Linear trop. modification of \mathbb{R}^{2} along $\{X=/\}$

$$
\sigma_{1}=\{X \leqslant I, Z=I\}, \sigma_{2}=\{X \geqslant I, Z=X\}, \sigma_{3}=\{X=I, Z \leqslant I\} .
$$

Generic modification of a plane cubic along $\{X=/\}$

Special modification of a plane cubic along $\{X=/\}$

$$
\sigma_{1}=\{X \leqslant I, Z=I\}, \sigma_{2}=\{X \geqslant I, Z=X\}, \sigma_{3}=\{X=I, Z \leqslant I\}
$$

Theorem (Repairing bounded edges with high multiplicity)

Let e be a vertical bounded edge of $\operatorname{Trop}(g)$ of multiplicity $n \geqslant 2$ whose endpoints have valency 3. If $\Delta_{e} \vee$ does not vanish at $\mathrm{in}_{e}(g)$, then e witnesses a folding of edges. Moreover, we can unfold e and produce a cycle using the tropical modification along the line $\mathbb{R}\langle e\rangle$.

Example:

Example: Unfold a cycle of a rational cubic plane curve

$$
\begin{aligned}
& g=t^{4} x^{2} y+5 t^{3} x y^{2}+t^{9} y^{3}+x^{2}+3 x y+t^{2} y^{2}+2 x+\left(3-t^{4}\right) y+1 \\
& \Delta_{(0,0)}\left(\operatorname{in}_{(0,0)}(g)\right)=c_{00} c_{11}^{2}-c_{10} c_{01} c_{11}+c_{20} c_{01}^{2}=1 \cdot 3^{2}-2 \cdot 3 \cdot 3+1 \cdot 3^{2}=0 .
\end{aligned}
$$

Want: $0=c_{20} \operatorname{in}(\zeta)^{2}-c_{11} \mathrm{in}_{\zeta}+c_{00}=\operatorname{in}(\zeta)^{2}-2 \operatorname{in}(\zeta)+1=(\operatorname{in}(\zeta)-1)^{2}$.

$$
\tilde{g}=g(z-1, y)=t^{4} z^{2} y+5 t^{3} z y^{2}+t^{9} y^{3}+z^{2}+\left(3-2 t^{4}\right) z y+\left(t^{2}-5 t^{3}\right) y^{2}
$$

Example: Repair a cycle on the visible side of a vert. line

$$
g(x, y)=t^{3} x^{3}+t^{5} x^{2} y+t^{3} x y^{2}+t y^{3}+x^{2}+3 x y+t^{2} y^{2}+(2+3 t / 2) x+\left(3+t^{2}\right) y+1 .
$$

$$
\left.\operatorname{in}_{(0,0)}(g)=(1+x)^{2}+3(x+1) y=(x+1)((1+x)+y)\right) \rightsquigarrow \zeta=1
$$

Proof ideas: Repairing the cycle of a tropical plane cubic.

-• $x \mapsto z-\zeta$

\qquad $y \mapsto z-\zeta$
0
0

$$
\begin{aligned}
x \mapsto & z-\zeta y \\
& \text { or } \\
y \mapsto & z-\zeta^{\prime} x
\end{aligned}
$$

Figure: Locally reducible vertices on a cubic and feeding process

Case 1: Cycle visible and 2 iterations

$$
\begin{aligned}
& g=-t^{3} x^{3}+\left(t^{4}+t^{5}\right) x^{2} y+\left(-t^{5}+t^{6}\right) x y^{2}+t^{3} y^{3}+\left(t^{2}-t^{3}\right) x^{2}+4 x y+\left(2 t^{2}+\right. \\
& \left.3 t^{3}\right) y^{2}+2 x+(2+2 t) y+(1+t)
\end{aligned}
$$

Re-embed by $\left.I_{g, f_{1}, f_{2}}:=<g, z-(x+1 / 2), s-(z+t / 2)\right\rangle$.
Enough: $g(s-(1 / 2+t / 2), y) \subset K[s, y]$.

Case 2: loc. red. vertices with vanishing discrim. on the

 top left (v_{2}) and bottom right (v_{1}) and cycle not visible.

Figure: Combinatorics and heights of dual cells to distinguished vertices when no linear tropical modification keeps the cycle of Trop (g) on its visible side. We disallow $i=n=1$.
$\mathbf{g}:=x^{3}+\left(1-9 t^{2}\right) x^{2} y+2 t^{4} x y^{2}+t^{20} y^{3}+\left(1-24 t^{9}-t^{40}\right) x^{2}+\left(1+5 t-16 t^{9}+144 t^{11}\right) x y+$ $8 t^{67} y^{2}+\left(1-16 t^{9}+t^{15}+192 t^{18}\right) x+\left(2 t^{4}+64 t^{18}-576 t^{20}\right) y+\left(1-8 t^{9}+64 t^{18}-8 t^{24}\right)$.

Re-embed by $I_{g, f_{1}, f_{2}, f_{3}}:=\left\langle g\left(z_{3}-2 t^{4}, y\right), z_{2}-y-t^{-4} / 2, z_{3}-z_{1}+1+2 t^{4}\right\rangle$.

