An Implicitization Challenge for Binary Factor Analysis

María Angélica Cueto¹ Josephine Yu²

¹Department of Mathematics University of California, Berkeley

²Department of Mathematics Massachusetts Institute of Technology

MEGA'09

- Algebraic Statistics: description of the model.
- Geometry of the model: First Secants of Segre embeddings and Hadamard products.
- Solution Tropicalization of the model.
- Main results.
- Implicitization Task: build the Newton polytope.

The Statistical model $\mathcal{F}_{4,2}$

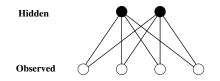


Figure: The undirected graphical model $\mathcal{F}_{4,2}$.

The set of all possible joint probability distributions (X_1, X_2, X_3, X_4) form an algebraic variety \mathcal{M} inside Δ_{15} with expected codimension one and (multi)homogeneous defining equation f.

The Statistical model $\mathcal{F}_{4,2}$

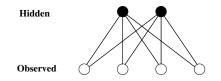


Figure: The undirected graphical model $\mathcal{F}_{4,2}$.

The set of all possible joint probability distributions (X_1, X_2, X_3, X_4) form an algebraic variety \mathcal{M} inside Δ_{15} with expected codimension one and (multi)homogeneous defining equation f.

Problem

Find the degree and the defining polynomial/ Newton polytope of f of ${\cal M}$

Parameterization of the model: $p : \mathbb{R}^{32} \to \mathbb{R}^{16}$,

$$p_{ijkl} = \sum_{s=0}^{1} \sum_{r=0}^{1} a_{si} b_{sj} c_{sk} d_{sl} e_{ri} f_{rj} g_{rk} h_{rl} \text{ for all } (i,j,k,l) \in \{0,1\}^4.$$

Using homogeneity and the distributive law

$$p: (\mathbb{P}^1 \times \mathbb{P}^1)^8 \to \mathbb{P}^{15} \quad p_{ijkl} = (\sum_{s=0}^1 a_{si} b_{sj} c_{sk} d_{sl}) \cdot (\sum_{r=0}^1 e_{ri} f_{rj} g_{rk} h_{rl}).$$

So we have a coordinatewise product of two parameterizations of $\mathcal{F}_{4,1}$: the graphical model corresponding to the 4-claw tree with binary nodes.

Parameterization of the model: $p: \mathbb{R}^{32} \to \mathbb{R}^{16}$,

$$p_{ijkl} = \sum_{s=0}^{1} \sum_{r=0}^{1} a_{si} b_{sj} c_{sk} d_{sl} e_{ri} f_{rj} g_{rk} h_{rl} \text{ for all } (i,j,k,l) \in \{0,1\}^4.$$

Using homogeneity and the distributive law

$$p: (\mathbb{P}^1 \times \mathbb{P}^1)^8 \to \mathbb{P}^{15} \quad p_{ijkl} = (\sum_{s=0}^1 a_{si} b_{sj} c_{sk} d_{sl}) \cdot (\sum_{r=0}^1 e_{ri} f_{rj} g_{rk} h_{rl}).$$

So we have a coordinatewise product of two parameterizations of $\mathcal{F}_{4,1}$: the graphical model corresponding to the 4-claw tree with binary nodes. **But...**

Fact

- The binary 4-claw tree model is $Sec^{1}(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}) \subset \mathbb{P}^{15}$.
- Coordinatewise product of parameterizations corresponds to Hadamard products of algebraic varieties

Definition $X, Y \subset \mathbb{P}^n$, the Hadamard product of X and Y is $X \cdot Y = \overline{\{(x_0y_0 : \ldots : x_ny_n) | x \in C(X), y \in C(Y), x \cdot y \neq 0\}} \subset \mathbb{P}^n$,

Proposition

The algebraic variety of the model is $\mathcal{M} = X \cdot X$ where X is the first secant variety of the Segre embedding $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^{15}$.

Remark

The model is highly symmetric. Invariant under relabeling of observed nodes and by changing role of two states (0 or 1). Therefore, we have an action of the group $B_4 = \mathbb{S}_4 \ltimes (\mathbb{S}_2)^4$, the group of symmetries of the 4-cube.

Proposition

The algebraic variety of the model is $\mathcal{M} = X \cdot X$ where X is the first secant variety of the Segre embedding $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^{15}$.

Remark

The model is highly symmetric. Invariant under relabeling of observed nodes and by changing role of two states (0 or 1). Therefore, we have an action of the group $B_4 = \mathbb{S}_4 \ltimes (\mathbb{S}_2)^4$, the group of symmetries of the 4-cube.

Useful facts about X:

- The ideal I(X) is a well-studied object: it is the 9-dim *irreducible* subvariety of all 2 × 2 × 2 × 2-tensors of tensor rank at most 2.
- Known set of generators for I(X): 3 × 3-minors of all three 4 × 4-flattenings of these tensors.

Tropicalizing the model

Definition

For an algebraic variety $X \subset \mathbb{C}^n$ with defining ideal $I = I(X) \subset K[x_1, ..., x_n]$, the tropicalization of X or I is defined as:

 $\mathcal{T}(X) = \mathcal{T}(I) = \{ w \in \mathbb{R}^{n+1} | \operatorname{in}_w(I) \text{ contains no monomial} \}$

where $\operatorname{in}_{w}(I) = (\operatorname{in}_{w}(f) : f \in I)$, and $\operatorname{in}_{w}(f)$ is the sum of all *nonzero* terms of $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ such that $\alpha \cdot w$ is **maximum**.

Tropicalizing the model

Definition

For an algebraic variety $X \subset \mathbb{C}^n$ with defining ideal $I = I(X) \subset K[x_1, ..., x_n]$, the tropicalization of X or I is defined as:

 $\mathcal{T}(X) = \mathcal{T}(I) = \{ w \in \mathbb{R}^{n+1} | \operatorname{in}_w(I) \text{ contains no monomial} \}$

where $\operatorname{in}_{w}(I) = (\operatorname{in}_{w}(f) : f \in I)$, and $\operatorname{in}_{w}(f)$ is the sum of all *nonzero* terms of $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ such that $\alpha \cdot w$ is **maximum**.

Example

$$L = (x + y + 1 = 0) \subset \mathbb{C}^2$$

gives the well-known picture:

Remark

Basic features of $\mathcal{T}(X)$ for $X \subset \mathbb{P}^n$ with homogeneous ideal I = I(X):

- **1** It is a rational polyhedral subfan of the Gröbner fan of I.
- If I is prime, then T(X) is pure of the same dimension as X (Bieri-Groves Thm) and it is connected in codimension one.
- Solution Maximal cones have canonical multiplicities attached to them. With these multiplicities, T(X) satisfies the balancing condition.
- The lineality space of the fan T(X) is the set

 $L = \{w \in \mathcal{T}(X) : in_w(I) = I\}.$

It describes action of the maximal torus acting on X (diagonal action by the lattice $L \cap \mathbb{Z}^{n+1}$.)

Morphisms can be tropicalized and monomial maps have very nice tropicalizations.

Theorem (S-T-Y)

Let $A \in \mathbb{Z}^{d \times n}$, defining a monomial map $\alpha : (\mathbb{C}^*)^n \to (\mathbb{C}^*)^d$ and a canonical linear map $A : \mathbb{R}^n \to \mathbb{R}^d$. Let $V \subset (\mathbb{C}^*)^n$ be a subvariety. Then

$$\mathcal{T}(\alpha(V)) = A(\mathcal{T}(V)).$$

Moreover, if α induces a generically finite morphism on V, we have an explicit formula to push-forward the multiplicities of $\mathcal{T}(V)$ to multiplicities of $\mathcal{T}(\alpha(V))$.

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$.

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$. In general...

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$. In general...

Theorem (—, Yu)

Given $X, Y \subset \mathbb{P}^n$ two projective irreducible varieties none of which is contained in a proper coordinate hyperplane, we can consider the associated projective variety $X \cdot Y \subset \mathbb{P}^n$. Then as sets:

 $\mathcal{T}(X \cdot Y) = \mathcal{T}(X) + \mathcal{T}(Y).$

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$. In general...

Theorem (—, Yu)

Given $X, Y \subset \mathbb{P}^n$ two projective irreducible varieties none of which is contained in a proper coordinate hyperplane, we can consider the associated projective variety $X \cdot Y \subset \mathbb{P}^n$. Then as sets:

$$\mathcal{T}(X \cdot Y) = \mathcal{T}(X) + \mathcal{T}(Y).$$

 $\mathcal{T}(X)$ can be computed with Gfan, so we know $\mathcal{T}(\mathcal{M})$ as a set! BUT we want more...

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$. In general...

Theorem (—, Yu)

Given $X, Y \subset \mathbb{P}^n$ two projective irreducible varieties none of which is contained in a proper coordinate hyperplane, we can consider the associated projective variety $X \cdot Y \subset \mathbb{P}^n$. Then as sets:

$$\mathcal{T}(X \cdot Y) = \mathcal{T}(X) + \mathcal{T}(Y).$$

 $\mathcal{T}(X)$ can be computed with Gfan, so we know $\mathcal{T}(\mathcal{M})$ as a set! BUT we want more...

We want to compute multiplicities at *regular points* of $\mathcal{T}(\mathcal{M})$.

In our case $\mathcal{M} = X \cdot X = \alpha(X \times X)$ where α is the monomial map associated to matrix $(Id_{16} \mid Id_{16})$. In general...

Theorem (—, Yu)

Given $X, Y \subset \mathbb{P}^n$ two projective irreducible varieties none of which is contained in a proper coordinate hyperplane, we can consider the associated projective variety $X \cdot Y \subset \mathbb{P}^n$. Then as sets:

$$\mathcal{T}(X \cdot Y) = \mathcal{T}(X) + \mathcal{T}(Y).$$

 $\mathcal{T}(X)$ can be computed with Gfan, so we know $\mathcal{T}(\mathcal{M})$ as a set! BUT we want more...

We want to compute multiplicities at *regular points* of $\mathcal{T}(\mathcal{M})$.

Our map α is monomial BUT NOT generically finite but very close to being gen. finite. We generalize the previous theorem to obtain multiplicities in $\mathcal{T}(\mathcal{M})...$

Theorem (—, Yu)

Let $V \subset (\mathbb{C}^*)^n$ be a subvariety with torus action given by a lattice L and take the quotient by this action V' = V/H. Then,

$$\mathcal{T}(\bar{\alpha}(V')) = A'(\mathcal{T}(V')).$$

Moreover, if L' = A(L) is a primitive sublattice of \mathbb{Z}^d and if $\bar{\alpha}$ induces a generically finite morphism on V', we have an explicit formula to push-forward the multiplicities of $\mathcal{T}(V)$ to $\mathcal{T}(\alpha(V))$.

Theorem (—, Yu)

Let $X, Y \subset \mathbb{C}^m$ be two irreducible varieties. Then $\mathcal{T}(X \times Y) = \mathcal{T}(X) \times \mathcal{T}(Y)$

as weighted polyhedral complexes, with $m_{\sigma \times \tau} = m_{\sigma}m_{\tau}$ for maximal cones $\sigma \subset \mathcal{T}(X), \tau \subset \mathcal{T}(Y)$, and $\sigma \times \tau \subset \mathcal{T}(X \times Y)$.

If I = (f), we can recover the Newton polytope of f from $\mathcal{T}(I)$.

If I = (f), we can recover the Newton polytope of f from $\mathcal{T}(I)$. Why?

- If I = (f), we can recover the Newton polytope of f from $\mathcal{T}(I)$. Why?
 - T(I) is the union of the codim 1 cones of the *normal fan of* NP(f).
 - multiplicity of a maximal cone is the lattice length of the edge of NP(f) normal to that cone.

- If I = (f), we can recover the *Newton polytope of f* from $\mathcal{T}(I)$. Why?
 - T(I) is the union of the codim 1 cones of the normal fan of NP(f).
 - multiplicity of a maximal cone is the lattice length of the edge of NP(f) normal to that cone.

Theorem (D-F-S)

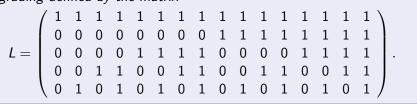
Suppose $w \in \mathbb{R}^n$ is a generic vector so that the ray $(w - \mathbb{R}_{>0} e_i)$ intersects $\mathcal{T}(f)$ only at regular points of $\mathcal{T}(f)$, for all *i*. Let \mathcal{P}^w be the vertex of the polytope $\mathcal{P} = NP(f)$ that attains the maximum of $\{w \cdot x : x \in NP(f)\}$. Then the *i*th coordinate of \mathcal{P}^w equals

$$\mathcal{P}_i^w = \sum_v m_v \cdot |I_{v,i}|,$$

where the sum is taken over all points $v \in \mathcal{T}(f) \cap (w - \mathbb{R}_{>0}e_i)$, m_v is the multiplicity of v in $\mathcal{T}(f)$, and $I_{v,i}$ is the *i*th coordinate of the primitive integral normal vector to $\mathcal{T}(f)$ at v.

The hypersurface \mathcal{M} has multidegree (110, 55, 55, 55, 55) with respect to the grading defined by the matrix

The hypersurface \mathcal{M} has multidegree (110, 55, 55, 55, 55) with respect to the grading defined by the matrix



Bottleneck: Going through the list of all maximal cones supporting T(M) (~ 7 000 000.)

The hypersurface ${\cal M}$ has multidegree (110, 55, 55, 55, 55) with respect to the grading defined by the matrix

Bottleneck: Going through the list of all maximal cones supporting T(M) (~ 7 000 000.)

We can do better!

The hypersurface \mathcal{M} has multidegree (110, 55, 55, 55, 55) with respect to the grading defined by the matrix

Bottleneck: Going through the list of all maximal cones supporting T(M) (~ 7 000 000.)

We can do better!

IDEA: Shoot rays and walk along neighboring chambers.

The hypersurface \mathcal{M} has multidegree (110, 55, 55, 55, 55) with respect to the grading defined by the matrix



Bottleneck: Going through the list of all maximal cones supporting T(M) (~ 7 000 000.)

We can do better!

IDEA: Shoot rays and walk along neighboring chambers.

Up to now, we have computed 1155072 vertices of NP(f) (3030 orbits.)

Thank you!!!