An Implicitization Challenge for Binary Factor Analysis

María Angélica Cueto ${ }^{1}$ Enrique Tobis ${ }^{2}$ Josephine Yu^{3}
${ }^{1}$ Department of Mathematics
University of California, Berkeley
${ }^{2}$ Department of Mathematics University of Buenos Aires, Argentina
${ }^{3} \mathrm{MSRI}$

Tropical Grad. Student Seminar - MSRI

Outline

(1) Algebraic Statistics: description of the model.
(2) Geometry of the model: First Secants of Segre embeddings and Hadamard products.
(3) Tropicalization of the model.
(9) Main results.
(5) Implicitization Task: build the Newton polytope.

The Statistical model $\mathcal{F}_{4,2}$

Figure: The undirected graphical model $\mathcal{F}_{4,2}$.

The set of all possible joint probability distributions ($X_{1}, X_{2}, X_{3}, X_{4}$) form an algebraic variety \mathcal{M} inside Δ_{15} with expected codimension one and (multi)homogeneous defining equation f.

The Statistical model $\mathcal{F}_{4,2}$

Hidden

Observed

Figure: The undirected graphical model $\mathcal{F}_{4,2}$.

The set of all possible joint probability distributions ($X_{1}, X_{2}, X_{3}, X_{4}$) form an algebraic variety \mathcal{M} inside Δ_{15} with expected codimension one and (multi)homogeneous defining equation f.

Problem (Drton-Sturmfels-Sullivant)

Find the degree and the defining polynomial $f /$ Newton polytope of \mathcal{M}

Geometry of the model $\mathcal{F}_{4,2}$

Parameterization of the model: $p: \mathbb{R}^{32} \rightarrow \mathbb{R}^{16}$,

$$
p_{i j k l}=\sum_{s=0}^{1} \sum_{r=0}^{1} a_{s i} b_{s j} c_{s k} d_{s l} e_{r i} f_{r j} g_{r k} h_{r l} \text { for all }(i, j, k, l) \in\{0,1\}^{4}
$$

Using homogeneity and the distributive law

$$
p:\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{8} \rightarrow \mathbb{P}^{15} \quad p_{i j k l}=\left(\sum_{s=0}^{1} a_{s i} b_{s j} c_{s k} d_{s l}\right) \cdot\left(\sum_{r=0}^{1} e_{r i} f_{r j} g_{r k} h_{r l}\right)
$$

So we have a coordinatewise product of two parameterizations of $\mathcal{F}_{4,1}$: the graphical model corresponding to the 4-claw tree with binary nodes.

Geometry of the model $\mathcal{F}_{4,2}$

Parameterization of the model: $p: \mathbb{R}^{32} \rightarrow \mathbb{R}^{16}$,

$$
p_{i j k l}=\sum_{s=0}^{1} \sum_{r=0}^{1} a_{s i} b_{s j} c_{s k} d_{s l} e_{r i} f_{r j} g_{r k} h_{r l} \text { for all }(i, j, k, l) \in\{0,1\}^{4}
$$

Using homogeneity and the distributive law

$$
p:\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{8} \rightarrow \mathbb{P}^{15} \quad p_{i j k l}=\left(\sum_{s=0}^{1} a_{s i} b_{s j} c_{s k} d_{s l}\right) \cdot\left(\sum_{r=0}^{1} e_{r i} f_{r j} g_{r k} h_{r l}\right)
$$

So we have a coordinatewise product of two parameterizations of $\mathcal{F}_{4,1}$: the graphical model corresponding to the 4-claw tree with binary nodes.

NICE FACTS: We know a lot about $\mathcal{F}_{4,1}$ and coordinatewise products of projective varieties...

Geometry of the model $\mathcal{F}_{4,2}$

Fact

(1) The binary 4-claw tree model is $\operatorname{Sec}^{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right) \subset \mathbb{P}^{15}$.
(2) Coordinatewise product of parameterizations corresponds to Hadamard products of algebraic varieties

Definition

$X, Y \subset \mathbb{P}^{n}$, the Hadamard product of X and Y is

$$
X . Y=\overline{\left\{x \cdot y:=\left(x_{0} y_{0}: \ldots: x_{n} y_{n}\right) \mid x \in X, y \in Y, x \cdot y \neq 0\right\}} \subset \mathbb{P}^{n},
$$

Geometry of the model $\mathcal{F}_{4,2}$

Corollary

The algebraic variety of the model is $\mathcal{M}=X . X$ where X is the first secant variety of the Segre embedding $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{15}$.

Remark

The model is highly symmetric. It is invariant under relabeling of the four observed nodes and changing the role of the two states (0 and 1). Therefore, we have an action of the group $B_{4}=\mathbb{S}_{4} \ltimes\left(\mathbb{S}_{2}\right)^{4}$, the group of symmetries of the 4 -cube.

Geometry of the model $\mathcal{F}_{4,2}$

Corollary

The algebraic variety of the model is $\mathcal{M}=X \cdot X$ where X is the first secant variety of the Segre embedding $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{15}$.

Remark

The model is highly symmetric. It is invariant under relabeling of the four observed nodes and changing the role of the two states (0 and 1).
Therefore, we have an action of the group $B_{4}=\mathbb{S}_{4} \ltimes\left(\mathbb{S}_{2}\right)^{4}$, the group of symmetries of the 4 -cube.

Useful facts about X :

(1) The ideal $I(X)$ is a well-studied object: it is the 9-dim irreducible projective variety of all $2 \times 2 \times 2 \times 2$-tensors of tensor rank ≤ 2.
(2) Known set of generators for $I(X): 3 \times 3$-minors of all three 4×4-flattenings of these tensors $\rightsquigarrow 48$ polynomials.

Tropicalizing the model

- For today: MAX CONVENTION.

Remark

Basic features of $\mathcal{T}(X)$ for $X \subset \mathbb{P}^{n}$ with homogeneous ideal $I=I(X)$:
(1) $\mathcal{T}(X)$ is a fan (constant coefficients case).
(2) The lineality space of the fan $\mathcal{T}(X)$ is the set

$$
L=\left\{w \in \mathcal{T}(X): i n_{w}(I)=I\right\}
$$

It describes action of the maximal torus acting on X (diagonal action by the lattice $L \cap \mathbb{Z}^{n+1}$).
(3) Morphisms can be tropicalized and monomial maps have very nice tropicalizations.

Theorem (Sturmfels-Tevelev-Yu)

Let $A \in \mathbb{Z}^{d \times n}$, defining a monomial map $\alpha:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{d}$ and a canonical linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$. Let $V \subset\left(\mathbb{C}^{*}\right)^{n}$ be a subvariety. Then

$$
\mathcal{T}(\alpha(V))=A(\mathcal{T}(V)) .
$$

Moreover, if α induces a generically finite morphism on V of degree δ, we have an explicit formula to push forward the multiplicities of $\mathcal{T}(V)$ to multiplicities of $\mathcal{T}(\alpha(V))$. The multiplicity of $\mathcal{T}(\alpha(V))$ at a regular point w equals

$$
m_{w}=\frac{1}{\delta} \cdot \sum_{v} m_{v} \cdot \operatorname{index}\left(\mathbb{L}_{w} \cap \mathbb{Z}^{d}: A\left(\mathbb{L}_{v} \cap \mathbb{Z}^{n}\right)\right),
$$

where the sum is over all points $v \in \mathcal{T}(V)$ with $A v=w$. We also assume that the number of such v is finite, all of them are regular in $\mathcal{T}(V)$, and $\mathbb{L}_{v}, \mathbb{L}_{w}$ are linear spans of neighborhoods of $v \in \mathcal{T}(V)$ and $w \in A(\mathcal{T}(V))$ respectively.

Main results

In our case $\mathcal{M}=X: X=\alpha(X \times X)$, and α is the monomial map associated to matrix $\left(I d_{16} \mid I d_{16}\right)$.

Main results

In our case $\mathcal{M}=X: X=\alpha(X \times X)$, and α is the monomial map associated to matrix $\left(I d_{16} \mid I d_{16}\right)$.

Theorem (- -Tobis-Yu, Allermann-Rau, ...)
Let $X, Y \subset \mathbb{C}^{m}$ be two irreducible varieties. Then

$$
\mathcal{T}(X \times Y)=\mathcal{T}(X) \times \mathcal{T}(Y)
$$

as weighted polyhedral complexes, with $m_{\sigma \times \tau}=m_{\sigma} m_{\tau}$ for maximal cones $\sigma \subset \mathcal{T}(X), \tau \subset \mathcal{T}(Y)$, and $\sigma \times \tau \subset \mathcal{T}(X \times Y)$.

Theorem (— -Tobis-Yu)

Given $X, Y \subset \mathbb{P}^{n}$ two projective irreducible varieties none of which is contained in a proper coordinate hyperplane, we can consider the associated projective variety $X . Y \subset \mathbb{P}^{n}$. Then as sets:

$$
\mathcal{T}(X . Y)=\mathcal{T}(X)+\mathcal{T}(Y)
$$

Computing $\mathcal{T}(\mathcal{M})$ from $\mathcal{T}(X)$

$\mathcal{T}(X)$ can be computed with Gfan. In particular,

- 10-dim. simplicial fan in \mathbb{R}^{16},
- 5-dim. lineality space,
- f-vector $=(381,3436,11236,15640,7680)$,
- 13 rays and 49 maximal cones up to B_{4}-symmetry.

Computing $\mathcal{T}(\mathcal{M})$ from $\mathcal{T}(X)$

$\mathcal{T}(X)$ can be computed with Gfan. In particular,

- 10-dim. simplicial fan in \mathbb{R}^{16},
- 5-dim. lineality space,
- f-vector $=(381,3436,11236,15640,7680)$,
- 13 rays and 49 maximal cones up to B_{4}-symmetry.

Thus we know $\mathcal{T}(\mathcal{M})$ as a set!

- Dimension $=15$ in \mathbb{C}^{16}, so \mathcal{M} is a hypersurface!
- Number of maximal cones in $\mathcal{T}(X)+\mathcal{T}(X)=6865824$.
- 18972 maximal cones up to B_{4}-symmetry.

Computing $\mathcal{T}(\mathcal{M})$ from $\mathcal{T}(X)$

$\mathcal{T}(X)$ can be computed with Gfan. In particular,

- 10-dim. simplicial fan in \mathbb{R}^{16},
- 5-dim. lineality space,
- f-vector $=(381,3436,11236,15640,7680)$,
- 13 rays and 49 maximal cones up to B_{4}-symmetry.

Thus we know $\mathcal{T}(\mathcal{M})$ as a set!

- Dimension $=15$ in \mathbb{C}^{16}, so \mathcal{M} is a hypersurface!
- Number of maximal cones in $\mathcal{T}(X)+\mathcal{T}(X)=6865824$.
- 18972 maximal cones up to B_{4}-symmetry.

BUT we want more...
We want to compute multiplicities at regular points of $\mathcal{T}(\mathcal{M})$.
Our map α is monomial BUT NOT generically finite. However, it is very close to being generically finite.

Computing $\mathcal{T}(\mathcal{M})$ from $\mathcal{T}(X)$

$\mathcal{T}(X)$ can be computed with Gfan. In particular,

- 10-dim. simplicial fan in \mathbb{R}^{16},
- 5-dim. lineality space,
- f-vector $=(381,3436,11236,15640,7680)$,
- 13 rays and 49 maximal cones up to B_{4}-symmetry.

Thus we know $\mathcal{T}(\mathcal{M})$ as a set!

- Dimension $=15$ in \mathbb{C}^{16}, so \mathcal{M} is a hypersurface!
- Number of maximal cones in $\mathcal{T}(X)+\mathcal{T}(X)=6865824$.
- 18972 maximal cones up to B_{4}-symmetry.

BUT we want more...
We want to compute multiplicities at regular points of $\mathcal{T}(\mathcal{M})$.
Our map α is monomial BUT NOT generically finite. However, it is very close to being generically finite. We generalize the previous Theorem by [STY] to obtain multiplicities in $\mathcal{T}(\mathcal{M})$.

Main results

$$
\begin{gathered}
\left(\mathbb{C}^{*}\right)^{n} \supseteq V \xrightarrow{\alpha} W \subseteq\left(\mathbb{C}^{*}\right)^{d} \\
\pi \\
{ }^{\pi} \\
V^{\prime}=V / H \xrightarrow{\bar{\alpha}} W / \alpha(H),
\end{gathered}
$$

where $H=\Lambda \otimes_{\mathbb{Z}} \mathbb{C}^{*} \sim\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Lambda}$.
Theorem (— -Tobis-Yu)
Let $V \subset\left(\mathbb{C}^{*}\right)^{n}$ be a subvariety with torus action given by a lattice Λ and take the quotient by this action $V^{\prime}=V / H$. Then,

$$
\mathcal{T}(\alpha(V))=A(\mathcal{T}(V))
$$

Moreover, if $\Lambda^{\prime}=A(\Lambda)$ is a primitive sublattice of \mathbb{Z}^{d} and if $\bar{\alpha}$ induces a generically finite morphism on V^{\prime} of degree δ, we have an explicit formula to push forward the multiplicities of $\mathcal{T}(V)$ to $\mathcal{T}(\alpha(V))$:

$$
m_{w}=\frac{1}{\delta} \sum_{\substack{\pi(v) \\ A \cdot v=w}} m_{v} \cdot \operatorname{index}\left(\mathbb{L}_{w} \cap \mathbb{Z}^{d}: A\left(\mathbb{L}_{v} \cap \mathbb{Z}^{n}\right)\right)
$$

The Newton polytope of the implicit equation

KEY: We can recover the Newton polytope of f from $\mathcal{T}(f)$ given as a collection of cones with multiplicities.

The Newton polytope of the implicit equation

KEY: We can recover the Newton polytope of f from $\mathcal{T}(f)$ given as a collection of cones with multiplicities.
(1) $\mathcal{T}(f)$ is the union of the codim 1 cones of the normal fan of $N P(f)$.
(2) multiplicity of a maximal cone is the lattice length of the edge of $N P(f)$ normal to that cone.

The Newton polytope of the implicit equation

KEY: We can recover the Newton polytope of f from $\mathcal{T}(f)$ given as a collection of cones with multiplicities.
(1) $\mathcal{T}(f)$ is the union of the codim 1 cones of the normal fan of $N P(f)$.
(2) multiplicity of a maximal cone is the lattice length of the edge of $N P(f)$ normal to that cone.

Theorem (Dickenstein-Feichtner-Sturmfels)

Suppose $w \in \mathbb{R}^{n}$ is a generic vector so that the ray $\left(w-\mathbb{R}_{>0} e_{i}\right)$ intersects $\mathcal{T}(f)$ only at regular points of $\mathcal{T}(f)$, for all i. Let \mathcal{P}^{w} be the vertex of the polytope $\mathcal{P}=N P(f)$ that attains the maximum of $\{w \cdot x: x \in N P(f)\}$. Then the $i^{\text {th }}$ coordinate of \mathcal{P}^{w} equals

$$
\mathcal{P}_{i}^{w}=\sum_{v} m_{v} \cdot\left|l_{v, i}\right|
$$

where the sum is taken over all points $v \in \mathcal{T}(f) \cap\left(w-\mathbb{R}_{>0} e_{i}\right)$, m_{v} is the multiplicity of v in $\mathcal{T}(f)$, and $l_{v, i}$ is the $i^{\text {th }}$ coordinate of the primitive integral normal vector to $\mathcal{T}(f)$ at v.

The Newton polytope of the implicit equation

Theorem (—-Tobis-Yu)

The hypersurface \mathcal{M} has multidegree (110, $55,55,55,55$) with respect to the grading defined by the matrix

$$
\Lambda=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

The Newton polytope of the implicit equation

Theorem (—-Tobis-Yu)

The hypersurface \mathcal{M} has multidegree (110, $55,55,55,55$) with respect to the grading defined by the matrix

$$
\Lambda=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Question: Is there hope of computing $N P(f)$ by iterating Ray-shooting? Bottleneck: Going through the list of all maximal cones supporting $\mathcal{T}(M)$ (~ 7000000).

The Newton polytope of the implicit equation

Theorem (—-Tobis-Yu)

The hypersurface \mathcal{M} has multidegree (110, $55,55,55,55$) with respect to the grading defined by the matrix

$$
\Lambda=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Question: Is there hope of computing NP(f) by iterating Ray-shooting? Bottleneck: Going through the list of all maximal cones supporting $\mathcal{T}(M)$ (~ 7000000).
We can do better!

The Newton polytope of the implicit equation

Theorem (—-Tobis-Yu)

The hypersurface \mathcal{M} has multidegree (110, $55,55,55,55$) with respect to the grading defined by the matrix

$$
\Lambda=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Question: Is there hope of computing NP(f) by iterating Ray-shooting? Bottleneck: Going through the list of all maximal cones supporting $\mathcal{T}(M)$ (~ 7000000).
We can do better! \rightsquigarrow IDEA: Shoot rays and walk along neighboring chambers.

The Newton polytope of the implicit equation

Theorem (—-Tobis-Yu)

The hypersurface \mathcal{M} has multidegree ($110,55,55,55,55$) with respect to the grading defined by the matrix

$$
\Lambda=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Question: Is there hope of computing NP(f) by iterating Ray-shooting? Bottleneck: Going through the list of all maximal cones supporting $\mathcal{T}(M)$ (~ 7000 000).
We can do better! \rightsquigarrow IDEA: Shoot rays and walk along neighboring chambers.

We obtain 15837696 vertices, grouped in 41348 orbits.

Figure: Ray-shooting and walking algorithms combined. Starting from chamber \mathcal{C}_{0} we shoot and walk from chamber to chamber, and from vertex to vertex in NP (f).

Certifying the Newton polytope of the implicit equation

Given \mathcal{S} a (partial) list of vertices of $\mathrm{NP}(f)$, we construct
$\mathcal{Q}=\operatorname{convhull}(\mathcal{S})$.
QUESTION: When do we have $\mathcal{Q}=\mathrm{NP}(f)$?
Answer: Iff all facets of \mathcal{Q} are facets of $\operatorname{NP}(f)$.

Certifying the Newton polytope of the implicit equation

Given \mathcal{S} a (partial) list of vertices of $\mathrm{NP}(f)$, we construct $\mathcal{Q}=\operatorname{convhull}(\mathcal{S})$.

QUESTION: When do we have $\mathcal{Q}=\mathrm{NP}(f)$?
Answer: Iff all facets of \mathcal{Q} are facets of $\mathrm{NP}(f)$.

Lemma

Let $w \in \mathbb{R}^{n}$ and $\mathcal{T}(f)$ be a tropical hypersurface given by a collection of cones, but with no prescribed fan structure. Let d be the dimension of its lineality space. Let $\mathcal{H}=\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ be the list of cones containing w. Let q_{i} be the normal vector to cone σ_{i} for $i=1, \ldots, l$. TFAE:

- w is a ray of $\mathcal{T}(f)$,
- $\operatorname{dim}_{\mathbb{R}} \mathbb{R}\left\langle q_{1}, \ldots, q_{l}\right\rangle=n-d-1$,
- w is a facet direction of $N P(f)$.

Completing the polytope

Definition

$\mathcal{P} \subset \mathbb{R}^{N}$ full dim'l and v vertex of P. The tangent cone of \mathcal{P} at v is: $\mathcal{T}_{v}^{\mathcal{P}}:=v+\mathbb{R}_{\geq 0}\langle w-v: w \in \mathcal{P}\rangle=v+\mathbb{R}_{\geq 0}\langle e: e$ edge of \mathcal{P} adjacent to $v\rangle$.

Remark

- $\mathcal{T}_{v}^{\mathcal{P}}$ is a polyhedron with only ONE vertex (v).
- $\mathcal{P}=\bigcap_{v}$ vertex of $\mathcal{P} \mathcal{T}_{v}^{\mathcal{P}}$.
- Facet directions of \mathcal{P} are facet directions in $\mathcal{T}_{v}^{\mathcal{P}}$ for some vertex v.
- $\mathcal{T}_{v}^{\mathcal{Q}} \subseteq \mathcal{T}_{v}^{\mathcal{P}}$ and if $\mathcal{T}_{v}^{\mathcal{Q}}=\mathcal{T}_{v}^{\mathcal{P}}$ then the extremal rays of $\mathcal{T}_{v}^{\mathcal{Q}}$ are edge directions of \mathcal{P}. We have these edge directions from $\mathcal{T}(f)$ (15788 in total).

Completing the polytope

Definition

$\mathcal{P} \subset \mathbb{R}^{N}$ full dim'l and v vertex of P. The tangent cone of \mathcal{P} at v is: $\mathcal{T}_{v}^{\mathcal{P}}:=v+\mathbb{R}_{\geq 0}\langle w-v: w \in \mathcal{P}\rangle=v+\mathbb{R}_{\geq 0}\langle e: e$ edge of \mathcal{P} adjacent to $v\rangle$.

Remark

- $\mathcal{T}_{v}^{\mathcal{P}}$ is a polyhedron with only ONE vertex (v).
- $\mathcal{P}=\bigcap_{v \text { vertex of } \mathcal{P}} \mathcal{T}_{v}^{\mathcal{P}}$.
- Facet directions of \mathcal{P} are facet directions in $\mathcal{T}_{v}^{\mathcal{P}}$ for some vertex v.
- $\mathcal{T}_{v}^{\mathcal{Q}} \subseteq \mathcal{T}_{v}^{\mathcal{P}}$ and if $\mathcal{T}_{v}^{\mathcal{Q}}=\mathcal{T}_{v}^{\mathcal{P}}$ then the extremal rays of $\mathcal{T}_{v}^{\mathcal{Q}}$ are edge directions of \mathcal{P}. We have these edge directions from $\mathcal{T}(f)$ (15788 in total).

Definition

$$
C_{v}^{\mathcal{Q}, \mathcal{P}}:=v+\mathbb{R}_{\geq 0}\langle w-v: w \text { vertex of } \mathcal{Q}, w-v \sim \text { edge of } \mathcal{P}\rangle \subset \mathcal{T}_{v}^{\mathcal{Q}}
$$

- In practice: number of generating rays in $C_{v}^{\mathcal{Q}, \mathcal{P}}$ is about 30 (vs. 15 million rays for $\mathcal{T}_{v}{ }^{\mathcal{Q}}$!).
- Can test $C_{v}^{\mathcal{Q}, \mathcal{P}} \supset \mathcal{T}_{v}^{\mathcal{Q}}$ by computing facets of $C_{v}^{\mathcal{Q}, \mathcal{P}}$ with Polymake.
- If $C_{v}^{\mathcal{Q}, \mathcal{P}}=\mathcal{T}_{v}^{\mathcal{Q}}$ can test if facet directions are facet directions of $\mathcal{T}_{v}^{\mathcal{P}}$ by our Lemma.

- Last: certify that facet with facet direction w in $\mathcal{T}_{v}^{\mathcal{Q}}$ is supported on v. Can do this by Ray-shooting with perturbed w.

