Lecture I: $\S 2.1$ \& 2.2 The problem of Tangents; slopes
Textbook: G.F. Simmons, "Calculus with Analytic Geometry" (2 "edition)
§2.1 What is Calculus ?
Calculus $=$ "To compute" \quad (Today $=$ The problem of Tangents $)$
(1) Two Fundamental Questions:
-Q1: Find the rate at which a variable quantity is changing.

- Q2: Describe a varying quantity when its rate of change is known. to "inverse problem"
- Geometric Interputations:

- PI: Find tangent lines To curves.

$$
\left.l y=m x+b \quad \underline{m}=s \text { lose } \quad y=f_{(x)}\right)
$$

- P2: Find the qua under a curse.

Part 3: Sequences \& Infinite series.
(2) Why Calculus?

- From computations going back to Archimedes \& the Greeks to its prmalization by - Newton (1642-1727)
- Leibniz (1646-1716)
- Part of the basic language of Science
- Used To describe continuous motions:

Examples: (1) Motions of planets + gravity (eg discovery of Neptune)
(2) Biology: Hodgkins-Hexley egg describing the action potential across nuwans in the brain.
(3) Economics: Black-Scholes equ modeling option pricing in financial markets.

- Why formalize \& axiomatize? By doing this we can concentrate on the underlying structures of different phenomena. We gain flexibility by mans of abstraction.
(3) What is a Tangent line? "Tangible = to touch"
-IDEA 1: Look at lines relative To causes (example =circle ξ)

- Con one side of L
- Y\&L don't must

- G on Two sides of L
- $\& \& L$ meta $2 p t s(P \& Q)$
(Secant Lime)

- Em one side
- G a L mectat opt (P)
(Tangent Line)

Conclude: A definition via "counting the member of intersection prints" is tor restrictive. It also fails fo general curses

- IDEA 2: Think of the cure as being on "one sidle" of the line or on both \& melting at one point This also fails in general

Solution: Combine these tui ideas but in a local situation (local $=$ around the print of interest)

- Natural question: How to formalize ore intuitive notion of a tangent live?
- Answer (Fermat ~1630): "Tangent lines are $\frac{\text { LIMITS }}{\text { secant line"" }}$ secant lines"

Geometric Description

"Approach P from both side"" (can use a sequence of scout lines)

Fermat's idea
(1) Fix $P_{\&}$ a secund pt Q on the curse ζ
(2) Draw the (secant) line through $P \& Q$
(3) More Q Towards P \& see how the secant line mores along with Q
(4) Provided the tangent line L at P exists, the secant lines will approach L in the lenait

Example Alpha cure

$$
\left[y^{2}-x^{3}-x^{2}=0\right]
$$

has no Tangent line at P
(two possible limits to a sequence of secant lines)
Remark: Almost all of Calculles insoles some limiting proves \$2.2 How to calculate the slope of a Tangent?

Recall: A nu-ketical line though $P=\left(x_{0}, y_{0}\right)$ has equation

$$
Y=m_{\text {slope }}\left(X-x_{0}\right)+y_{0}
$$

- The only parameter we ned to determine is m.
- m is obtained via a limiting process us we need ordinates!
- Equation of $L_{\text {sec }}$

$$
\begin{aligned}
& Q=\left(x_{1}, y_{1}\right) \text { satisfies } \\
& y_{1}=m_{\sec }\left(x_{1}-x_{0}\right)+y_{0}
\end{aligned}
$$

\leadsto We can solve fr $m_{\text {sec }}$ because $x_{1} \neq x_{0} \quad\left(L_{\text {sec }}\right.$ is not vesical!)

$$
m_{\text {sec }}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

If $L_{\text {Tam }}=\lim _{\substack{Q \rightarrow P \\ Q \neq P)}} L_{\text {sec }}$, then $m_{\text {Tam }}=\lim _{\substack{Q \rightarrow P \\(Q \neq P)}} m_{\text {sec }}$
Conclude:

$$
m_{\text {an }}=\lim _{\substack{\left(x_{1}, y_{1}\right)\left(x_{0}, y_{0} \\\left(x_{1}, x_{0}\right) \neq\left(x_{1}, y_{0}\right)\right.}} \frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

(Next Tine: examples!)

