a+b+e,a+b+e}+max{d+b+c,d+b+c}

Our goal will be to determine if the four point condition holds, and if so, determine the topological type
of the underlying tree.

Proposition 3.1. Let D € Rgf be a tree metric. Then the topological type of the corresponding tree T
1s determined as follows

(i) Diy+ Dog = D13+ Doy > D1s + D3y <= T has topology (12|34),
(ii) Dy + D3y = D13+ Doy > D14+ Doz <= T has topology (14|23),
(iii) Dyg + D3g = D14 + Da3 > D13 + Doy <= T has topology (13|24),
(iV) Dis+ D3y = D13+ Doy = D1y + Dog <= T has the star topology.

More concretely, we observe that the topology of T is determined by the pairing of the indices of
min{ Dy + D34, D13 + Day4, D14 + Ds3}. In case the three quantities are equal, the tree has topology
(12|34) = (13]24) = (14]23), i.e. the star topology.

Proof. 1t follows immediately from the previous observation, since the inner edge has non-negative weight,
and it has weight zero iff T" has the star topology O

Therefore, to determine the topology of D (in case it is a tree metric) we need to compare these
quantities. Notice that we are given two tree metrics H, H with the same underlying tree topology
(which we assume is (12|34)), so we don’t know the weights of each one of the ten edges. We would like to
derive an algebraic method for characterizing the topology of the mixture tree D by means of the entries
of H and H.

We will proceed by means of a very simple observation, although very useful. We will only need to
deal with the differences among the entries H;; and .F_Iij for ¢ < j. Consider six new indeterminates
s, t,x,y,u, w and the following equations relating the entries in H and H.

a+b+¢é = a+b+c+s
d+b+é = d+b+e+t
o a+b+é = at+bte+tu
) d+b+¢ = d+b+c+y
a+d = a+d+u
c+ée = c+e+t+w

Note that if we have two number n1,no € R, then max{ni,no} = n; + max{ny — n;,0}. Therefore, we
can rewrite the conditions (*) in terms of the entries in H and the new variables s, t, z,y, u, w as follows:

Dis+ D3y = a+d+ max{u,0} + c+ e+ max{w,0}
Dis+ Doy = a+b+c+max{s, 0} +d+ b+ e+ max{t,0}
Dis+ D3 = a+b+e+max{z,0} +d+ b+ c+ max{y,0}
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Notice that the summand a + ¢+ d + e is present in the three equations above. Since we need to compare
these three expressions, we can substract a + ¢ + d 4+ e without changing the order relation. Thus, we get

1?12 + @34 = max{u,0} + max{w,0}
() Di3+ Doy = 2b+ max{s,0} + max{z,0}
Dy + Do3 = 2b+ max{z,0} + max{y,0}

Notice that in the previous equations, we are only dealing with the differences Ij_[ij — H;; for i < j and
also with the weight of the inner node in the tree H. However, this quantity is not so difficult to obtain
since we have the following formula:

1
2

Therefore, we can characterize the tree topology of H V H by rewriting Proposition 3.1 in terms of the
new variables:

b (H13 + Hog — (H12 + Ha3yg)).

Proposition 3.2. Consider H,H € Réﬁ‘l be tree metric of the same topology. Consider the expressions
in (***). Then the HV H is a tree metric iff it satisfies the four-point condition. Moreover, topological
type of the corresponding tree T given by the mizture H V H is determined as follows:
(i) 1?14 + 1:723 = 1?13 + 1:)24 > 1?12 + 1:)34 <= T has topology (12|34),

(ii) D12+ Dsq4 = D13 + Doy > D1y + Doz <= T has topology (14|23),

(iii) D12 + D34 = D1a + Doz > D13 + D2y <= T has topology (13[24),

(iv) D12+ D3y = D13+ Doy = D1y + Das <= T has the star topology.
Namely, the topology is determined by the quartet (1j|kl) realizing the minimum value min{ﬁ12+D34, D3+
Doy, D14 + Do3}.

Therefore, by replacing the variables by their expressions in terms of the entries of H and H we obtain:

Theorem 3.3. With the previous notation, consider D = H\ H the mizture of two trees on four taza of
the same topology (12|34) or the star topology. Consider the following seven expressions:

b = L(Hiz+ Hy — (Hi2+ Hs)),
s = Hiz3— His,
t = Haz— Hos,
r = Hiy— Hu,
y = Hyy — Hou,
u = Hiz— Hia,
. w = H34 — H34.

Note that the star topology case corresponds to b = 0.
Then D is a tree metric iff the four-point condition holds, namely

max{2b + max{z, 0}, max{y, 0}, max{u, 0} + max{y, 0}, 2b + max{s,0} + max{¢,0}}

1s attained at least twice.
Moreover in case D is a tree metric, we have

(i) D has topology (12|34) <= 2b + max{s,0} + max{t,0} = 2b + max{z,0} + max{y,0} >

max{u,0} + max{w, 0},

(ii) D has topology (13]24) <= 2b + max{x,0} + max{y,0} = max{u,0} + max{w,0} > 2b +
max{s,0} + max{¢,0},

(iii) D has topology (14|23) <= 2b + max{s,0} + max{t,0} = max{u,0} + max{w,0} > 2b +
max{z,0} + max{y, 0},

(iv) D has the star topology <= max{u,0} + max{w,0} = 2b+ max{s,0} + max{¢,0}
= 2b + max{z,0} + max{y,0}.
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An interesting remark to make is that although H and H may have the star topology, D can have a
non-star topological type. We will see several examples illustrating this and others unexpected cases on
Section §4.

At this point, the reader might be troubled by the equations described on Therorem 3.3 and the
commutativity of the mixture operation. Namely, what happens to the equations if we invert the order
of H and H. For this, we need to describe the algebraic relations among the variables s, ¢, z,y, u, w, b, b.

Let us take a look at the system of equations (**). If we sum up the first two equations, we get
a+2b+c+é+d=a+d+2b+c+e+s+t. Using the last two equations, we get that 20+u—+w = 2b+s+t.

Likewise, if we sum up the third and forth equation, and we use the last two equations as we did before,
we get 20 +u+w =2b+x + v.

Therefore, the indeterminates s, t, z, y, u, w, b, b verify two linear relations:

2b—b)+s5+t=2b—b) +x+y=u+w.

One question we might ask at this point is if these conditions suffice to have two tree metrics H and H
of the same topological type given values for the eight variables. It turns out that this is always the case.
We refer to this discussion in the first part of Section §4.

Another important question one can formulate is the following. How do these quantities change if we
switch the roles of H and H. The new variables will be s’ = —s, t/ = —t, 2/ = —z, iy = —y, v/ = —u,
w' = —w, ¥ =band ¥ = b, i.e. switch signs on the first six variables and change the role of b and b.

We need to show that the relations among the tree expressions max{u,0} + max{w, 0}, max{u,0} +
max{w, 0}, 2b+max{x, 0} +max{y, 0} are preserved if we replace the variables by the new prime variables.
But this follows by construction, since we would have

Diy+ D3y = @+ d+ max{—u,0} + ¢+ &+ max{—w,0}
D13+ D2y = a+b+c+max{—s,0} +d+b+ e+ max{—t,0}
Diyy+ Dy3s = a+b+eée+max{—=x,0} +d+ b+ ¢+ max{—y,0}

And so by substracting a4 d+é+ ¢ from the three expressions, the inequalities provided in Proposition 3.1
are preserved, and so we obtain the same characterization as in Proposition 3.2, but with all variables
replaced as have we already explained.

An interesting question to formulate at this point is to try to determine the geometric structure of the
space

5 S i={(H,H) : H, H trees on 4 taxas with same tree topology T,
®) H Vv H is tree metric with a fixed topological type T"}.

For example, one could ask if this set has a cone structure and moreover, a convex structure. As we
have seen, the set .77 is characterized by Theorem 3.3. And from this statement it is straightforward
to check that (H,H) € Sr7 and A > 0, then (AH,\H) € 17, since all new variables involved will
correspond to the old variables scaled by A. In particular, we will have A\(H V H) = (AH) V (AH), so
the four-point condition for A(H V H) will also hold. Moreover, the inequalities on the theorem satisfied
by the new variables will be the same as the old ones, but scaled by the factor A. Since this number is
positive, the new inequalities will be the same as the old ones. So \(H V H) will have topological type T".

Remark 3.4. Since the mizture of trees is a commutative operation, it follows that (H, H) € S iff
(H,H) € . This observation will be the key to discuss convexity.

Let us concentrate on the convex structure. The first guess about the convexity of the set .7 7 would
be a positive answer. However, this turns out to be far from being true. The key-point in this case is
given by the following lemma

Lemma 3.5. The mizture of the convex sum (coordinatewise) of two elements in .S doesn’t coincide
with the convex combination of the corresponding miztures.
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Proof. Consider (H, H) and (H,H). As we discused on Remark 3.4, both points belong to the same
7. Pick any a € (0,1). Then we want to show that

(4) HVH=ao(HVH)+(1—-a)(HVH)# (a«H+ (1 —a)H)V (aH + (1 — a)H).

Assume that on the (i,j)-th entry, the maximum corresponds to H;; = a > b = H;;. In this case,
we want to show that both sides on the previous expression differ on the (i,7)-th. entry. Namely
(LHS)= aa+ (1 —«)a = a, whereas (RHS)= max{aa+ (1 —a)b,ab+ (1 — «a)a}. In any case for a € (0, 1):

aa—l—(l—a)b:a — b=a <= ab+(l—-a)a=a.
Therefore, if H;j = a > b = H;j;, the inequality on (4) does hold. O

In addition to the inconvenience of Lemma 3.5, the question about convexity, although clearly stated,
has an obscure nature. As we saw on Remark 3.4, the mixture of trees is a commutative operation,
but in this case we are choosing an ordering (H,H). The sum in .77 will be given coordinatewise.
This subtle point about the ordering will allow us to find examples s.t. (H, H),(H',H') € S but
(aH + (1 — a)H') V (aH + (1 — a)H’) doesn’t have T" as the underlying topological type for some

€ (0,1), that is a(H, H) + (1 —a)(H', H') & %1 1/. Moreover, we will find examples where the mixture
of the convex combination will never give a point in .#7 7+ but if we reverse the order of the first point,
then the convex combination of (H, H) and (H’', H') always lies in .#r7+. We refer to Section §4 for
details, in particular Example 4.

4. EXAMPLES

In the present section we present several examples that show that all situations can be achived. As
we said on previous sections, in the generic case we will obtain a non-tree metric as a mixture of two
tree metrics of the same topological type: the closed sets where this fails will be given by the union of
three hyperplanes each one of them given by the equality of two out of three linear forms appearing in
the four-point condition.

We explain briefly how we build all the examples in this sections. Recall from Section §3 that if we
have H and H of topology (12|34) then the eight variables s, t,z,y, u, w, b, b satisfy three linear equations:

(5) 2b—b)+s+t=20b-b+zx+y=u+w

For example, we fix values for u, w and b — b. For each situation described in Theorem 3.3 we consider a
suitable value for b, s, ¢, x and y giving the right inequalities and satisfying s+t = z+y = (u+w—2(b—0b)),
which is already fixed value.

After this, we need to pick positive values for a,c,d, e, a,¢,d, e and non-negative values for b, b (recall
that we've fixed the value b — b). To do this, we use equations in (**), namely:

a+¢ = a+c+(b— b)+s
d+e+(b—b)+
at+e = at+e+(b—-0)+
d+¢ = d+c+(b—-b)+
a+d = a+d+u

S8
+
®

|

c+e = ctetw
We obtain: -
a = a+(b—lz)+s+2_w
d = d+(b—Db)+ L
¢ = c+(b—b)+ 4"
_ T t+o—
e = e+ (b—0b)+ =5+
If we replace these values on the linear system, we get three equalities 2(b — b) + 2 +y = u + w,

2b—b)+s+t=u+wand 4(b—b) + s+t +x+y = 2(u+ w) that hold by hypothesis. Therefore, we
always have values for the weights for the edges of H and H. Moreover, by picking convenient values for
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the entries in H, the corresponding entries in H are also positive, thus we can obtain tree metrics of the
same topological type for any set of variables s,t, z,y, u, w, b, b satisfying (5).

In the remainder of this section, we present several examples and the corresponding MAPLE code used
to obtain the results. Recall that we will always work with tree metrics H, H on four taxa with the
same topological type ((12|34) or the star topology). For simplicity, we will call H by K in our examples.
First we present the general Maple code used for all the computations. An important remark to say is
that we’ve changed notation with respect to the previous sections. In this case the weights on each tree
correspond to

ie. w(er) =a, w(ex) =b, w(eyg) = ¢, w(ez) = d and w(eq) = e (e denotes the middle node).

> A := matrix([[0,a+b,a+c+d, a+c+e],[a+b,0,b+c+d,b+c+e], [a+c+d,b+c+d,0,d+e],
[a+c=e,b+c+e,d+e,0]]);

So the matrix corresponding to the tree metric of topological type (12|34) or the start topology has the
form:

0 a+b a+c+d a+cH+e
a-+b 0 b+c+d b+c+e
a+c+d b+c+d 0 d+e
at+c+e b+c+e d+e 0

Example 4.1 In this case, we show that given H and H tree metrics with topology T = (12|34) we might
get a dissimilarity map H V H that is not even tree additive w.r.t. any tree, since it doesn’t satisfy the
weak four-point condition.

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({a =2, b=3, c=4,d=1, e = 6}, A[i, jl) end do end do;
> H:

> eval(H);

> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({a =4, b =38, c=1,d=1, e = 6}, A[i, jl1) end do end do;
> K:

> eval(K);
We get
0 7T 12 0 42 6 11
5 8 13 42 0 40 45
H= ; K=
7 0 7 6 40 0 7
12 13 7 0 11 45 7 0

After this, we compute the mixture of H and K and check the three expressiones involved in the four
point condition.

> D := matrix(4, 4); for i to 4 do for j to 4 do

D[i, j] := max(H[i, jl, K[i, jl) end do end do;

> D: eval(D);

> G:=vector(3, [D[1,2]+D[3,4],D[1,3]+D[2,4],D[1,4]1+D[2,311);
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And we get
0 42 7 16
42 0 40 45
7 40 0 11
16 45 11 O
G=1[53 52 56 .
Thus, we see that this is not tree additive, and so in particular the mixture is not a tree metric. O

)

Now we present the examples that give tree metrics. In this case, we will the check conditions on
Theorem 3.3. More concretely, after computing the mixture D and the vector G (see Example 4) we get

e If G[1] = G[2] > GJ[3] then the topology is (14]23);
e If G[1] < G[2] = G[3] then the topology is (12|34);
e If G[1] = G[3] > G[2] then the topology is (13]24);
e If G[1] = G[2] = GJ3] then the topology is the star topology.

In the cases in which we obtain a tree metric, we can recover the corresponding weights using different
formulas according to each topology.
Example 4.2 In this case, we present an example where we obtain the same topology (12|34).

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({a =2, b=3, c=4,d=1, e = 6}, A[i, jl) end do end do;
> H:

> eval(H);

> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({a =4, b=3, c=1,d=1, e = 6}, A[i, jl) end do end do;
> K:

> eval(K);
We get
0 5 7 12 0 6 11
5 0 8 13 7 5 10
7T 8 0 7 6 0
12 13 7 0 11 10 7 0
The corresponding mixture and the vector G turn out to be
0 7 7 12
7 0 8 13
D = ;
7T 8 0 7
12 13 7 0

G:i=[14 20 20].
Let us compute the corresponding weights for the case of the topology (12|34):

> eb := -(1/2)x(D[1, 2]+D[3, 4]1-D[1, 3]-D[2, 41);
3

> el := 1/2%(D[1, 4]1+D[1, 3]-2*e5-D[3, 4]);
3

> e2 := 1/2%(D[2, 4]1+D[2, 3]-2*e5-D[3, 4]);
4

> e3 := 1/2%(D[3, 1]1+D[3, 2]-2*e5-D[1, 2]);
1
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> e4 := 1/2%(D[4, 1]1+D[4, 2]-2*e5-D[1, 2]);

6
Therefore:
le 2 1 o te 4 1 o’ te 3 7/2 ,®
\ 4 / \ 1 / \ 11/2 /
) ) \Vi ° ) = ) )
z AN z AN /4 AN
2@ oy 20 oy 2@ oy

Example 4.3 In this case, we present an example where we obtain the topology (13|24). The values for
the parameters are: u = 6,w = —5,s =2,t = —l,x =4,y = -3,(b—0) =0,b = 1.

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({a =1, b=2, c =1, d=9/2, e = 7/2}, Ali, j]) end do end do;

> H:

> eval(H);

> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({a = 13/2, b =5/2, c =1, d =1, e = 2}, A[i, jl) end do end do;

> K:

> eval(K);
Thus:
0 3 13/2 11/2 0 9 17/2 19/2
| 3 0 15/2 13/2 | 0 0 9/2 11/2
13/2 15/2 0 8 ’ 17/2 9/2 0 3
11/2 13/2 8 0 19/2 11/2 3 0

0 9 17/2 19/2
9 0 15/2 13/2
17/2 15/2 0 8
19/2 13/2 8 0
G=[17 15 17 ].
Let us compute the corresponding weights for the case of the topology (13|24):

> eb5 := (1/2)*(D[1, 2]1+D[3, 4]1-D[1, 3]1-D[2, 4]):
1
> el := 1/2%(D[1, 4]1+D[1, 3]-2%e5-D[2, 4]):
19
4
> e2 := 1/2x(D[2, 3]+D[1, 2]-2%e5-D[1, 3]):
3
> e3 := 1/2x(D[3, 4]+D[3, 2]-2%e5-D[2, 4]);
> ed := 1/2x(D[4, 1]1+D[3, 4]-2%e5-D[1, 3]);
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2
Therefore:
le o3 o3 le 4
1 9/2 13/2 1 19/4 7/2
N, S N, S N,
) ) \Vi ) ) = ° )
20//; 72;\\04 2'//2/2 ;\\04 3'/;/2 ;\\02

g

Example 4.4 Now an example where we get topology (13]|24) and the inner edge has different weight on
each tree. In this case, the parameters are: u = 6,w = —5,b=3/2,(b—b) = 1,5 =1,t = —2,2 = 3 and
y = —4.

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({a = 11/2, b = 3/2, ¢ = 3/2, d = 11/2, e = 5/2}, A[i, j]) end do end do;
> H:

> eval(H);

> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({fa =11, b =2, ¢ =1/2, d =2, e = 1}, Ali, jl) end do end do;

> K:

> eval(K);
Thus: 25 27 25
0 T2 19/2 0o 13 F 2
70 17/2 11/2 13 0 9/2 7/2
wo| I Uz 5 /2 7/
21772 0 8 9/2
19/2 11/2 8 0 % 7/2 0
0 13
b 130 17/2 11/2
Z o172 0
L o112 08
G=[21 19 21|
> e5 := (1/2)*(D[1, 2]+D[3, 4]1-D[1, 3]1-D[2, 4]);
1
> el := 1/2%x(D[1, 41+D[1, 3]-2%e5-D[2, 41);
37
4
> e2 := 1/2%(D[2, 3]+D[1, 2]-2%e5-D[1, 31);
3
> e3 := 1/2%(D[3, 41+D[3, 2]-2%e5-D[2, 41);
> ed4 := 1/2%(D[4, 11+D[3, 41-2%e5-D[1, 31);
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Therefore:
le o3 le
11/2 3/2 11
\ 11/2 / \ 2
) ) \Vi ) )
R N

30

lq ol
37/4 5/2
N, S
[ [ ]

N

g

Example 4.5 Now we present one example where H has the star topology whereas K has topology
(12|34). We obtain a mixture with topology (13]24). In this case we have b = 0 and b > 0, for example

b =1. The other parameters are u = 6, w = —5,s =4,t = —1,x =6 and y = —3.

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({a = 1/2, b =5/2, ¢ =0, d =4, e =9/2}, Ali, jl) end do end do;

> H:
> eval(H);
> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({fa =7, b=2, c=1,d=1/2, e = 3}, A[i, jl) end do end do;

> K:
> eval(K);
Thus:
0o 3 9/2 5
30 13/2 7
|92 132 0 17/2 |
5 7 17/2 0
0 9 17/2
9 0 13/2
Sl 17/2 13/2 0
17 17/2
G=[% %
2
> e5 := (1/2)*(D[1, 2]+D[3, 4]-D[1, 3]-D[2, 41);
1
> el := 1/2%(D[1, 4]+D[1, 3]-2xe5-D[2, 41);
21
4
> e2 := 1/2%(D[2, 3]+D[1, 2]-2*e5-D[1, 31);
> e3 := 1/2%(D[3, 4]+D[3, 2]-2%e5-D[2, 41);
3
> e4 := 1/2%(D[4, 11+D[3, 4]-2%e5-D[1, 31);

35

2

0
9

17/2 7/2

11

11
7
17/2
0

]

17/2 11
7/2 6

0 7/2
7/2 0
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Thus,

3
1/

.%.4/° .2/0
201/2 Q/X% 3\0

4

1
1/4

N
s

ot
~
m/

3
g

Example 4.6 In this case, H has the star topology whereas K has topology (12[34). We obtain a mixture

with topology (12|34). As in the previous example, we pick a value
areb=0,u=1,w=-2,s=4,t=1,x =3 and y = 2.

for b, say b = 2. The other parameters

3/2, e = 4}, A[i, j]) end do end do;

> H := matrix(4, 4); for i to 4 do for j to 4 do
H[i, j] := subs({a = 1/2, b =7/2, c =0, d =
> H:
> eval(H);
> K := matrix(4, 4); for i to 4 do for j to 4 do
K[i, j] := subs({a =4, b=5, c =1, d =23, e =9/2}, A[i, j]) end do end do;
> K:
> eval(X);
Thus:
0 4 2 9/2 0
40 5 152 9
H: ) K:
2 5 0 11/2 8
9/2 15/2 11/2 0 19/2
0 9 8 19/2
9 0 9 21/2
D=
8§ 9 0 15/2
19/2 21/2 15/2 0
_ 33 37 37
G=[35 ¥ F]
> eb := -(1/2)*(D[1, 2]+D[3, 4]1-D[1, 3]1-D[2, 4]);
1
> el := 1/2x(D[1, 4]+D[1, 3]-2%e5-D[3, 4]);
4
> e2 := 1/2x(D[2, 4]+D[2, 3]-2%e5-D[3, 4]);
5
> e3 := 1/2%(D[3, 1]+D[3, 2]-2*e5-D[1, 2]);
3
> ed := 1/2x(D[4, 1]1+D[4, 2]-2%e5-D[1, 2]);
9
1. .3 1. .3
1/2 3/2 4 3
\./ y \. 1 ./
2.4 4\.4 be 5 9/2 o

9 8 19/2

0 9 21/2

9 0 15/2

21/2 15/2 0
1. .3
N /
1
= ° [ ]

2./5 9/2\.4
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0

Example 4.7 Now, one example where we obtain the star topology and H, H have topology (12]34). In
this case, the parameters are b =3, (b—b) =2,u =8, w=0,s =2,t = —4,2 = —4 and y = —2.

> H := matrix(4, 4); for i to 4 do for j to 4 do

H[i, j] := subs({fa =1, b=5, ¢c=3,d=17, e =28}, A[i, jl) end do end do;

> H:

> eval(H);

> K := matrix(4, 4); for i to 4 do for j to 4 do

K[i, j] := subs({a =5, b =9, c=1,d=7, e =2}, A[i, jl) end do end do;

> K:

> eval(K);
Thus:
0 6 11 12 0 14 13 8
6 0 15 16 14 0 17 12
H= ;o K=
11 15 0 15 13 17 0 9
12 16 15 O 8 12 9 0
0 14 13 12
14 0 17 16
D = ;
13 17 0 15
12 16 15 O
G=1[29 29 29 ].
> e5 := -(1/2)*(D[1, 2]1+D[3, 4]1-D[1, 3]1-D[2, 41);
0
> el := 1/2x(D[1, 4]+D[1, 3]-2%e5-D[3, 4]);
5
> e2 := 1/2x(D[2, 4]+D[2, 3]-2%e5-D[3, 4]);
9
> e3 := 1/2x(D[3, 1]+D[3, 2]-2*e5-D[1, 2]);
8
> ed := 1/2%(D[4, 1]+D[4, 2]-2%e5-D[1, 2]);
7
le ] le o3 le o3
1 7 5 7 5 8
AN 3 / AN 1 / _ \ /
° ° \Vi ° ° = °
/4 AN /4 N T~
2. .4 2. .4 2. .4

O

Now we will present some examples dealing with the cone structure mentioned on the previous section.
By the construction, if we have parameters s,t,u,w,z,y,b,b for (H,K), and s ' v’ w', 2",y b/, b for
(H',K'), then the parameters corresponding to («H + (1 — a)H') \/(aK + (1 — a)K’) will be convex
combinations of the first group variables and the second group variables, namely:

'"=as+(1—a)s ; t'=at+(1-a)f ; v'=cu+(Q-a) ; w'=acw+(1-a)w ;
/

P =arx+(1-a) ; Y=ay+(1—-0a)y ; V=ab+Q—-a) ; b'=ab+(1-a)t
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As we mentioned in the previous section, we present an example that gives totally different results if we
consider convex combination of (H, K) and (H', K') versus convex combinations of (K, H) and (H', K'),
i.e. when we reverse the mixing order in the first pair.

Before this example, we present another one where (H, K), (H', K') € A(1934),1234) and o(H, K) +
(1 —a)(H', K') € H1934),(13)24) for all a € (0,1).

Example 4.8 In this case, we pick T, 7" as (12]34) and (13|24), and we consider (H, K) and (H', K') as
in Examples 4 and 4 respectively. Thus (H, K), (H',K') € .
Recall from these two examples that we have u = 6,w = —5,s =2,t = -1,z =4,y = -3,b=b=1
and v/ = 6,w' = =5,8 = 1,t' = —2,2' =3,y = —4, (b —b') = 1,1/ = 3/2. Thus:
" " " " " ! /! 3 1 " 1 1
s'=14a;t'==24a;u =6;w =5;2 =a+3;y =a—4;b ==-—-a;b ==+ =a.
2 2 2 2
Since o € (0,1) we get y” < 0 and s > 0 for all @. As before, we need to compare the expressions in
Proposition 3.2:
max{u”, 0} + max{w”,0} = 6
2b" + max{z”,0} + max{y”,0} 3—a+a+3=6
20" + max{s”,0} + max{t",0} = 3—a+1l+a=41

So in this case, we always get topology (13]24).

Example 4.9 In this case, we will consider (H, K) as in Example 4 and we take a new pair (H', K') with
parameters ' = —7,w’ = 10,8’ = 7,t/ = —1,2/ = -2,9/ =8,/ = 1,(b' — V') = —3/2, so b’ = 5/2. Note
that 10 = maz{v’, 0} + max{w’, 0} = 2V' + max{z’,0} + max{y’,0} > 9 = 2 4+ max{s’,0} + max{t’,0} so
the topology of the mixture is (13|24), i.e. (H', K') € (19134 (13/24)-

Notice that 2(b' = V') + s +t' =20/ = V) + 2’ + ¢y =« +w = 3, so the parameters where chosen
correctly. We omit the computation of valid weights for the edges of H' and K’, but this is not a problem
since we’ve already proved they exist.

We consider the convex combination:

"=7-6a ; t'=—-a-1 ; W' =13a-7 ; w'=-15a+10 ;

1 . )
2 =5a-2 ; y'=-12a+8 ; V= ia—i—l ; b":—2a+§
As before, we have s > 0,¢ < 0,b > 0 for all a. The breaking points will be given by the zeros of u”, w”, "
and y”, That is a = 1—73,% and %:
Therefore,

~150+10 ifa< &
max{u”,0} + max{w”,0} =< —2a+3 fF<a<3
13a — 7 if % <«

10— 1la ifa<?
20" + max{z",0} + max{y",0} = {8 —6a  fZ<a<?
6ov if 2 <a

20" + max{s”,0} + max{t",0} = 9 — 5a.

9

By simple inspection we see that the only values of « that give tree metrics are a = é and o = 7. In

both cases we obtain a tree with topology (12]34)).
For example, the values for the corresponding matrices H” = aH+(1—a)H' and K" = aK+(1—a)K’

in the case o« = % are:

[y
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> H’’ := matrix(4, 4); for i to 4 do for j to 4 do

H’’[i, j] := subs({a = 106/24, b = 77/12, ¢ = 13/2, d = 7/2, e = 10}, A[i, j]) end do end do;
> H’’:

> eval(H’?);

> K’ := matrix(4, 4); for i to 4 do for j to 4 do
K>’[i, j] := subs({a =2, b=1, c = 13/6, d = 3, e = 4}, A[i, j]) end do end do;
> K’
> eval(K’?);
Thus:
65 173 251 43 49
0 % 12 12 0 3 % %
65 0 7 275 37 43
H//: 6 12 12 . K//: 6 6
173 197 27 ’ 43 37
B o1 03 s ¢ 0 T
251 275 27 49 43
7 12 2 0 s 6 (0
65 173 251
0 % 13 T2
65 0 7 275
D" — 6 12 12 |.
o 173 197 27
12 12 2
251 275 2T
2 12 2
m__ [ 73 112 112
¢'=15 5 5
> eb’? = -(1/2)*(P[1, 2]+P[3, 4]-P[1, 3]-P[2, 4]);
13
2
> el’’ := 1/2%(P[1, 4]+P[1, 3]-2%eb-P[3, 4]);
53
12
> e2’’ := 1/2%x(P[2, 4]+P[2, 3]-2%e5-P[3, 4]);
77
12
> e3’’ := 1/2%(P[3, 1]+P[3, 2]-2%eb-P[1, 2]);
7
2
> ed’? := 1/2%(P[4, 1]+P[4, 2]-2%e5-P[1, 21);
10

O

Example 4.10 To finish, we provide an example where we use the same pairs as in Example 4 but we
reverse the order of the first one, that is we take (K, H),(H',K') € #(1234),(13]24)- In this case, we’ll
see that infinitely many values of « will give tree metrics and for all these values we obtain a tree with
topology (12|34), that is different from the original one. Moreover, all other values of « (also infinitely
many) won’t give tree metrics.

Recall that when changing the order of the tree metrics we need to modify the parameters. In our case,
wegetu=—-6w=>5s=-2t=1r=—-4y=3b=b=1landv =6, = -5 =1t/ = -2,2/ =
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3,y = —4,(t/ —b') = 1,b/ = 3/2. And so the convex combination gives:
s"=1-3a ; t!=-243a ; v'=-12a+6 ; w' =10a—-5 ;

1 3 - 1 1
//:_ . //: _4 . b//:—* et . b//:* -
x Ta+3 ; y Ta ; 2a+2 ; 2a+2
Analyzing the breaking points we get:
—12a+6 ifa<j
max{v”,0} + max{w”,0} = 2
tu’. 0} 008 =1 100 =5 if L <a
—8a+6 ifa< %
20" + max{z",0} + max{y",0} = —a+3 f2<a<i
6r—1 if2<a
—doa+4 fa<i
20" + max{s",0} + max{t",0} = ¢ —a+3 fi<a<?
20+ 1 if % <«
In this case for all a ¢ {2} U [3;2], 0 < a < 1, the mixture of H” and K” is not a tree metric (although

in some cases we do obtain tree additive dissimilarity maps).

If o € {2} U[3; 7] then H”V K" has topology (12|34). If a = 0,1, then (H”, K") € .#13/24,(13]24) Since
they correspond to the mixtures KV H = HV K and H'V K').

In this case we see that although a = % and % give mixtures in -7(12)34),(12/34), all values of o between
these two give mixtures that are not tree metrics. This behaviour differs from the one exposed in [2] for
the case of phylogenetic mixtures, where if the parameters 5 < 3’ give trees of a fixed topology, then all

intermediate values in [3, 3] give the same result. O

Thus, as we see from the examples, the behaviour of convex combinations of tropical mixtures is far
from being predictable and in general one needs to treat each case separately.
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