Implicitization of surfaces via Geometric Tropicalization

María Angélica Cueto

Columbia University

Minisymposia on Tropical Geometry SIAM AG² Meeting 2011 NCSU, Raleigh October 7th 2011

Three references:

Sturmfels, Tevelev, Yu: The Newton polytope of the implicit equation (2007)
Sturmfels, Tevelev: Elimination theory for tropical varieties (2008)

MAC: arXiv:1105.0509 (2011)

(and many, many more!)

Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials $f_1, f_2, \ldots, f_n \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$.

Algebraic Output: The *prime* ideal *I* defining the Zariski closure *Y* of the image of the map:

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^d \dashrightarrow \mathbb{T}^n$$

The ideal I consists of all polynomial relations among f_1, f_2, \ldots, f_n .

Existing methods: Gröbner bases and resultants.

- GB: always applicable, but often too slow.
- Resultants: useful when n = d + 1 and I is *principal*, with limited use.

Geometric Output: Invariants of Y, such as dimension, degree, etc.

Punchline: We can *effectively* compute them using tropical geometry.

TODAY: Study the case when d = 2 and **Y** is a surface.

Example: parametric surface in \mathbb{T}^3

Input: Three Laurent polynomials in two unknowns:

$$\begin{cases} x = f_1(s, t) = 3 + 5 s + 7 t, \\ y = f_2(s, t) = 17 + 13 t + 11 s^2, \\ z = f_3(s, t) = 19 + 47 st. \end{cases}$$

Output: The Newton polytope of the implicit equation g(x, y, z).

STRATEGY: Recover the Newton polytope of g(x, y, z) from the **Newton** polytopes of the input polynomials f_1 , f_2 , f_3 .

$$Y = \begin{cases} x = f_1(s, t) = 3 + 5s + 7t, \\ y = f_2(s, t) = 17 + 13t + 11s^2, & \text{where } x = f_3(s, t) = 19 + 47st. \end{cases}$$
 Newton polytope of $g(x, y, z)$.

- Γ is a balanced weighted *planar* graph in \mathbb{R}^3 . It is the tropical variety $\mathcal{T}(g(x,y,z))$, dual to the Newton polytope of g.
- We can recover g(x, y, z) from Γ using numerical linear algebra.

What is Tropical Geometry?

Given a variety $X \subset \mathbb{T}^n$ with defining ideal $I \subset \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the tropicalization of X equals:

$$TX = TI := \{ w \in \mathbb{R}^n | \text{in}_w I \text{ contains no monomial} \}.$$

- **1** It is a rational polyhedral fan in $\mathbb{R}^n \rightsquigarrow \mathcal{T}X \cap \mathbb{S}^{n-1}$ is a spherical polyhedral complex.
- ② If I is prime, then TX is pure of the same dimension as X.
- Maximal cones have canonical multiplicities attached to them.

Example (hypersurfaces):

- Maximal cones in $\mathcal{T}(g)$ are dual to edges in the Newton polytope $\mathrm{NP}(g)$, and m_{σ} is the lattice length of the associated edge.
- Multiplicities are essential to recover NP(g) from $\mathcal{T}(g)$.

What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a **surface**, compute TZ from the *geometry* of Z.

KEY FACT: $\mathcal{T}Z$ can be characterized in terms of divisorial valuations.

What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a surface, compute TZ from the *geometry* of Z. **KEY FACT:** TZ can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider \mathbb{T}^N with coordinate functions χ_1, \ldots, χ_N , and let $Z \subset \mathbb{T}^N$ be a closed smooth **surface**. Suppose $\overline{Z} \supset Z$ is any normal and \mathbb{Q} -factorial compactification, whose boundary divisor has m irreducible components D_1, \ldots, D_m with no triple intersections (**C.N.C.**). Let Δ be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i,j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize Δ as a graph $\Gamma \subset \mathbb{R}^N$ by $[D_k]:=(val_{D_k}(\chi_1),\ldots,val_{D_k}(\chi_N)) \in \mathbb{Z}^N$.

Then, TZ is the cone over the graph Γ .

What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a surface, compute TZ from the *geometry* of Z. **KEY FACT:** TZ can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider \mathbb{T}^N with coordinate functions χ_1, \ldots, χ_N , and let $Z \subset \mathbb{T}^N$ be a closed smooth **surface**. Suppose $\overline{Z} \supset Z$ is any normal and \mathbb{Q} -factorial compactification, whose boundary divisor has m irreducible components D_1, \ldots, D_m with no triple intersections (**C.N.C.**). Let Δ be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i,j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize Δ as a graph $\Gamma \subset \mathbb{R}^N$ by $[D_k]:=(val_{D_k}(\chi_1),\ldots,val_{D_k}(\chi_N)) \in \mathbb{Z}^N$.

Then, TZ is the cone over the graph Γ .

Theorem (Combinatorial formula for multiplicities [C.])

$$m_{([D_i],[D_j])} = (D_i \cdot D_j) \left[\left(\mathbb{Z} \langle [D_i],[D_j] \rangle \right)^{sat} : \mathbb{Z} \langle [D_i],[D_j] \rangle \right]$$

QUESTION: How to compute TY from a parameterization

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$$
?

QUESTION: How to compute TY from a parameterization

$$\mathbf{f} = (f_1, \ldots, f_n) \colon \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n$$
 ?

ANSWER: Compactify the domain $X = \mathbb{T}^2 \setminus \bigcup_{i=1}^n (f_i = 0)$ and use the map \mathbf{f} to translate back to Y.

Proposition

Given $\mathbf{f}: X \subset \mathbb{T}^2 \to Y \subset \mathbb{T}^n$ generically finite map of degree δ , let \overline{X} be a normal, \mathbb{Q} -factorial, CNC compactification with intersection complex Δ . Map each vertex D_k of Δ in \mathbb{Z}^n to a vertex $[\widetilde{D_k}]$ of $\Gamma \subset \mathbb{R}^n$, where

$$[\widetilde{D_k}] = val_{D_k}(\chi \circ \mathbf{f}) = \mathbf{f}^\#([D_k]).$$

Then, TY is the cone over the graph $\Gamma \subset \mathbb{R}^n$, with multiplicities

$$m_{([\widetilde{D_i}],[\widetilde{D_i}])} = \frac{1}{\delta} (D_i \cdot D_j) \left[\left(\mathbb{Z} \langle [\widetilde{D_i}], [\widetilde{D_j}] \rangle \right)^{sat} : \mathbb{Z} \langle [\widetilde{D_i}], [\widetilde{D_j}] \rangle \right].$$

Implicitization of generic surfaces

SETTING: Let $f = (f_1, ..., f_n) : \mathbb{T}^2 \longrightarrow Y \subset \mathbb{T}^n$ of $\deg(f) = \delta$, where we fix the Newton polytope of each f_i and allow generic coefficients. **GOAL:** Compute the graph Γ of TY from the Newton polytopes $\{\mathcal{P}_i\}_{i=1}^n$.

IDEA: Compactify X inside the proj. toric variety $X_{\mathcal{N}}$, where \mathcal{N} is the common refinement of all $\mathcal{N}(P_i)$. Generically, \overline{X} is smooth with CNC.

The vertices and edges of the boundary intersection complex Δ are

$$V(\Delta) = \{E_i : \dim \mathcal{P}_i \neq 0, 1 \leq i \leq n\} \bigcup \{D_\rho : \rho \in \mathscr{N}^{[1]}\},\$$

- $(D_{\rho}, D_{\rho'}) \in E(\Delta)$ iff ρ, ρ' are consecutive rays in \mathscr{N} .
- $(E_i, D_\rho) \in E(\Delta)$ iff $\rho \in \mathcal{N}(\mathcal{P}_i)$.
- $(E_i, E_j) \in E(\Delta)$ iff $(f_i = f_j = 0)$ has a solution in \mathbb{T}^2 .

Then, Γ is the realization of Δ via

$$[E_i] := e_i \quad (1 \le i \le n), \quad [D_\rho] := \operatorname{trop}(\mathbf{f})(\eta_\rho) \quad \forall \text{ ray } \rho \ (\eta_\rho \text{ prim. vector.})$$

Theorem [Sturmfels-Tevelev-Yu, C.]: TY is the weighted cone over Γ .

Implicitization of *non-generic* surfaces

Non-genericity \leftrightarrow CNC condition is violated.

Solution 1: • Embed X in X_N .

Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.

Implicitization of *non-generic* surfaces

Non-genericity ↔ CNC condition is violated.

- **Solution 1:** Embed X in $X_{\mathcal{N}}$.
 - Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.
- **Solution 2:** Embed X in $\mathbb{P}^2_{(s,t,u)} \rightsquigarrow n+1$ boundary divisors $E_i = (f_i = 0) \quad (1 \le i \le n), \quad E_\infty = (u = 0).$
 - **2** Resolve triple intersections and singularities by blow-ups $\pi \colon \tilde{X} \to X$, and read divisorial valuations by *columns*

$$(f \circ \pi)^*(\chi_i) = \pi^*(E_i - \deg(f_i)E_{\infty}) = E_i' - \deg(f_i)E_{\infty}' - \sum_{j=1}^r b_{ij}H_j \quad \forall i.$$

The graph Δ is obtained by gluing resolution diagrams and adding pairwise intersections.

Example (non-generic surface)

