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2 Geometry of the model: First Secants of Segre embeddings and
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The Statistical model F4,2

Hidden

Observed

Figure: The undirected graphical model F4,2.

The set of all possible joint probability distributions (X1, X2, X3, X4) form
an algebraic variety M inside ∆15 with expected codimension one and
(multi)homogeneous defining equation f .

Problem (Drton-Sturmfels-Sullivant)

Find the degree and the defining polynomial f / Newton polytope of M
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Geometry of the model F4,2

Parameterization of the model: p : R32 → R16,

pijkl =
1∑
s=0

1∑
r=0

asibsjcskdslerifrjgrkhrl for all (i, j, k, l) ∈ {0, 1}4.

Using homogeneity and the distributive law

p : (P1 × P1)8 → P15 pijkl = (
1∑
s=0

asibsjcskdsl) · (
1∑
r=0

erifrjgrkhrl).

So we have a coordinatewise product of two parameterizations of F4,1: the
graphical model corresponding to the 4-claw tree with binary nodes.

NICE FACTS: We know a lot about F4,1 and coordinatewise products of
projective varieties...
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Geometry of the model F4,2

Fact

1 The binary 4-claw tree model is Sec1(P1 × P1 × P1 × P1) ⊂ P15.

2 Coordinatewise product of parameterizations corresponds to
Hadamard products of algebraic varieties

Definition

X,Y ⊂ Pn, the Hadamard product of X and Y is

X � Y = {x � y := (x0y0 : . . . : xnyn) |x ∈ X, y ∈ Y, x � y 6= 0} ⊂ Pn,
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Geometry of the model F4,2

Corollary

The algebraic variety of the model is M = X �X where X is the first
secant variety of the Segre embedding P1 × P1 × P1 × P1 ↪→ P15.

Remark

The model is highly symmetric. It is invariant under relabeling of the four
observed nodes and changing the role of the two states (0 and 1).
Therefore, we have an action of the group B4 = S4 n (S2)4, the group of
symmetries of the 4-cube.

Useful facts about X:

1 The ideal I(X) is a well-studied object: it is the 9-dim irreducible
projective variety of all 2× 2× 2× 2-tensors of tensor rank ≤ 2.

2 Known set of generators for I(X): 3× 3-minors of all three
4× 4-flattenings of these tensors  48 polynomials.
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Tropicalizing the model

• For today: MAX CONVENTION.

Remark

Basic features of T (X) for X ⊂ Pn with homogeneous ideal I = I(X):

1 T (X) is a fan (constant coefficients case).

2 The lineality space of the fan T (X) is the set

L = {w ∈ T (X) : inw(I) = I}.
It describes action of the maximal torus acting on X (diagonal action
by the lattice L ∩ Zn+1).

3 Morphisms can be tropicalized and monomial maps have very nice
tropicalizations.
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Theorem (Sturmfels-Tevelev-Yu)

Let A ∈ Zd×n, defining a monomial map α : (C∗)n → (C∗)d and a
canonical linear map A : Rn → Rd. Let V ⊂ (C∗)n be a subvariety. Then

T (α(V )) = A(T (V )).

Moreover, if α induces a generically finite morphism on V of degree δ, we
have an explicit formula to push forward the multiplicities of T (V ) to
multiplicities of T (α(V )). The multiplicity of T (α(V )) at a regular point
w equals

mw =
1
δ
·
∑
v

mv · index (Lw ∩ Zd : A(Lv ∩ Zn)),

where the sum is over all points v ∈ T (V ) with Av = w. We also assume
that the number of such v is finite, all of them are regular in T (V ), and
Lv,Lw are linear spans of neighborhoods of v ∈ T (V ) and w ∈ A(T (V ))
respectively.
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Main results

In our case M = X �X = α(X ×X), and α is the monomial map
associated to matrix (Id16 | Id16).

Theorem (— -Tobis-Yu, Allermann-Rau, . . .)

Let X,Y ⊂ Cm be two irreducible varieties. Then

T (X × Y ) = T (X)× T (Y )
as weighted polyhedral complexes, with mσ×τ = mσmτ for maximal cones
σ ⊂ T (X), τ ⊂ T (Y ), and σ × τ ⊂ T (X × Y ).

Theorem (— -Tobis-Yu)

Given X,Y ⊂ Pn two projective irreducible varieties none of which is
contained in a proper coordinate hyperplane, we can consider the
associated projective variety X � Y ⊂ Pn. Then as sets:

T (X � Y ) = T (X) + T (Y ).
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Computing T (M) from T (X)

T (X) can be computed with Gfan. In particular,

10-dim. simplicial fan in R16,

5-dim. lineality space,

f -vector= (381, 3 436, 11 236, 15 640, 7 680),

13 rays and 49 maximal cones up to B4-symmetry.

Thus we know T (M) as a set!

Dimension = 15 in C16, so M is a hypersurface!

Number of maximal cones in T (X) + T (X) = 6 865 824.

18 972 maximal cones up to B4-symmetry.

BUT we want more...

We want to compute multiplicities at regular points of T (M).

Our map α is monomial BUT NOT generically finite. However, it is very
close to being generically finite. We generalize the previous Theorem by
[STY] to obtain multiplicities in T (M).
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Main results

(C∗)n ⊇ V α // //

π
����

W ⊆ (C∗)d

π
����

V ′ = V/H
ᾱ // // W/α(H),

where H = Λ⊗Z C∗ ∼ (C∗)dim Λ.

Theorem (— -Tobis-Yu)

Let V ⊂ (C∗)n be a subvariety with torus action given by a lattice Λ and
take the quotient by this action V ′ = V/H. Then,

T (α(V )) = A(T (V )).
Moreover, if Λ′ = A(Λ) is a primitive sublattice of Zd and if ᾱ induces a
generically finite morphism on V ′ of degree δ, we have an explicit formula
to push forward the multiplicities of T (V ) to T (α(V )):

mw =
1
δ

∑
π(v)
A·v=w

mv · index(Lw ∩ Zd : A(Lv ∩ Zn)).

M.A. Cueto et al. (UC Berkeley) An Implicitization Challenge November 23rd 2009 11 / 17



The Newton polytope of the implicit equation

KEY: We can recover the Newton polytope of f from T (f) given as a
collection of cones with multiplicities.

1 T (f) is the union of the codim 1 cones of the normal fan of NP (f).
2 multiplicity of a maximal cone is the lattice length of the edge of
NP (f) normal to that cone.

Theorem (Dickenstein-Feichtner-Sturmfels)

Suppose w ∈ Rn is a generic vector so that the ray (w−R>0 ei) intersects
T (f) only at regular points of T (f), for all i. Let Pw be the vertex of the
polytope P = NP(f) that attains the maximum of {w · x : x ∈ NP(f)}.
Then the ith coordinate of Pw equals

Pwi =
∑
v

mv · |lv,i|,

where the sum is taken over all points v ∈ T (f) ∩ (w − R>0ei), mv is the
multiplicity of v in T (f), and lv,i is the ith coordinate of the primitive
integral normal vector to T (f) at v.
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The Newton polytope of the implicit equation

Theorem (— -Tobis-Yu)

The hypersurface M has multidegree (110, 55, 55, 55, 55) with respect to
the grading defined by the matrix

Λ =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .

Question: Is there hope of computing NP(f) by iterating Ray-shooting?
Bottleneck: Going through the list of all maximal cones supporting T (M)
(∼ 7 000 000).

We can do better!  IDEA: Shoot rays and walk along neighboring
chambers.

We obtain 15 837 696 vertices, grouped in 41 348 orbits.
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Figure: Ray-shooting and walking algorithms combined. Starting from chamber C0 we
shoot and walk from chamber to chamber, and from vertex to vertex in NP(f).
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Certifying the Newton polytope of the implicit equation

Given S a (partial) list of vertices of NP(f), we construct
Q = conv hull(S).

QUESTION: When do we have Q = NP(f)?

Answer: Iff all facets of Q are facets of NP(f).

Lemma

Let w ∈ Rn and T (f) be a tropical hypersurface given by a collection of
cones, but with no prescribed fan structure. Let d be the dimension of its
lineality space. Let H = {σ1, . . . , σl} be the list of cones containing w.
Let qi be the normal vector to cone σi for i = 1, . . . , l. TFAE:

w is a ray of T (f),

dimR R〈q1, . . . , ql〉 = n− d− 1,

w is a facet direction of NP(f).
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Completing the polytope

Definition

P ⊂ RN full dim’l and v vertex of P . The tangent cone of P at v is:

T Pv := v+ R≥0〈w− v : w ∈ P〉 = v+ R≥0〈e : e edge of P adjacent to v〉.

Remark

T Pv is a polyhedron with only ONE vertex (v).

P =
⋂
v vertex of P T Pv .

Facet directions of P are facet directions in T Pv for some vertex v.

T Qv ⊆ T Pv and if T Qv = T Pv then the extremal rays of T Qv are edge
directions of P. We have these edge directions from T (f) (15 788 in
total).

Definition

CQ,Pv := v + R≥0〈w − v : w vertex of Q, w − v ∼ edge of P〉 ⊂ T Qv .

M.A. Cueto et al. (UC Berkeley) An Implicitization Challenge November 23rd 2009 16 / 17



Completing the polytope

Definition

P ⊂ RN full dim’l and v vertex of P . The tangent cone of P at v is:

T Pv := v+ R≥0〈w− v : w ∈ P〉 = v+ R≥0〈e : e edge of P adjacent to v〉.

Remark

T Pv is a polyhedron with only ONE vertex (v).

P =
⋂
v vertex of P T Pv .

Facet directions of P are facet directions in T Pv for some vertex v.

T Qv ⊆ T Pv and if T Qv = T Pv then the extremal rays of T Qv are edge
directions of P. We have these edge directions from T (f) (15 788 in
total).

Definition

CQ,Pv := v + R≥0〈w − v : w vertex of Q, w − v ∼ edge of P〉 ⊂ T Qv .
M.A. Cueto et al. (UC Berkeley) An Implicitization Challenge November 23rd 2009 16 / 17



In practice: number of generating rays in CQ,Pv is about 30 (vs. 15
million rays for T Qv !).
Can test CQ,Pv ⊃ T Qv by computing facets of CQ,Pv with Polymake.
If CQ,Pv = T Qv can test if facet directions are facet directions of T Pv
by our Lemma.

Last: certify that facet with facet direction w in T Qv is supported on
v. Can do this by Ray-shooting with perturbed w.
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