130 Lecture III: \$ 2.3 The concept of a limit Recall: Given a function $f: D \longrightarrow \mathbb{R}$, where D is a subset of TR (write D = TR), we define its duivative F' as a new function with formula $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ This is defined whenever the limit exists and x is in D. <u>Examples</u> () If $f(x) = 1 - x^2$, then f'(x) = -2x (last time) So the domain of both F&F' is all TR. (2) $F(x) = \frac{1}{x}$ (37 $x \neq 0$ mo $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{x - (x + \Delta x)}{(x + \Delta x) \times} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x (x + \Delta x) \times}$. This is defined for x = 0 $= \lim_{x \neq 0} \frac{-1}{(x + \Delta x)x} = \frac{-1}{x^2}$ So Domain of F = Domain of F' = all unzero real numbers. (3) $f(x) = \sqrt{x}$ for $D = \frac{1}{x} \ge 0$ $\underbrace{\text{Claim}}_{x} \quad f'(x) = \frac{1}{2\sqrt{x}} \quad \text{defined} \quad f(x) > 0$ (mo Domain of F 7 Domain of F) Why? $f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$ Trick: Multiply by I = IX+DX + IX , 50 $\overline{X + \Delta x} + \overline{X}$ $F'_{(X)} = \lim_{\Delta X \to 0} \frac{\sqrt{X + \Delta X} - \sqrt{X}}{\Delta X} \frac{\sqrt{X + \Delta X} + \sqrt{X}}{\sqrt{X + \Delta X} + \sqrt{X}} = \lim_{\Delta X \to 0} \frac{(X + \Delta X) - X}{\Delta X (\sqrt{X + \Delta X} + \sqrt{X})}$ = $\lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x (\sqrt{x+\Delta x}+\sqrt{x})} = \lim_{\Delta x \neq 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}} = \frac{1}{\sqrt{x+\Delta x}} = \frac{1}{\sqrt{x+\Delta x}} = \frac{1}{\sqrt{x+\Delta x}}$

Notation: Leibniz
I lim
$$\Delta y = \frac{dy}{dx}$$

 $F'_{(3)} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \frac{df}{dx} = \left(\frac{d}{dx}\right) f$
Thus : "Operation $\frac{d}{dx}$ is performed on $F''_{(3)}$
We see how correct notation can clarify concepts!
So far, we have USED limits, but more really defined them precisely...
[We've only relied in our intertion of what a limit should le...)
So Limits: $x = a + \Delta x$
 $Q:$ What does $\lim_{X \to 0} g(x) \stackrel{l}{=} \lim_{\Delta x \to 0} S(a + \Delta x) = L$ mean?
We need: (1) A function $g: D \longrightarrow \mathbb{R}$ defined around a (not necessarily at a!)
(a) A number L
Ideos for defining the limit:
(a) As x approaches a, the value of $g(x)$ approaches L
(m) We can make $g(x)$ be an dose as we want to L by
taking x closed enough to a. "not acy precese!"
Important remark: We are not claiming anything about the value
 $g(x) = g(x) = \frac{d^2}{dx^2 - x^3}$
(an guess lim $g(x) = \lim_{\Delta x \to 0} g(x) = 3(1 + \Delta x) = 3(0 + 2)$ from the graph. Same fre

other releases of a runs limit
$$S(x) = \lim_{x \to a} S(x) = \lim_{x \to a} S(a + bx) = S(a)$$

 $x = a + bx$
(i) $S(x) = \begin{cases} 3x^2 - x^3 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$
Still limit $S(x) = \lim_{b \to x \to 0} S(1 + bx) = 2$ But now $2 \neq S(1)$
[Auway from $x = 1$ the yeaph of the functions from $O(2(2))$ look the
same, so the limits must be the same $!$]
(i) $F(x) = -\frac{1 \times 1}{x}$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for $x \neq 0$ ms $\begin{cases} -1 & \text{if } x > 0 \\ 1 & \text{if } x < 0 \end{cases}$
 $\lim_{x \to 1} F(x) = -1$ for the rest $f(x)$ does not exist
 $x \to 0$ for approximation 1 form the right!)
 $Q:$ What can be samplify use can't draw the yeaph of g ?
A: We make (x, m) more precise runs ble characteristic form $x = a$ $GATTE of CHOICE$
(i) YOU pick how close to L your usent to be $(sey, for example, 1 - g(x) - L | < 10^{-8})$
(c) Tou challenge THE to determine how close to a , T should prick x to be $(sey_0 < |x - a| < 10^{-26})$ to $ENSURE$ that $1 S(x_0 - L | < 10^{-8}$ whenever $0 < |x - a| < 10^{-26}$.
 $\frac{Ex}{2}: \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \frac{2}}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$ $\frac{2}{1 + \frac{2}{1 + \frac{2}}}$

Problem: $g(x) = 1-x^2$ Show $\lim_{x\to 0} g(x) = 1(=L)$ va \mathcal{E} - \mathcal{S} method Soln: Given any $\mathcal{E} > 0$, we want to find $\mathcal{S} > 0$ (in terms of \mathcal{E}) so that if $0 < |x-0| < \mathcal{S}$, then $|g(x)-1| = |1-x^2-1| = |-x^2|=x^2 < \mathcal{E}$ Need to pick \mathcal{S} so that $0 < |x| < \mathcal{S}$ forces $X^2 < \mathcal{E}$ Answer: $\mathcal{S} = \overline{\mathcal{S}\mathcal{E}}$ will do (IF oc $|x| < \mathcal{S}$, we square it to get $0 < |X|^2 < \mathcal{S}^2 = \mathcal{E}$ \mathcal{I}) $= x^2$