Tropical Secant Graphs of Monomial Curves

Maria Angélica Cueto
UC Berkeley

Joint work with Shaowei Lin

arXiv:1005.3364v1

AMS-SMM Eighth International Meeting
Special Session on Singularity Theory and Algebraic Geometry
June 4th, 2010

M.A. Cueto (UC Berkeley) Tropical Secant Graphs 1/10


arXiv:1005.3364v1

@ GOAL: Study the affine cone over the first secant variety of a

monomial curve
trs (1ot g2 o tin),

o STRATEGY: Compute its tropicalization, which is a pure, balanced
weighted polyhedral fan of dim. 4 in R"*! with a 2-dimensional
lineality space

R(1,(1,d1,42,...,0n)).

We encode it as a weighted graph in an (n — 2)-dim’l sphere.
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@ Why? Given the tropicalization 7 X of a projective variety X, we can
recover its Chow polytope (hence, its multidegree, etc.) by known
algorithms (a.k.a. “Tropical implicitization.”)
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@ GOAL: Study the affine cone over the first secant variety of a
monomial curve
b (1ot ot t™),

o STRATEGY: Compute its tropicalization, which is a pure, balanced
weighted polyhedral fan of dim. 4 in R"*! with a 2-dimensional
lineality space

R(1,(1,d1,42,...,0n)).
We encode it as a weighted graph in an (n — 2)-dim’l sphere.

@ Why? Given the tropicalization 7 X of a projective variety X, we can
recover its Chow polytope (hence, its multidegree, etc.) by known
algorithms (a.k.a. “Tropical implicitization.”)

e Main examples: monomial curves C in P*. ~ Compute Newton
polytope of the defining equation of Sec!(C).
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sec'(C)={a-p+b-q[(a:b) €PlpgeC}C T
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sec'(C)={a-p+b-q[(a:b) €PlpgeC}C T

e Pick points p = (1 : ¢t : ... :tn), g =(1:s":...:5")in C. Use the
monomial change of coordinates b = —\a, t = ws, and rewrite
v=a-p+b-q, as
v = as’ - (W — \) forall k =0,...,n,
~ ——
eC (V4

where C is the cone in T"*! over the curve C.
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A tropical approach to the first secant of monomial curves

Let C be the monomial projective curve (1 :t% : ... : tin) parameterized
by n coprime integers 0 < i1 < ... < ip. By definition,

Sec'(C)={a-p+b-q[(a:b) €PlpgeC}C T

e Pick points p = (1 : ¢t : ... :tn), g =(1:s":...:5")in C. Use the
monomial change of coordinates b = —\a, t = ws, and rewrite
v=a-p+b-q, as

v = as’ - (W — \) forall k =0,...,n,
~ —
cC €z
where C is the cone in T"*! over the curve C.
Definition
Let X,Y C TV be two subvarieties of tori. The Hadamard product of X
and Y equals X .Y = {(zoy0, ..., Zn¥n) |z € X,y € Y} C TV.

M.A. Cueto (UC Berkeley) Tropical Secant Graphs 3 /10



Theorem ([C. - Tobis - Yu])

Let X,Y C TV be closed subvarieties and consider their Hadamard
product X .Y C TN, Then as weighted sets: 7(X .Y)=TX +7Y.

v

Corollary ([C. - Lin])

Given a monomial curve C: t +— (1 : ¢ ;... : "), and the surface Z:
A w) = (1= A wh =\ ... ,wn —X) C T, Then:

TSec!(C)=TZ+R®z A

where A = Z(1, (0,41, ...,4,)) is the intrinsic lin. lattice of T Sec'(C).
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Theorem ([C. - Tobis - Yu])

Let X,Y C TV be closed subvarieties and consider their Hadamard
product X .Y C TN, Then as weighted sets: 7(X .Y)=TX +7Y.

v

Corollary ([C. - Lin])

Given a monomial curve C: t +— (1 : ¢ ;... : "), and the surface Z:
A w) = (1= A wh =\ ... ,wn —X) C T, Then:

TSec!(C)=TZ+R®z A

where A = Z(1, (0,41, ...,4,)) is the intrinsic lin. lattice of T Sec'(C).

Strategy
@ Construct the graph 7Z. ~» "Geometric tropicalization”

e Modify 7Z to get a weighted graph (the tropical secant graph
(TSG)) representing T Sec!(C) as a weighted set.
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Construction of 77

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider TV with coordinate functions ti,...,tn, and let Z C TN be a
closed smooth surface. Suppose Z O Z is any compactification whose
boundary D is a smooth divisor with C.N.C. Let D1, ..., D,, be the irred.
comp. of D, and write A for the graph on {1,...,m} defined by

{ki, k:j} €A <— Dki N ij =£ 0.
Let [Di):=(valp,(t1), ..., valp,(tn))EZY and [0] := Z>o([Dy] : k € o), for

o € A. Then,
T7Z = U Rzo[o‘].
gEA
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Construction of 77

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev])

Consider TV with coordinate functions ti,...,tn, and let Z C TN be a
closed smooth surface. Suppose Z D Z is any compactification whose
boundary D is a smooth divisor with C.N.C. Let D1, ..., D,, be the irred.
comp. of D, and write A for the graph on {1,...,m} defined by

{k:i, ]{2]} €A <— Dki N ij =£ 0.
Let [Dy]:=(valp,(t1), ..., valp,(tn))E€ZY and [0] := Z>o([Dk] : k € o), for

o € A. Then,
T7Z = U Rzo[a].
oEA

Theorem ([C.])
My = > (Dg, - Dy,) index((R ®z [o]) N ZY : Z[o])

o€A s.t. wWERS([0]
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o Today, 8 = (fo, firs- -+ fin): X = Z C T, fi(w,\) := w' — A, and

X=T2- AL:JO(fij (w, \) = 0)
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o Today, 8 = (fo, firs- -+ fin): X = Z C T, fi(w,\) := w' — A, and
X =T~ U (fi,(w,\) =0)
=0

e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~+ Find nice
(tropical) compactification by resolving singularities!
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(tropical) compactification by resolving singularities!
e |dea: work with X instead of Z and use 3 to translate back to Z.
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o Today, 8 = (fo, firs- -+ fin): X = Z C T, fi(w,\) := w' — A, and
X =12 U (f, (w, ) = 0)
j=0
e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~+ Find nice
(tropical) compactification by resolving singularities!

e |dea: work with X instead of Z and use 3 to translate back to Z.

o Compactify X inside P? and pick the map: 3: P? D X — T+, where
Bj = fiy(w, A u) fu*® P,

Our boundary divisors in X C P? are D;, = (ff =0), Doo = (u=0), and

]

ﬂ*(tj) = Dij - deg(fij)DOW
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o Today, 8 = (fo, firs- -+ fin): X = Z C T, fi(w,\) := w' — A, and

X =T A[jo(fij (w, A) = 0)

e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~+ Find nice
(tropical) compactification by resolving singularities!
e |dea: work with X instead of Z and use 3 to translate back to Z.
o Compactify X inside P? and pick the map: 3: P? D X — T+, where
deg f;.
By 1= fl(w, A u) fut T

Our boundary divisors in X C P? are D;; = (fi}; =0), De = (u=0), and
ﬂ*(tj) = Dij - deg(fij)DOW

e These divisors have triple intersections at: the origin, at infinity and at

points in T2. ~» Three types of points to blow-up!
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o Today, 8 = (fo, firs- -+ fin): X = Z C T, fi(w,\) := w' — A, and

X =T A[jo(fij (w, A) = 0)

e How to proceed if Z doesn't satisfy the C.N.C. hypothesis? ~+ Find nice
(tropical) compactification by resolving singularities!

e |dea: work with X instead of Z and use 3 to translate back to Z.

o Compactify X inside P? and pick the map: 3: P? D X — T+, where

By 1= fl(w, A u) fut T
Our boundary divisors in X C P? are D;; = (f =0), Do = (u = 0), and

g

B(t;) = Dy, — deg(f;,) Doc,
e These divisors have triple intersections at: the origin, at infinity and at
points in T2. ~» Three types of points to blow-up!
e The resolution diagrams come in three flavors: two caterpillar trees
and families of star trees. We glue together these graphs along common
nodes to obtain the abstract graph A from the theorem.
e We recover 7 Z from the abstract graph A using the map 5.
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Three flavors of resolution diagrams

1_1+1 e 1." 2 1,n 1 i3
1J+1 o ln 2 h. 1

MLLM/

z,+1"' hi_y Pin_, Q:{Z]17,Z]k}
for all subsets a C {O,z’l, ...,ipn} of size > 2 obtained by intersecting an
arithmetic progression in Z with the index set.
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Three flavors of resolution diagrams

1_1+1 e 1." 2 1,n 1 i3
1J+1 o ln 2 h. 1

MLLM/

z,+1"' hi_y Pin_, Q:{Z]17,Z]k}
for all subsets a C {O,z’l, ...,ipn} of size > 2 obtained by intersecting an
arithmetic progression in Z with the index set.

o Why F,?
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Three flavors of resolution diagrams

D‘il Dia 'l:+1 o 7m 2 1n 1
Dy Di1 Diq ':+1 o tn 2 h. 1
h ".7+1'“ 11.2 lnl Q:{Z,]l??Z]k}
for all subsets a C {0,2'1, ...,ipn} of size > 2 obtained by intersecting an
arithmetic progression in Z with the index set.
o Why Fo?If Dy, ..., Dj, intersect at p € T? then p = (¢,¢%1) and ( is
a prim. gth-root of unity for some ¢ | ged(ij, — 4, ..., 45, —ij,). So

a="{ij,...,i5} ~ > lq) exc. divisors Fy ¢, BUT [Fyc] = [Foc] = Fa.
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Our favorite example: {0, 30,45, 55,78} (K. Ranestad)

e 16 vertices (incl. bivalent
node 5)), and 36 edges.

e FExplicit combinatorial for-
mula for all weights.

e Five red non-bivalent (unla-
beled) nodes F:

Foz0us5578 = (1,1,1,1,1),
Fos04578 = (1,1,1,0,1),
B Fos04555 = (1,1,1,1,0),

D; = €k,
® iy L . . FO,30,45 :(171717070)7
o £ = (.0,111,...,z'j,z'j,...,zj)' P —(1,1,0,0,1)
hij:—(’Lj,lj,...,’tj,lj+1,...,Zn) 0,30,78 s
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Reduction rules: from 727 to TSec'C =TZ +R® A

o {F()’il’“"in =1cR®A ; E’i]- = hi]. (mod R® A)

Eiy =i1-Fiy, in 5 Eiy_y = (in —in-1) - Fojiy,...in_ (Mod R ® A)

n—1 —
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Reduction rules: from 727 to TSec'C =TZ +R® A
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~~ Eliminate all hij. Foi, .. i, and glue Fy, ;. with E; , and
Foir,in_y With B in TZ.
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By =i1-Fy i 5 Bi_y = (in —in-1) - Fojiy,...in_, (Mod R @ A)
~~ Eliminate all hij. Foi, .. i, and glue Fy, ;. with E; , and
Foir,in_y With B in TZ.

e Eliminate all edges e in 7Z s.t. R>p(e) + R ® A is not 4-dim’l.
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Reduction rules: from 727 to TSec'C =TZ +R® A

P FO,il,...,in:]-ER@A ; Ez Eh(modR@A)
Ei,=u-Fy i, ; Ei, , =n—in-1) Fo,. . in_(mod R® A)

~~ Eliminate all hij, Foi, ..

Foiyoin, with B inTZ.

e Eliminate all edges e in 7Z s.t. R>p(e) + R ® A is not 4-dim’l.

Theorem ([C. - Lin])

We describe T Sec'C' by a weighted graph obtained by gluing the graphs
D;.
RS D"'J'4

and glue Fj,;

ze

with E;,, and

Eil E’I: E E’J+1 o "fn—2 tn—1 Dij2

D;, Dy, - Dy, Dij+1"'Di D;, ,

1 n—2

1
g Js

Q# {07"’7in}
along all nodes D;;, and gluing together E;, = F;, ., Ei. = Fo, . i,
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The first secant of the curve (1 : 30 : ¢4 : %

e Known degree: 1820 (K. Ranestad).
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e Known degree: 1820 (K. Ranestad).
e Using out tropical approach:

@ multidegree w.r.t. A:
(1820, 76950)

@ Newton polytope of
Sect(C). Egs
o f-vector=(24,38,16).  Fosoasss
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The first secant of the curve (1 : 30 : 15 ¢5° : ¢78)

e Known degree: 1820 (K. Ranestad).
e Using out tropical approach:

@ multidegree w.r.t. A:
(1820, 76950)

@ Newton polytope of
Sect(C). Egs
o f-vector=(24,38,16).  Fosoasss

Note: 6 green nodes < crossings of edges (hidden from us, but not an
issue for tropical implicitization algorithms).
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