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The Statistical model F4,2

Hidden

Observed

Figure: The undirected graphical model F4,2.

The set of all possible joint probability distributions (X1, X2, X3, X4)
forms an algebraic variety M inside ∆15 with expected codimension one
and (multi)homogeneous defining equation f .

Problem (Drton-Sturmfels-Sullivant)

Find the degree and the defining polynomial f / Newton polytope of M.
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Geometry of the model F4,2

Parameterization of the model: p : R32 → R16,

pijkl =
1∑
s=0

1∑
r=0

asibsjcskdslerifrjgrkhrl for all (i, j, k, l) ∈ {0, 1}4.

Using homogeneity and the distributive law

p : (P1 × P1)8 → P15 pijkl = (
1∑
s=0

asibsjcskdsl) · (
1∑
r=0

erifrjgrkhrl).

So we have a coordinatewise product of two parameterizations of F4,1: the
graphical model corresponding to the 4-claw tree with binary nodes.

NICE FACTS: We know a lot about F4,1 and coordinatewise products of
projective varieties...
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Geometry of the model F4,2

Fact

1 The binary 4-claw tree model is Sec1(P1 × P1 × P1 × P1) ⊂ P15.

2 Coordinatewise products of parameterizations corresponds to
Hadamard products of algebraic varieties

Definition

X,Y ⊂ Pn, the Hadamard product of X and Y is

X � Y = {x � y := (x0y0 : . . . : xnyn) |x ∈ X, y ∈ Y, x � y 6= 0} ⊂ Pn,
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Geometry of the model F4,2

Corollary

The algebraic variety of the model is M = X �X where X is the first
secant variety of the Segre embedding P1 × P1 × P1 × P1 ↪→ P15.

Remark

The model is highly symmetric. It is invariant under relabeling of the four
observed nodes and changing the role of the two states (0 and 1).
Therefore, we have an action of the group B4 = S4 n (S2)4, the group of
symmetries of the 4-cube.

Useful facts about X:

1 The ideal I(X) is a well-studied object: it is the 9-dim irreducible
projective variety of all 2× 2× 2× 2-tensors of tensor rank ≤ 2.

2 Known set of generators for I(X): 3× 3-minors of all three
4× 4-flattenings of these tensors  48 polynomials.
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Tropicalizing the model

Definition

For an algebraic variety X ⊂ Cn with defining ideal
I = I(X) ⊂ C[x1, . . . , xn], the tropicalization of X or I is defined as:

T X = T I = {w ∈ Rn | inw(I) contains no monomial}

where inw(I) = 〈inw(f) : f ∈ I〉, and inw(f) is the sum of all nonzero
terms of f =

∑
α cαx

α such that α · w is maximum.

Example

L = (x+ y + 1 = 0) ⊂ C2

gives the well-known picture:
T (x+ y + 1)

(0, 0)
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Remark

Basic features of T X for X ⊂ Pn with homogeneous ideal I = I(X):

1 It is a rational polyhedral subfan of the Gröbner fan of I.

2 If I is prime, then T X is pure of the same dimension as X
(Bieri-Groves Thm) and it is connected in codimension one.

3 Maximal cones have canonical multiplicities attached to them. With
these multiplicities, T X satisfies the balancing condition.

4 If X is a hypersurface, T X is the collection of all codimension one
cones in the normal fan of the Newton polytope of X. The
multiplicity of a maximal cone is the lattice length of the
corresponding edge in the polytope.

5 The lineality space of the fan T X is the set

L = {w ∈ T X : inw(I) = I}.
It describes the action of a maximal torus on X (diagonal action by
the lattice L ∩ Zn+1).

6 Morphisms can be tropicalized and monomial maps have very nice
tropicalizations.
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Theorem (Sturmfels-Tevelev)

Let A ∈ Zd×n, defining a monomial map α : (C∗)n → (C∗)d and a
canonical linear map A : Rn → Rd. Let V ⊂ (C∗)n be a subvariety. Then

T (α(V )) = A(T V ).

Moreover, if α induces a generically finite morphism on V , we have an
explicit formula to push forward the multiplicities of T V to multiplicities
of T (αV ).

Here, M = X �X = α(X ×X), and A is the matrix (Id16 | Id16).

Theorem (— -Tobis-Yu, Allermann-Rau, . . .)

Let X,Y ⊂ Cm be two irreducible varieties. Then

T (X × Y ) = T X × T Y
as weighted polyhedral complexes, with mσ×τ = mσmτ for maximal cones.

Corollary: TM = T (X �X) = T X + T X (as sets!).

M.A. Cueto et al. (Columbia Univ.) An Implicitization Challenge September 21st 2011 8 / 16



Computing TM from T X

T X can be computed with Gfan. In particular,

10-dim. simplicial fan in R16,

5-dim. lineality space,

f -vector= (381, 3 436, 11 236, 15 640, 7 680),

13 rays and 49 maximal cones up to B4-symmetry.

Thus we know TM = T X + T X as a set!

Dimension = 15 in C16, so M is a hypersurface!

Number of maximal cones in T X + T X = 6 865 824.

18 972 maximal cones up to B4-symmetry.

BUT we want more...

We want to compute multiplicities at regular points of TM.

Our map α is monomial BUT NOT generically finite. However, it is very
close to being generically finite. We generalize the [ST] formula to obtain
multiplicities in TM.
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Main results

(C∗)n ⊇ V α // //

π
����

W ⊆ (C∗)d

π
����

V ′ = V/H
ᾱ // // W/α(H),

where H=Λ⊗Z C∗∼(C∗)dim Λ.

Theorem (— -Tobis-Yu)

Let V ⊂ (C∗)n be a subvariety with torus action given by a lattice Λ and
take the quotient by this action V ′ = V/H.
Assume that Λ′ = A(Λ) is a primitive sublattice of Zd and that ᾱ is
generically finite on V ′ of degree δ. Then:

mw =
1
δ

∑
π(v)
A·v=w

mv · index(Lw ∩ Zd : A(Lv ∩ Zn)).

We assume that the number of such π(v) is finite, all of them are regular
in T V , and Lv,Lw are local linear spans of v ∈ T V and w ∈ A(T V ).
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The Newton polytope of the implicit equation

KEY: We can recover the Newton polytope of f from T (f) given as a
collection of cones with multiplicities.

1 T (f) is the union of the codim 1 cones of the normal fan of NP(f).
2 the multiplicity of a maximal cone is the lattice length of the edge of

NP(f) normal to that cone.

Theorem (Dickenstein-Feichtner-Sturmfels)

Suppose w ∈ Rn is a generic vector so that the ray (w−R>0 ei) intersects
T (f) only at regular points of T (f), for all i. Let Pw be the vertex of the
polytope P = NP(f) that attains the maximum of {w · x : x ∈ NP(f)}.
Then the ith coordinate of Pw equals

Pwi =
∑
v

mv · |lv,i|,

where the sum is taken over all points v ∈ T (f) ∩ (w − R>0ei), mv is the
multiplicity of v in T (f), and lv,i is the ith coordinate of the primitive
integral normal vector to T (f) at v.
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The Newton polytope of the implicit equation

Theorem (— -Tobis-Yu)

The hypersurface M has multidegree (110, 55, 55, 55, 55) with respect to
the grading defined by the matrix

Λ =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .

Question: Is there hope of computing NP(f) by iterating Ray-shooting?
Bottleneck: Going through the list of all maximal cones supporting TM
(∼ 7 000 000).

We can do better!  Shoot rays and walk from chamber to chamber.

Theorem (— -Tobis-Yu)

The Newton polytope of f has 17 214 912 vertices in 44 938 orbits and
70 646 facets in 246 orbits under the symmetry group B4.
M.A. Cueto et al. (Columbia Univ.) An Implicitization Challenge September 21st 2011 12 / 16



Figure: Ray-shooting and walking algorithms combined. Starting from chamber C0 we
shoot and walk from chamber to chamber, and from vertex to vertex in NP(f).
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Certifying the Newton polytope of the implicit equation

Given S a (partial) list of vertices of NP(f), we construct

Q = conv hull(S).

FACT: Q = NP(f) ⇐⇒ all facets of Q are facets of NP(f).

Lemma

Let w ∈ Rn and T (f) be a tropical hypersurface given by a collection of
cones, but with no prescribed fan structure. Let d be the dimension of its
lineality space. Let H = {σ1, . . . , σl} be the list of cones containing w.
Let qi be the normal vector to the cone σi for i = 1, . . . , l. TFAE:

w is a ray of T (f),

dimR R〈q1, . . . , ql〉 = n− d− 1,

w is a facet direction of NP(f).
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Completing the polytope

Definition

P ⊂ RN full dim’l and v vertex of P. The tangent cone of P at v is:

T Pv := v+ R≥0〈w− v : w ∈ P〉 = v+ R≥0〈e : e edge of P adjacent to v〉.

Remark

T Pv is a polyhedron with only ONE vertex v.

P =
⋂
v vertex of P T Pv .

Facet directions of P are facet directions in T Pv for some vertex v.

T Qv ⊆ T Pv and if T Qv = T Pv then the extremal rays of T Qv are edge
directions of P. We have these edge directions from T (f) (∼ 15 788).

Definition

CQ,Pv := v + R≥0〈w − v : w vertex of Q, w − v ∼ edge of P〉 ⊂ T Qv .
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In practice: number of generating rays in CQ,Pv is about 30 (vs. 17
million rays for T Qv !).
Can test CQ,Pv ⊃ T Qv by computing facets of CQ,Pv with Polymake.
If CQ,Pv = T Qv can test if facet directions are facet directions of T Pv
by our lemma.

Last: certify that the facet with direction w in T Qv is supported on v.
We can do this by using ray-shooting with perturbed w.
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