Lecture III: \& 2.3 The concept of a limit
Recall: Given a function $f: D \rightarrow \mathbb{R}^{\text {r }}$ set of all real members D is a subset of \mathbb{R} $($ write $D \subseteq \mathbb{R})$, we define its derivative F^{\prime} as a new function with formula $\quad f^{\prime}(\underline{x})=\lim _{\Delta x \rightarrow 0} \frac{f(\underline{x}+\Delta x)-f(\underline{x})}{\Delta x}$
This is defined whenever the limit exists and x is in D.
Examples (1) If $f(x)=1-x^{2}$, then $f^{\prime}(x)=-2 x$. (last time)
So the domain of both $f \& f^{\prime}$ is all \mathbb{R}.
(2)

$$
\begin{aligned}
f(x)=\frac{1}{x} \quad \operatorname{lr}_{x} x \neq 0 \\
\text { mus } \left.\begin{array}{rl}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\frac{x-(x+\Delta x)}{(x+\Delta x) x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{\Delta x(x+\Delta x) x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-1}{(x+\Delta x) x}=\frac{-1}{x^{2}} . \text { This is defined } f r x \neq 0 .
\end{array} . . \begin{array}{l}
\Delta x \neq 0
\end{array}\right) .
\end{aligned}
$$

So Domain of $f=$ Drain of $f^{\prime}=$ all nonzero real numbers.
(3) $f(x)=\sqrt{x}$ for $D=\{x \geqslant 0\}$

Claim $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ defined for $x>0$

(ms Amain of $f \neq D_{\text {main of }} f^{\prime}$)
Why? $\quad f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}$

$$
\begin{aligned}
& \text { Trick: Multiply by } 1=\frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}} \text {, so } \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \frac{1}{\square \Delta x \neq 0} \lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
\end{aligned}
$$

Notation: Leibniz

$$
\begin{aligned}
& \therefore \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x} \\
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\frac{d f}{d x}=\frac{d}{d x} f
\end{aligned}
$$

Think: "Operation $\frac{d}{d x}$ is performed on f ".
We see how correct notation can clarify concepts!

- So far, we have USED limits, but never really defined then precisely... (We've only relied in our intuition of what a limit should be...)
gl Limits:

$$
x=a+\Delta x
$$

Q: What does $\lim _{x \rightarrow a} g(x) \stackrel{\downarrow}{=} \lim _{\Delta x \rightarrow 0} \rho(a+\Delta x)=L$ mean?
We need: (1) A function $g: D \longrightarrow \mathbb{R}$ defined around a (not necessarily
(2) A number L at a!)

Ideas of s defining the limit:
(*) As x approaches a, the value of $g(x)$ approaches L
(*x) We can make $g(x)$ be as close as we want to L by taking x closed enough to a. b "not dey precise!"
Impretant remark: We are not claiming anything about the value 8(a) (g may very well not be defined at a), but we shouldn't core about $S(a)$ after all!

Examples (1) $g_{(x)}=3 x^{2}-x^{3}$

Can guess $\lim _{x \rightarrow 1} g(x)=\lim _{\Delta x \rightarrow 0} g(1+\Delta x)=g(1)=2$ from the graph. Same fr
other values of $a \leadsto \lim _{x \rightarrow a} \rho(x) \underset{\substack{\downarrow \\ x=a+\Delta x}}{ }=\lim _{x \rightarrow 0} \rho(a+\Delta x)=g(a)$
(2) $g(x)=\left\{\begin{array}{cc}3 x^{2}-x^{3} & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{array}\right.$

Sail $\lim _{x \rightarrow 1} g(x)=\lim _{\Delta x \rightarrow 0} f(1+\Delta x)=2$ But now $2 \neq g(1)$
way from $x=1$ the graph of the tunctirus from (1)\&(2) look the
[Away from $x=1$ the graph of the functions
same, so the limits must be the same!]
(3) $f(x)=\frac{-|x|}{x}$ fo $x \neq 0$ no $\left\{\begin{array}{cl}-1 & \text { if } x>0 \\ 1 & \text { if } x<0\end{array}\right.$

$$
\lim _{x \rightarrow 1} f(x)=-1, \lim _{x \rightarrow 0} f(x) \text { does not exist }
$$

 $(f(x)$ appwaches 1 form the left \& -1 from the right!)
Q: What can we say if we can't draw the proph of g ?
A: We make ($*-x$) more precise m We characterize limits as a GAME of CHOICE
(1) YOU pick how close to L you want to be (say, frexamfle,

$$
\left.|g(x)-L|<10^{-8}\right)
$$

(2) YOU challenge ME To determine how close to a, I should pick x to be $\left(\right.$ say $\left.0<|x-a|<10^{-26}\right)$ To ENSURE that $|\rho(x)-L|<10^{-8} \quad$ whenever $0<|x-a|<\frac{10^{-26}}{b \text { This }}$.
Ex (2):

if you pick another if you pick another
ensor other than 10^{-8}.

$$
\lim _{x \rightarrow 2} f(x)=-1
$$ around -1 function stays within the horizontal strip your picked

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \neq 1 \\
& \text { the strip. }
\end{aligned}
$$

You pick $\frac{1}{2} \& I$ loose!

$\lim _{x \rightarrow 0} f(x) \neq L$ for any $L \neq 1,-1$.

- You pick the width of the horizontal strip around L small enough so that the strip aroids the graph
- I lose! No matter the ever I choose, the gath near $a=0$ is outside the strip.
Definition: We say $\lim _{x \rightarrow a} g(x)=L$ if fr every $\varepsilon>0$ (yser choice) there is a $\delta>0$ (mychoice) such that: if $0<|x-a|<\delta$ then $|g(x)-L|<\varepsilon \quad$ (In short, I ALwAYs win the game)

Ex(1) $\lim _{x \rightarrow 1} 3 x^{2}-x^{3}=2$
Pick $x_{1}<1$ with $3 x_{1}^{2}-x_{1}^{3}=L-\varepsilon$

$$
x_{2}>1-3 x_{2}^{2}-x_{2}^{3}=L+\varepsilon
$$

$\left.m D \delta \leq \min ^{1+\delta} 31-x_{1}, x_{2}-1\right\}$ works

Typically: δ has a fromula invoking $\varepsilon \& a$.
(1) Even if we have a fromula for g, finding δ given ε s a can be urey challenging (because it involves "inserting" a fromula)

Problem: $f(x)=1-x^{2}$ Show $\lim _{x \rightarrow 0} f(x)=1(=L)$ na $\varepsilon-\delta$ method
Sole: Given any $\varepsilon>0$, we want $t_{0}^{x \rightarrow 0}$ find $\delta>0$ (in terms of ε) so that if $0<|x-0|<\delta$, then $|\rho(x)-1|=\left|1-x^{2}-1\right|=\left|-x^{2}\right|=x^{2}<\varepsilon$

Need to pick δ so that $0<|x|<\delta$ frees $x^{2}<\varepsilon$
Answh: $\delta=\sqrt{\varepsilon}$ will do (If $0<|x|<\delta$, we square it to get $\quad 0<\underbrace{|x|^{2}}_{=x^{2}}<\delta^{2}=\varepsilon \quad V)$

