Lecture IV
$$\xi z. \xi (\xi - definition of limits to the first integrate to the series for the series of the series of$$

Projecters (Limit Laws) Assume that
$$hag are two functions defined
around a with Laws) Assume that $hag are two functions defined
around a with Limit $f_{cos} = L = L$ ($h \pm g$ are functions defined user a)
 $x \rightarrow a$
(1) $\lim_{x \rightarrow a} f_{(x)} \pm g_{(x)} = L \pm H$ ($h \pm g$ are functions defined user a)
(2) $\lim_{x \rightarrow a} f_{(x)} + g_{(x)} = L = H$ ($f \pm g$ is a new function defined march)
(3) F_{T} any real number c , we have $\lim_{x \rightarrow a} cf_{(x)} = cL$ (cf is a new function
(4) $If M \neq 0$, then $\lim_{x \rightarrow a} \frac{f_{(x)}}{g_{(x)}} = \frac{L}{H}$ ($\frac{F}{g}$ is a new function defined march)
(4) $If M \neq 0$, then $\lim_{x \rightarrow a} \frac{f_{(x)}}{g_{(x)}} = \frac{L}{H}$ ($\frac{F}{g}$ is a new function defined march)
(5) F_{T} any real number c , we have a projection hold (Appendex AZ)
(4) $If M \neq 0$, then $\lim_{x \rightarrow a} \frac{f_{(x)}}{g_{(x)}} = \frac{x}{H}$ ($\frac{F}{g}$ is a new function defined march)
(5) F_{T} and $\int_{h} \frac{f_{(x)}}{h} = \frac{x}{h}$ ($\frac{F}{g}$ is a new function defined march)
(6) $Next Time : we'll discuss only these projections hold (Appendex AZ)
(7) $\frac{g}{g}$ $\frac{g_{(x)}}{h}$ ($\frac{h}{h}$) $\frac{g_{(x)}}{h}$ $\frac{g_{(x)}}{h}$$$$$

. The notion of the sides are determined by various trigonometric functions 14[3]

$$\frac{AB}{I} = \sin(h) = \frac{CB}{CB} \qquad \qquad AB = \sin h$$

$$\frac{CB}{I} = \frac{BA}{CA} = \tan(h) \qquad \qquad CS = \tan h$$

$$\frac{CB}{OA} = \cos(h) = \frac{1}{OB} \qquad \qquad OO = cSh$$

$$\frac{CS}{I} = \cos(h) = \frac{1}{OB} \qquad \qquad OO = cSh$$

$$\frac{CS}{I} = \cos(h) = \frac{1}{OB} \qquad \qquad OO = cSh$$

$$\frac{CS}{I} = \cos(h) = \frac{1}{OB} \qquad \qquad OA = cSh$$

$$\frac{CS}{I} = \cos(h) = \frac{1}{OB} \qquad \qquad OA = cSh$$

$$\frac{CS}{I} = \cos(h) = \frac{1}{OB} \qquad \qquad OA = cSh$$

$$\frac{CS}{I} = \frac{1}{OB} =$$

So
$$arch \leq \frac{\sin h}{h} \leq \frac{1}{\cosh h}$$
 (K) $(rr(0)=1 \leq arch row for h march o)$
. If $h \leq 0$, we divide by $\frac{-h}{-h} > 0 \leq 4$ the inequalities remain.
We get: $arch \leq \frac{1}{h} \leq 1 \leq \frac{1}{h} \leq \frac{1}{\cosh h}$ so one again we get (K)
(inclusion: $arch \leq \frac{1}{h} \leq \frac{1}{\cosh h} \leq \frac{1}{h} \leq \frac{1}{\cosh h}$ is aqueezed between
two functions with the same limit. This prices:
 $\lim_{h \to 0} \frac{1}{h} = \frac{1}{h}$
Application: $\lim_{h \to 0} \frac{1}{h} = \frac{2}{(arch h)} (arch + 1) = \frac{1}{(arch h)} = \frac{1}{h} (arch + 1)$
 $arch - \frac{1}{h} = (arch h) (arch + 1) = \frac{1}{h} (arch + 1) = \frac{1}$

Application 1: The independent variable x=t is TIME. Example (): Filling a water tank. V(t) = Volume of water at time t Ih = height $\frac{JV}{Jt} = note of change at which the tank is being filled.$ Also h = hlt) (the height of water is changing with time) my <u>dh</u> = nate at which the height changes. et Note. Vs. h au related V(t) = h(t) (hua of the base) So their cate d change it + 0 so their rates of change are related Example 2: Rock falling of a cliff: slt) = proition at time t Jiff S(F) $\frac{ds}{dt} = s'(t) := velocity = v(t)$ It has a direction (positive or nig.)! $\frac{dv}{dt} = v'(t) := acceleration = a_{(t)}$ v(t) = rate of change of position alt) = _____ velocity Speed: = |v(t)) has no direction (value in the dashboard of your car) Here: experimental results propose $S(t) = 16t^2$ (ft) s'(t) = 32tACCELERATION an a(t) = 32 ft s^{2} (9.8 m) Lue to pravity s^{2}

Each graph gives a "different "picture of our travels. (betwent=oet=2)