
Tropical Secant Graphs of Monomial Curves
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Summary

GOAL: Study the affine cone over the first secant variety of a
monomial curve

t 7→ (1 : ti1 : ti2 : . . . : tin).

STRATEGY: Compute its tropicalization, which is a pure, balanced
weighted polyhedral fan of dim. 4 in Rn+1, with a 2-dimensional
lineality space

R〈1, (1, i1, i2, . . . , in)〉.

We encode it as a weighted graph in an (n− 2)-dim’l sphere.

Why? Given the tropicalization T X of a projective variety X, we can
recover its Chow polytope (hence, its multidegree, etc.) by known
algorithms (a.k.a. “Tropical implicitization.”)

Main examples: monomial curves C in P4.  Compute Newton
polytope of the defining equation of Sec1(C).
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 : ti1 : . . . : tin) parameterized
by n coprime integers 0 < i1 < . . . < in. By definition,

Sec1(C) = {a · p+ b · q | (a : b) ∈ P1, p, q ∈ C} ⊂ Tn+1.

• Pick points p = (1 : ti1 : . . . : tin), q = (1 : si1 : . . . : sin) in C. Use the
monomial change of coordinates b = −λa, t = ωs, and rewrite
v = a · p+ b · q, as

vk = asik︸︷︷︸
∈C̃

· (ωik − λ)︸ ︷︷ ︸
∈Z

for all k = 0, . . . , n,

where C̃ is the cone in Tn+1 over the curve C.

Definition

Let X,Y ⊂ TN be two subvarieties of tori. The Hadamard product of X
and Y equals X � Y = {(x0y0, . . . , xnyn) |x ∈ X, y ∈ Y } ⊂ TN .
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Theorem ([C. - Tobis - Yu])

Let X,Y ⊂ TN be closed subvarieties and consider their Hadamard
product X � Y ⊂ TN . Then as weighted sets: T (X � Y ) = T X + T Y.

Corollary ([C. - Lin])

Given a monomial curve C: t 7→ (1 : ti1 : . . . : tin), and the surface Z:
(λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ) ⊂ Tn+1. Then:

T Sec1(C) = T Z + R⊗Z Λ

where Λ = Z〈1, (0, i1, . . . , in)〉 is the intrinsic lin. lattice of T Sec1(C).

Strategy

Construct the graph T Z.  “Geometric tropicalization”

Modify T Z to get a weighted graph (the tropical secant graph
(TSG)) representing T Sec1(C) as a weighted set.
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Construction of T Z

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider TN with coordinate functions t1, . . . , tN , and let Z ⊂ TN be a
closed smooth surface. Suppose Z ⊃ Z is any compactification whose
boundary D is a smooth divisor with C.N.C. Let D1, . . . , Dm be the irred.
comp. of D, and write ∆ for the graph on {1, . . . ,m} defined by

{ki, kj} ∈ ∆ ⇐⇒ Dki
∩Dkj

6= ∅.

Let [Dk]:=(valDk
(t1), . . . , valDk

(tN ))∈ZN, and [σ] := Z≥0〈[Dk] : k ∈ σ〉, for
σ ∈ ∆. Then,

T Z =
⋃
σ∈∆

R≥0[σ].

Theorem ([C.])

mw =
∑

σ∈∆ s.t. w∈R≥0[σ]

(Dk1 ·Dk2) index
(
(R⊗Z [σ]) ∩ ZN : Z[σ]

)
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• Today, β = (f0, fi1 , . . . , fin) : X → Z ⊂ Tn+1, fij (w, λ) := wij − λ, and

X = T2 r
n⋃
j=0

(fij (w, λ) = 0)

.

• How to proceed if Z doesn’t satisfy the C.N.C. hypothesis?  Find nice
(tropical) compactification by resolving singularities!
• Idea: work with X instead of Z and use β to translate back to Z.
• Compactify X inside P2 and pick the map: β : P2 ⊃ X → Tn+1, where

βj := fhij (ω, λ, u)/udeg fij .

Our boundary divisors in X ⊂ P2 are Dij = (fhij = 0), D∞ = (u = 0), and

β∗(tj) = Dij − deg(fij )D∞,

• These divisors have triple intersections at: the origin, at infinity and at
points in T2.  Three types of points to blow-up!
• The resolution diagrams come in three flavors: two caterpillar trees
and families of star trees. We glue together these graphs along common
nodes to obtain the abstract graph ∆ from the theorem.
• We recover T Z from the abstract graph ∆ using the map β.
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Three flavors of resolution diagrams

a = {ij1 , . . . , ijk}
for all subsets a ⊆ {0, i1, . . . , in} of size ≥ 2 obtained by intersecting an
arithmetic progression in Z with the index set.

• Why Fa?If Dij1
, . . . , Dijk

intersect at p ∈ T2 then p = (ζ, ζij1 ) and ζ is
a prim. qth-root of unity for some q | gcd(ij2 − ij1 , . . . , ijk − ij1). So

a = {ij1 , . . . , ijk} 
∑
q

ϕ(q) exc. divisors Fa,ζ , BUT [Fa,ζ ] = [Fa,ζ′ ] := Fa.
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Our favorite example: {0, 30, 45, 55, 78} (K. Ranestad)

• Dik = ek;
• Eij = (0, i1, . . . , ij , ij , . . . , ij)
hij = −(ij , ij , . . . , ij , ij+1, . . . , in)

(j = 1, . . . , n− 1)

• 16 vertices (incl. bivalent
node E30), and 36 edges.

• Explicit combinatorial for-
mula for all weights.

• Five red non-bivalent (unla-
beled) nodes Fa:

F0,30,45,55,78 = (1, 1, 1, 1, 1),
F0,30,45,78 = (1, 1, 1, 0, 1),
F0,30,45,55 = (1, 1, 1, 1, 0),
F0,30,45 = (1, 1, 1, 0, 0),
F0,30,78 = (1, 1, 0, 0, 1).
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Reduction rules: from T Z to T Sec1C = T Z + R⊗ Λ{
F0,i1,...,in = 1 ∈ R⊗ Λ ; Eij ≡ hij (mod R⊗ Λ)
Ei1 = i1 · Fi1,...,in ; Ein−1 ≡ (in − in−1) · F0,i1,...,in−1(mod R⊗ Λ)

 Eliminate all hij , F0,i1,...,in and glue Fi1,...,in with Ei1 , and
F0,i1,...,in−1 with Ein−1 in T Z.

Eliminate all edges e in T Z s.t. R≥0〈e〉+ R⊗ Λ is not 4-dim’l.

Theorem ([C. - Lin])

We describe T Sec1C by a weighted graph obtained by gluing the graphs

a 6= {0, . . . , in}
along all nodes Dij , and gluing together Ei1 ≡ Fi1,...,in , Ein−1 ≡ F0,...,in−1 .
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The first secant of the curve (1 : t30 : t45 : t55 : t78)

• Known degree: 1 820 (K. Ranestad).

• Using out tropical approach:

multidegree w.r.t. Λ:
(1 820, 76 950)

Newton polytope of
Sec1(C).

f -vector=(24, 38, 16).

Note: 6 green nodes ↔ crossings of edges (hidden from us, but not an
issue for tropical implicitization algorithms).
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