Recall : first a function $f: D \longrightarrow \mathbb{R}$ defined around x = a (but not necessarily at a) we say $\lim_{x \to a} f_{(x)} = L$ if for EVERY E>O (Your choice!), we can ALWAYS find a S>O (MY choice, usually depends on E&a) such that if $a - S < x < a + S < x \neq a$ (in short, o < (x - a) < S), then we automatically have $L - E < f_{(x)} < L + E$ (in short, $1f_{(x)} - L < E$)

> The limit is L if I ALWATS win the game, independent of your choice

Example: f(x) = 5x + 4 & a = 0WANT $|(5x + 4) - 4| < \epsilon$, that is $|5x| < \epsilon$ if $|x| < \delta$ Take $S = \frac{\varepsilon}{5}$ z smaller! (referse engineer!) Inded, if o < 1×1<8, then 15×1<58=E, so (5×+4)-4 <E ·Natural Quistion 1: Can we have 2 different limits L&L'? Natural Quistion Z: How do lémits behave with respect to the hour standard operations +, -, -, / pr real numbers? What about inequalities? Theorem 1: If lim $f_{(x)} = L$ a luin $f_{(x)} = L'$, then L = L'Why? We argue by criticalication. We assume $L \neq L'$, so up to symmetry, we suppose $L \leq L'$. Side E = L' - L > 0 $L - \sum_{\substack{i=1 \\ i=1 \\$

Square Therein Assume we have 3 functions defined around
a , and satisfying
$$S_{(X)} \in F_{(X)} \leq h_{(X)}$$
 around $x = a$
If this $S_{(X)} = \lim_{X \to a} h_{(X)} = L$, then the limit them $F_{(X)}$ exists
and this $F_{(X)} = L$
Recall: Least time we used $Cash \leq \frac{sinh}{h} \leq \frac{1}{cash}$ for $h > 0$
to show this $\frac{sinh}{h} = 1$.
 $M_{W_{2}}?$ We use E/S for $f_{(X)} = f_{(X)} \leq f_{(X)} < f_{(X)} = f_{(X)} = f_{(X)} = f_{(X)} \leq f_{(X)} \leq f_{(X)} \leq f_{(X)} < f_{(X)} = f_{(X)} \leq f_{(X)} \leq f_{(X)} \leq f_{(X)} < f_{(X)} = f_{(X)} \leq f$