## Implicitization of surfaces via Geometric Tropicalization

## María Angélica Cueto

Columbia University
Minisymposia on Tropical Geometry
SIAM AG² Meeting 2011
NCSU, Raleigh
October 7th 2011

## Three references:

Sturmfels, Tevelev, Yu: The Newton polytope of the implicit equation (2007)
Sturmfels, Tevelev: Elimination theory for tropical varieties (2008)
MAC: arXiv:1105. 0509 (2011)
(and many, many more!)

## Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]$.
Algebraic Output: The prime ideal I defining the Zariski closure $Y$ of the image of the map:

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{T}^{d} \longrightarrow \mathbb{T}^{n}
$$

The ideal $I$ consists of all polynomial relations among $f_{1}, f_{2}, \ldots, f_{n}$. Existing methods: Gröbner bases and resultants.

- GB: always applicable, but often too slow.
- Resultants: useful when $n=d+1$ and $I$ is principal, with limited use. Geometric Output: Invariants of $Y$, such as dimension, degree, etc.

Punchline: We can effectively compute them using tropical geometry.
TODAY: Study the case when $\mathrm{d}=2$ and Y is a surface.

## Example: parametric surface in $\mathbb{T}^{3}$

Input: Three Laurent polynomials in two unknowns:

$$
\left\{\begin{array}{l}
x=f_{1}(s, t)=3+5 s+7 t \\
y=f_{2}(s, t)=17+13 t+11 s^{2} \\
z=f_{3}(s, t)=19+47 s t
\end{array}\right.
$$

Output: The Newton polytope of the implicit equation $g(x, y, z)$.

STRATEGY: Recover the Newton polytope of $g(x, y, z)$ from the Newton polytopes of the input polynomials $f_{1}, f_{2}, f_{3}$.

$$
Y=\left\{\begin{array}{l}
x=f_{1}(s, t)=3+5 s+7 t \\
y=f_{2}(s, t)=17+13 t+11 s^{2} \\
z=f_{3}(s, t)=19+47 s t
\end{array}\right.
$$

$$
\rightsquigarrow \text { Newton polytope of } g(x, y, z) \text {. }
$$



- $\Gamma$ is a balanced weighted planar graph in $\mathbb{R}^{3}$. It is the tropical variety $\mathcal{T}(g(x, y, z))$, dual to the Newton polytope of $g$.
- We can recover $g(x, y, z)$ from 「 using numerical linear algebra.


## What is Tropical Geometry?

Given a variety $X \subset \mathbb{T}^{n}$ with defining ideal $I \subset \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the tropicalization of $X$ equals:

$$
\mathcal{T} X=\mathcal{T} I:=\left\{w \in \mathbb{R}^{n} \mid \mathrm{in}_{w} / \text { contains no monomial }\right\}
$$

(1) It is a rational polyhedral fan in $\mathbb{R}^{n} \rightsquigarrow \mathcal{T} X \cap \mathbb{S}^{n-1}$ is a spherical polyhedral complex.
(2) If $I$ is prime, then $\mathcal{T} X$ is pure of the same dimension as $X$.
(3) Maximal cones have canonical multiplicities attached to them.

## Example (hypersurfaces):

- Maximal cones in $\mathcal{T}(g)$ are dual to edges in the Newton polytope $\mathrm{NP}(g)$, and $m_{\sigma}$ is the lattice length of the associated edge.
- Multiplicities are essential to recover $\mathrm{NP}(g)$ from $\mathcal{T}(g)$.


## What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^{N}$ a surface, compute $\mathcal{T} Z$ from the geometry of $Z$. KEY FACT: $\mathcal{T} Z$ can be characterized in terms of divisorial valuations.

## What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^{N}$ a surface, compute $\mathcal{T} Z$ from the geometry of $Z$. KEY FACT: $\mathcal{T} Z$ can be characterized in terms of divisorial valuations.
Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.]) Consider $\mathbb{T}^{N}$ with coordinate functions $\chi_{1}, \ldots, \chi_{N}$, and let $Z \subset \mathbb{T}^{N}$ be a closed smooth surface. Suppose $\bar{Z} \supset Z$ is any normal and $\mathbb{Q}$-factorial compactification, whose boundary divisor has $m$ irreducible components $D_{1}, \ldots, D_{m}$ with no triple intersections (C.N.C.). Let $\Delta$ be the graph:

$$
V(\Delta)=\{1, \ldots, m\} \quad ; \quad(i, j) \in E(\Delta) \Longleftrightarrow D_{i} \cap D_{j} \neq \emptyset .
$$

Realize $\Delta$ as a graph $\Gamma \subset \mathbb{R}^{N}$ by $\left[D_{k}\right]:=\left(\operatorname{val}_{D_{k}}\left(\chi_{1}\right), \ldots\right.$, val $\left._{D_{k}}\left(\chi_{N}\right)\right) \in \mathbb{Z}^{N}$. Then, $\mathcal{T} Z$ is the cone over the graph $\Gamma$.

## What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^{N}$ a surface, compute $\mathcal{T} Z$ from the geometry of $Z$. KEY FACT: $\mathcal{T} Z$ can be characterized in terms of divisorial valuations.
Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.]) Consider $\mathbb{T}^{N}$ with coordinate functions $\chi_{1}, \ldots, \chi_{N}$, and let $Z \subset \mathbb{T}^{N}$ be a closed smooth surface. Suppose $\bar{Z} \supset Z$ is any normal and $\mathbb{Q}$-factorial compactification, whose boundary divisor has $m$ irreducible components $D_{1}, \ldots, D_{m}$ with no triple intersections (C.N.C.). Let $\Delta$ be the graph:

$$
V(\Delta)=\{1, \ldots, m\} \quad ; \quad(i, j) \in E(\Delta) \Longleftrightarrow D_{i} \cap D_{j} \neq \emptyset
$$

Realize $\Delta$ as a graph $\Gamma \subset \mathbb{R}^{N}$ by $\left[D_{k}\right]:=\left(\operatorname{val}_{D_{k}}\left(\chi_{1}\right), \ldots\right.$, val $\left._{D_{k}}\left(\chi_{N}\right)\right) \in \mathbb{Z}^{N}$. Then, $\mathcal{T} Z$ is the cone over the graph $\Gamma$.

Theorem (Combinatorial formula for multiplicities [C.])

$$
m_{\left(\left[D_{i}\right],\left[D_{j}\right]\right)}=\left(D_{i} \cdot D_{j}\right)\left[\left(\mathbb{Z}\left\langle\left[D_{i}\right],\left[D_{j}\right]\right\rangle\right)^{\text {sat }}: \mathbb{Z}\left\langle\left[D_{i}\right],\left[D_{j}\right]\right\rangle\right]
$$

## QUESTION: How to compute $\mathcal{T} Y$ from a parameterization

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{T}^{2} \rightarrow Y \subset \mathbb{T}^{n} \quad ?
$$

QUESTION: How to compute $\mathcal{T} Y$ from a parameterization

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{T}^{2} \rightarrow Y \subset \mathbb{T}^{n} \quad ?
$$

ANSWER: Compactify the domain $X=\mathbb{T}^{2} \backslash \bigcup_{i=1}^{n}\left(f_{i}=0\right)$ and use the map $\mathbf{f}$ to translate back to $Y$.

## Proposition

Given $\mathbf{f}: X \subset \mathbb{T}^{2} \rightarrow Y \subset \mathbb{T}^{n}$ generically finite map of degree $\delta$, let $\bar{X}$ be a normal, $\mathbb{Q}$-factorial, CNC compactification with intersection complex $\Delta$. Map each vertex $D_{k}$ of $\Delta$ in $\mathbb{Z}^{n}$ to a vertex $\left[\widetilde{D_{k}}\right]$ of $\Gamma \subset \mathbb{R}^{n}$, where

$$
\left[\widetilde{D_{k}}\right]=\operatorname{val}_{D_{k}}(\chi \circ \mathbf{f})=\mathbf{f} \#\left(\left[D_{k}\right]\right)
$$

Then, $\mathcal{T} Y$ is the cone over the graph $\Gamma \subset \mathbb{R}^{n}$, with multiplicities

$$
m_{\left(\left[\widetilde{D_{i}}\right],\left[\widetilde{D_{j}}\right]\right)}=\frac{1}{\delta}\left(D_{i} \cdot D_{j}\right)\left[\left(\mathbb{Z}\left\langle\left[\widetilde{D_{i}}\right],\left[\widetilde{D_{j}}\right]\right)\right\rangle^{s a t}: \mathbb{Z}\left\langle\left[\widetilde{D_{i}}\right],\left[\widetilde{D_{j}}\right]\right\rangle\right] .
$$

## Implicitization of generic surfaces

SETTING: Let $f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{T}^{2} \rightarrow Y \subset \mathbb{T}^{n}$ of $\operatorname{deg}(f)=\delta$, where we fix the Newton polytope of each $f_{i}$ and allow generic coefficients.
GOAL: Compute the graph $\Gamma$ of $\mathcal{T} Y$ from the Newton polytopes $\left\{\mathcal{P}_{i}\right\}_{i=1}^{n}$.
IDEA: Compactify $X$ inside the proj. toric variety $X_{\mathscr{N}}$, where $\mathscr{N}$ is the common refinement of all $\mathscr{N}\left(P_{i}\right)$. Generically, $\bar{X}$ is smooth with CNC.

The vertices and edges of the boundary intersection complex $\Delta$ are

$$
V(\Delta)=\left\{E_{i}: \operatorname{dim} \mathcal{P}_{i} \neq 0,1 \leq i \leq n\right\} \bigcup\left\{D_{\rho}: \rho \in \mathscr{N}^{[1]}\right\}
$$

- $\left(D_{\rho}, D_{\rho^{\prime}}\right) \in E(\Delta)$ iff $\rho, \rho^{\prime}$ are consecutive rays in $\mathscr{N}$.
- $\left(E_{i}, D_{\rho}\right) \in E(\Delta)$ iff $\rho \in \mathscr{N}\left(\mathcal{P}_{i}\right)$.
- $\left(E_{i}, E_{j}\right) \in E(\Delta)$ iff $\left(f_{i}=f_{j}=0\right)$ has a solution in $\mathbb{T}^{2}$.

Then, $\Gamma$ is the realization of $\Delta$ via

$$
\left[E_{i}\right]:=e_{i} \quad(1 \leq i \leq n), \quad\left[D_{\rho}\right]:=\operatorname{trop}(\mathbf{f})\left(\eta_{\rho}\right) \quad \forall \text { ray } \rho\left(\eta_{\rho} \text { prim. vector. }\right)
$$

Theorem [Sturmfels-Tevelev-Yu, C.]: $\mathcal{T} Y$ is the weighted cone over $\Gamma$.

## Implicitization of non-generic surfaces

Non-genericity $\leftrightarrow$ CNC condition is violated.
Solution 1:
(1) Embed $X$ in $X_{N}$.
(2) Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.

## Implicitization of non-generic surfaces

Non-genericity $\leftrightarrow$ CNC condition is violated.
Solution 1:
(1) Embed $X$ in $X_{\mathscr{N}}$.
(2) Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.
Solution 2: (1) Embed $X$ in $\mathbb{P}_{(s, t, u)}^{2} \rightsquigarrow n+1$ boundary divisors

$$
E_{i}=\left(f_{i}=0\right) \quad(1 \leq i \leq n), \quad E_{\infty}=(u=0)
$$

(2) Resolve triple intersections and singularities by blow-ups $\pi: \tilde{X} \rightarrow X$, and read divisorial valuations by columns

$$
(f \circ \pi)^{*}\left(\chi_{i}\right)=\pi^{*}\left(E_{i}-\operatorname{deg}\left(f_{i}\right) E_{\infty}\right)=E_{i}^{\prime}-\operatorname{deg}\left(f_{i}\right) E_{\infty}^{\prime}-\sum_{j=1}^{r} b_{i j} H_{j} \quad \forall i
$$

The graph $\Delta$ is obtained by gluing resolution diagrams and adding pairwise intersections.

## Example (non-generic surface)

$$
Y=\left\{\begin{array}{l}
x=f_{1}(s, t)=s-t,  \tag{7,11,6}\\
y=f_{2}(s, t)=t-s^{2}, \\
z=f_{3}(s, t)=-1+s t,
\end{array}\right.
$$



Affine Charts:


