Lecture iv \$2.5 E/S-definitim of limits
\$2.4 Rates of change \& velority.
Recall: We saw $\lim _{x \rightarrow a} S(x)=L$ as a game of choice where I win.
(1) You pick how dose to L the value of $\rho(x)$ has to be (say $\left.\left|\rho(x)^{-L}\right|<10^{-8}\right)$
(2) I_ pick a threshold within a for the variable x to be (say 10^{-26}) so that if $0<|x-a|<10^{-26}$ (that is, $a-10^{-26}<x<a+10^{-26} \& x \neq a$) then we Must have $|g(x)-L|<10^{-8}$ (That is, $L-10^{-8}<\rho(x)<L+10^{-8}$) (If I can always pick, then I win. Otherwise yser do $\& \lim _{x \rightarrow a} S(x) \neq L$) si Formal definition of limit:
Definition: We say $\lim _{x \rightarrow a} g(x)=L$ if for every $\varepsilon>0$ (yren choice) there is a $\delta>0$ (mychrice) such that: if $0<|x-a|<\delta$ then $|g(x)-L|<\varepsilon \quad$ (In short, I ALways win the game)
Ex(1) $\lim _{x \rightarrow 1} 3 x^{2}-x^{3}=2$
Pick $x_{1}<1$ with $3 x_{1}^{2}-x_{1}^{3}=L-\varepsilon$

$$
x_{2}>1-3 x_{2}^{2}-x_{2}^{3}=L+\varepsilon
$$

Typically: δ has a fromula involving ε \& a
A Even if we have a fromula for g, finding δ given ε s a can be urey challenging (because it involves "inserting" a primula)
Problem: $f(x)=1-x^{2}$ Show $\lim _{x \rightarrow 0} f(x)=1(=L)$ na $\varepsilon-\delta$ method
Soln: Given any $\varepsilon>0$, we want t_{0} find $\delta>0$ (in terms of ε) so that if $0<|x-0|<\delta$, then $|\rho(x)-1|=\left|1-x^{2}-1\right|=\left|-x^{2}\right|=x^{2}<\varepsilon$

Need to pick δ so that $0<|x|<\delta$ frees $x^{2}<\varepsilon$ Answer: $\delta=\sqrt{\varepsilon}$ will do (If $0<|x|<\delta$, we square it to git $\quad 0<\underbrace{|x|^{2}}_{=x^{2}}<\delta^{2}=\varepsilon \quad \checkmark)$

Properties (Limit Laws) Assume that f \& g are Tiv functions defined around a with $\lim _{x \rightarrow a} f_{(x)}=L$ \& $\lim _{x \rightarrow a} \rho(x)=M$. Then:
(1) $\lim _{x \rightarrow a}(f(x) \pm g(x))=L \pm M \quad(f \pm g$ are functives defined wear a)
(2) $\lim _{x \rightarrow a} f(x) g(x)=L M \quad$ ($F \cdot g$ is a new function defined near a)
(3) Fr any real number c, we have $\lim _{x \rightarrow a} f_{(x)}=c L$ ($c f$ is a nus function defined near)
(4) If $M \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{f(x)}=\frac{L}{M} \quad\left(\frac{f}{g}\right.$ is a new function defined mar a)

Next time: we'll discuss why these profecties hold (Appendix AZ)
§2 Two higonometric limits:
EXAMPLE I: $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=$?

Note $\sin (0)=0$ so we have a $\frac{0}{0}$-indeterminacy.
Q: D, things cancel rut like with $\frac{x^{2}}{x}, \frac{x}{x^{2}}$ or $\frac{x}{x}$?
A T_{3} answer, we use higonometry in the unit circle.
Fix $h>0$ (otherwise use $\frac{\sin (-h)}{-h}=\frac{-\sin h}{-h}=\frac{\sin h \text {) }}{h}$

- We draw the sector of the circle with $\Varangle=h$ This determines the point B
- Next we dour 2 right triangles $0 \stackrel{\rightharpoonup}{B} A \&$ $0 \Delta \bar{D}$. They are similar (all 3 angles match pairwise: $\triangle B O A=\Varangle D O C$

$$
\begin{aligned}
& \Varangle O A B=\$ O C D=90^{\circ} \\
& \Varangle O B A=\Varangle O D C)
\end{aligned}
$$

-The ratios of the sides are determined by varies trigonomituc functimes

$$
\begin{array}{ll}
\frac{A B}{1}=\sin (h)=\frac{C D}{O D} & \rightarrow A B=\sin h \\
\frac{C D}{1}=\frac{B A}{O A}=\tan (h) & \leadsto C D=\tan h \\
\frac{O A}{1}=\cos (h)=\frac{1}{O D} & \leadsto O A=\cos h
\end{array}
$$

\rightarrow Ingudients: arc of the circle $=\widehat{B C}$

- Sector $O B C$ of the circle
- 2 triangles $O \hat{A} B$ \& $O^{\hat{C}} D$.

Area of $O B C=$ ara of circle (0 paction of angle with respect To 2π)

$$
=\pi \cdot 1^{2} \cdot \frac{h}{2 \pi}=\frac{h}{2} \quad\left(=\frac{|h|}{2} \text { if } h<0\right)
$$

$$
\begin{aligned}
\text { Ana of } \begin{aligned}
\hat{O} \overline{A B} & =\frac{1}{2} \text { base } \cdot \text { height }=\frac{1}{2} O A \cdot A B \\
& =\frac{1}{2} \cos (h) \cdot \sin (h) \quad\left(=\frac{\cos (h) \sin (|h|)}{2} \text { if } h<_{0}\right)
\end{aligned} .
\end{aligned}
$$

Area of $\stackrel{\Delta}{O C D}=\frac{1}{2}$ base \cdot height $=\frac{1}{2} O C \cdot C D$

$$
=\frac{1}{2} \tan (h)=\frac{\sin (h)}{2 \cos (h)} \quad\left(=\frac{\sin (|h|)}{2 \cos (h)} \text { if } h<0\right)
$$

So Area of $O \stackrel{\rightharpoonup}{A} B \leq$ Ara of $\frac{I D}{O B C} \leq$ Area of $O \bar{O}$

$$
\begin{aligned}
& \frac{\cos (h) \sin (h)}{2} \leqslant \frac{h}{2} \leqslant \frac{\sin (h)}{2 \cos (h)} \\
& \left.\frac{\cos h \sin (|h|)}{2} \leqslant \frac{|h|}{2} \leqslant \frac{\sin (|h|)}{2 \cos (h)} \text { if } h<0\right) \\
& \frac{-\cos (h) \operatorname{sen}(h)}{2} \leqslant \frac{-h}{2} \leqslant \frac{-\sin h}{2 \cos h}
\end{aligned}
$$

- If $h>0$, we deride all 3 expressive by $\frac{h}{2}>0$ \& the inequalities remain: We get

$$
\cosh \frac{\sin h}{h} \leqslant 1 \leqslant \frac{\sin h}{h} \frac{1}{\cos h}
$$

So $\quad \cos h \leqslant \frac{\sin h}{h} \leqslant \frac{1}{\cos h}$
(*)

$$
\cos (0)=1 \& \quad \cos h>0 f p
$$ h mar o)

- If $h<0$, we divide by $\frac{-h}{2}>0$ \& the impualitees remain: Weget: $\cosh \frac{\operatorname{senh}}{h} \leq 1 \leq \frac{\operatorname{senh}}{h} \frac{1}{\cosh }$ so once again we get (k)
Condusion: $\quad \cos h \leq \frac{\sin h}{h} \leq \frac{1}{\cos h}$ \& we know that $\lim _{h \rightarrow 0} \cos h=1=\lim _{h \rightarrow 0} \frac{1}{\cos h}$. So $\frac{\operatorname{sen} h}{h}$ is squeezed between wo functives with the same limit. This frees:

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

Application: $\quad \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=$? (also $\%$-indeterminacy)
We use a well-known ting identity: $\cos ^{2} h+\operatorname{sen}^{2} h=1$

$$
\begin{aligned}
& \frac{\cos h-1}{h}=\frac{(\cos h-1)}{h} \frac{(\cos h+1)}{\cos h+1}=\frac{\cos ^{2} h-1}{h(\cos h+1)}=\frac{-\operatorname{sen}^{2} h}{h(\cos h+1)} \\
& =\frac{\operatorname{sen} h}{h}\left(\frac{-\operatorname{sen} h}{\cos h+1}\right)
\end{aligned}
$$

So $\lim _{h \rightarrow 0} \frac{\cosh h}{h}=\lim _{h \rightarrow 0} \underbrace{\frac{\operatorname{sen} h}{h}}_{2 \text { fenctives }} \underbrace{\left(\frac{-\operatorname{sen} h}{\cos h+1}\right)}_{\text {Limit lawns }}=1 \cdot 0=0$
Know $\quad \lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ with known limits.

$$
\lim _{h \rightarrow 0} \frac{(-\operatorname{sen} h)}{\cosh +1}=\frac{-\sin (0)}{(\cos 0)+1}=\frac{-0}{1+1}=\frac{-0}{2}=0
$$

§ 2.4 Verity \& rates of change:
Think of $y=f(x)$ as indicating a relation ship between 2 physical seantities, so $f^{\prime}=d y y_{x}$ is the instantaneous rate of change.

Application 1: The independent variable $x=t$ is TIME.
Example (1): Filling a water Tank:

$V(t)=$ Volume of water at time t
$\frac{d V}{d t}=$ nate of change at which the Tank is being filled.
Also $h=h(t)$ (the height of water is changing with time) $m \frac{d h}{d t}=$ nate at which the height changes.

Note: Va h are related $V(t)$
so their rates of change are related
Example (2): Rock falling of a cliff:

$$
V(t)=h(t)
$$

Ana of the base

$s(t)=$ prition at time t

$$
\frac{d s}{d t}=s^{\prime}(t):=\text { velocity }=v_{(t)}
$$

It has a direction (poitier r ny.)!

$$
\frac{d v}{d t}=v^{\prime}(t):=\text { acceleration }=a_{(t)}
$$

$v(t)=$ rate of change of position
$a(t)=\square$ velocity
Speed: $=|v(t)|$ has no direction (value in the dashbreed of you cor)
Here: experimental results propose $s(t)=16 t^{2} \quad(f t)$

$$
s^{\prime}(t)=32 t
$$

ACCELERATION cm $a(t)=32 \mathrm{ft} / \mathrm{s}^{2} \quad\left(9.8 \frac{\mathrm{~m})}{\mathrm{s}^{2}}\right.$
due to garity

Application 2: The independent variable can be something else,
Eg: $\quad x=\#$ cars produced
$c(x)=\operatorname{cost}$ of producing x cars .
$\frac{d c}{d x}=$ marginal cost r "cost per unit"
Application 3: Car dhising straight down the road.

- Watching odometer gives $s(t)=$ distance at time
\qquad speediniter -
$v(t)=s^{\prime}(t)=$ froward velocity at time
By empirical measures, we find/estimate that

$$
S(t)=60 t^{2}-20 t^{3}
$$

So $v(t)=s^{\prime}(t)=120 t-60 t^{2} \leadsto \leadsto$ we can confine this with the speedometer

$$
a(t)=v^{\prime}(t)=120-120 t=120(1-t)
$$

Position
(ODOMETER)
FORWARD VELOCITY (SPEEDOMETER)

Each graph gives a"differnt"picture of ru travels. (betwen $t=0 \& t=2$)

