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Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials f1, f2, . . . , fn ∈ C[t±1
1 , . . . , t±1

d ].

Algebraic Output: The prime ideal I defining the Zariski closure Y of
the image of the map:

f = (f1, . . . , fn) : Td 99K Tn

The ideal I consists of all polynomial relations among f1, f2, . . . , fn.

Existing methods: Gröbner bases and resultants.

GB: always applicable, but often too slow.

Resultants: useful when n = d + 1 and I is principal, with limited use.

Geometric Output: Invariants of Y , such as dimension, degree, etc.

Punchline: We can effectively compute them using tropical geometry.

TODAY: Study the case when d = 2 and Y is a surface.
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Example: parametric surface in T3

Input: Three Laurent polynomials in two unknowns:
x = f1(s, t) = 3 + 5 s + 7 t,

y = f2(s, t) = 17 + 13 t + 11 s2,

z = f3(s, t) = 19 + 47 st.

Output: The Newton polytope of the implicit equation g(x , y , z).

STRATEGY: Recover the Newton polytope of g(x , y , z) from the Newton
polytopes of the input polynomials f1, f2, f3.
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Y =


x = f1(s, t) = 3 + 5 s + 7 t,

y = f2(s, t) = 17 + 13 t + 11 s2,

z = f3(s, t) = 19 + 47 st.

 Newton polytope of g(x , y , z).
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• Γ is a balanced weighted planar graph in R3. It is the tropical variety
T (g(x , y , z)), dual to the Newton polytope of g .
• We can recover g(x , y , z) from Γ using numerical linear algebra.
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What is Tropical Geometry?

Given a variety X ⊂ Tn with defining ideal I ⊂ C[x±1
1 , . . . , x±1

n ], the
tropicalization of X equals:

T X = T I := {w ∈ Rn | inw I contains no monomial}.

1 It is a rational polyhedral fan in Rn  T X ∩ Sn−1 is a spherical
polyhedral complex.

2 If I is prime, then T X is pure of the same dimension as X .

3 Maximal cones have canonical multiplicities attached to them.

Example (hypersurfaces):

Maximal cones in T (g) are dual to edges in the Newton polytope
NP(g), and mσ is the lattice length of the associated edge.

Multiplicities are essential to recover NP(g) from T (g).
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What is Geometric Tropicalization?

AIM: Given Z ⊂ TN a surface, compute T Z from the geometry of Z .
KEY FACT: T Z can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C .])

Consider TN with coordinate functions χ1, . . . , χN , and let Z ⊂ TN be a
closed smooth surface. Suppose Z ⊃ Z is any normal and Q-factorial
compactification, whose boundary divisor has m irreducible components
D1, . . . ,Dm with no triple intersections ( C.N.C.). Let ∆ be the graph:

V (∆) = {1, . . . ,m} ; (i , j) ∈ E (∆) ⇐⇒ Di ∩ Dj 6= ∅.

Realize ∆ as a graph Γ ⊂ RN by [Dk ]:=(valDk
(χ1), . . . , valDk

(χN)) ∈ ZN .

Then, T Z is the cone over the graph Γ.

Theorem (Combinatorial formula for multiplicities [C.])

m([Di ],[Dj ]) = (Di · Dj)
[

(Z〈[Di ], [Dj ]〉)sat : Z〈[Di ], [Dj ]〉
]
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QUESTION: How to compute T Y from a parameterization

f = (f1, . . . , fn) : T2 99K Y ⊂ Tn ?

ANSWER: Compactify the domain X = T2 r
n⋃

i=1
(fi = 0) and use the

map f to translate back to Y .

Proposition

Given f : X ⊂ T2 → Y ⊂ Tn generically finite map of degree δ, let X be a
normal, Q-factorial, CNC compactification with intersection complex ∆.
Map each vertex Dk of ∆ in Zn to a vertex [D̃k ] of Γ ⊂ Rn, where

[D̃k ] = valDk
(χ ◦ f) = f#([Dk ]).

Then, T Y is the cone over the graph Γ ⊂ Rn, with multiplicities

m
([fDi ],[fDj ])

=
1

δ
(Di · Dj)

[
(Z〈[D̃i ], [D̃j ])〉sat : Z〈[D̃i ], [D̃j ]〉

]
.
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Implicitization of generic surfaces

SETTING: Let f = (f1, . . . , fn) : T2 99K Y ⊂ Tn of deg(f ) = δ, where we
fix the Newton polytope of each fi and allow generic coefficients.
GOAL: Compute the graph Γ of T Y from the Newton polytopes {Pi}ni=1.

IDEA: Compactify X inside the proj. toric variety XN , where N is the
common refinement of all N (Pi ). Generically, X is smooth with CNC.

The vertices and edges of the boundary intersection complex ∆ are

V (∆) = {Ei : dimPi 6= 0, 1 ≤ i ≤ n}
⋃
{Dρ : ρ ∈ N [1]},

(Dρ,Dρ′) ∈ E (∆) iff ρ, ρ′ are consecutive rays in N .

(Ei ,Dρ) ∈ E (∆) iff ρ ∈ N (Pi ).

(Ei ,Ej) ∈ E (∆) iff (fi = fj = 0) has a solution in T2.

Then, Γ is the realization of ∆ via

[Ei ] := ei (1 ≤ i ≤ n), [Dρ] := trop(f)(ηρ) ∀ ray ρ (ηρ prim. vector.)

Theorem [Sturmfels-Tevelev-Yu, C.]: T Y is the weighted cone over Γ.
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Implicitization of non-generic surfaces

Non-genericity ↔ CNC condition is violated.

Solution 1: 1 Embed X in XN .
2 Resolve triple intersections and singularities by classical

blow-ups, and carry divisorial valuations along the way.

Solution 2: 1 Embed X in P2
(s,t,u)  n + 1 boundary divisors

Ei = (fi = 0) (1 ≤ i ≤ n), E∞ = (u = 0).

2 Resolve triple intersections and singularities by blow-ups
π : X̃ → X , and read divisorial valuations by columns

(f ◦ π)∗(χi ) = π∗(Ei − deg(fi )E∞) = E ′i − deg(fi )E ′∞ −
r∑

j=1

bijHj ∀i .

The graph ∆ is obtained by gluing resolution diagrams and adding
pairwise intersections.

M.A. Cueto (Columbia Univ.) Tropical Implicitization of surfaces Oct. 22 2011 9 / 10



Implicitization of non-generic surfaces

Non-genericity ↔ CNC condition is violated.

Solution 1: 1 Embed X in XN .
2 Resolve triple intersections and singularities by classical

blow-ups, and carry divisorial valuations along the way.

Solution 2: 1 Embed X in P2
(s,t,u)  n + 1 boundary divisors

Ei = (fi = 0) (1 ≤ i ≤ n), E∞ = (u = 0).

2 Resolve triple intersections and singularities by blow-ups
π : X̃ → X , and read divisorial valuations by columns

(f ◦ π)∗(χi ) = π∗(Ei − deg(fi )E∞) = E ′i − deg(fi )E ′∞ −
r∑

j=1

bijHj ∀i .

The graph ∆ is obtained by gluing resolution diagrams and adding
pairwise intersections.

M.A. Cueto (Columbia Univ.) Tropical Implicitization of surfaces Oct. 22 2011 9 / 10



Example (non-generic surface)

Y =


x = f1(s, t) = s − t,

y = f2(s, t) = t − s2,

z = f3(s, t) = −1 + s t,
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(7, 11, 6)
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