Lecture V1 Appendix A2 - More Theorems absent tenets \$2.6 Continues functions
El. Limits Laws:
Thurum 1 (Limits and arithmetic operations). Fix two functions $f_{(x,}, g_{(x)}$ dypined around $x=a$ \& assume that $\lim _{x \rightarrow a} f(x)=L \& \lim _{x \rightarrow a} g(x)=M$.
Then (1) $\lim _{x \rightarrow a}(f(x)+\rho(x))=L+M$
(2) $\lim _{x \rightarrow a}(f(x)-g(x))=L-M$
(3) $\lim _{x \rightarrow a} f(x) g(x)=L \cdot M$

Why? As usual, we use E/ס-methird
(1) \& (2): Sick any $\varepsilon>0$ \& Take $\varepsilon^{\prime}=\frac{\varepsilon}{2}$

Since $\lim _{x \rightarrow a} f(x)=L$, we can find $\delta_{f}>0$ so that if $0<|x-a|<\delta_{f}$, then we must have $|f(x)-L|<\varepsilon^{\prime}=\frac{\varepsilon}{2}$

- Since $\lim _{x \rightarrow a} g(x)=M$, we can find $\delta_{g}>0$ so that if $0<|x-a|<\delta_{g}$, then we must have $|g(x)-M|<\varepsilon^{\prime}=\frac{\varepsilon}{2}$
Pick $\left.\delta=\min 3 \delta_{g}, \delta_{g}\right\}>0$
- Then: $\left|f_{(x)}+g(x)-(L+M)\right|=\mid \underbrace{f(x)-L}+\underbrace{g(x)-M \mid \leqslant}$ $|b+c| \leq|b|+|c|$ (see page?) verde $\underbrace{}_{=b} \underbrace{g(x)-M}_{=c}$

$$
\leq|f(x)-L|+|S(x)-M| \underset{\downarrow}{\ell} \frac{\varepsilon / 2}{\downarrow}+\frac{\varepsilon}{2}=\varepsilon
$$

Conduce: If $0<|x-a|<\delta$, then $|(f(x)+\delta(x))-(L+M)|<\varepsilon$ So $\lim _{x \rightarrow a} f_{(x)}+S(x)=L+M$ by ε / δ-definitive.

- Similarly : $|f(x)-g(x)-(L-M)|=\mid \underbrace{\mid f(x)-L)}_{=b}-\underbrace{\left(f(x)^{-M C^{2}}\right) \mid}_{=c}$

$$
\begin{array}{ll}
\leq|f(x)-L|+|g(x)+M| & \stackrel{\varepsilon}{\downarrow}+\frac{\varepsilon}{2}=\varepsilon . \\
\begin{array}{ll}
|b-c| \leq|b|+|c| & |x-a|<\delta<\delta_{f} \\
\text { (see page }) & |x-a|<\delta<\delta g
\end{array}
\end{array}
$$

Conduce: If $0<|x-a|<\delta$, then $\left|\left(f_{(x)}-\delta(x)\right)-(L-M)\right|<\varepsilon$ So $\lim _{x \rightarrow a} f_{(x)}-\delta(x)=L M$ by ε / δ-definitem.
(3) This one is a bit mure subtle. Again, pick $\varepsilon>0$.

$$
\begin{aligned}
& \left|f_{(x)} g_{(x)}-L M\right|=\left|f_{(x)} f_{(x)}-f_{(x)} M+f_{(x)} M-L M\right| \\
& +\frac{2}{=}-f_{(x)} M \\
& \operatorname{moder} \underbrace{\mid f_{(x)}\left(g_{(x)}-M\right)}_{=b}-\underbrace{M\left(f_{(x)}-L\right) \mid}_{=c}
\end{aligned}
$$

$$
\underset{\substack{|b-c| \leq|b|+|c|}}{\leqslant \mid f(x)}(g(x)-M)|+|M(f(x)-L)|
$$

$$
\begin{aligned}
& \leqslant|(f(x)-L)(g(x)-M)+L(\delta(x)-M)|+|M|\left|f_{(x)}-L\right| \\
& \leqslant|f(x)-L||g(x)-M|+|L||\rho(x)-M|+|M|\left|f_{(x)}-L\right| \\
& \leqslant\left|f_{(x)}-L\right||g(x)-M|+\underbrace{(M \mid+1)}_{\leqslant N}|g(x)-M|+\underbrace{(M \mid+1)\left|f_{(x)}-L\right|}_{\leqslant N} \\
& |L| \leqslant \mid L 1+1 \\
& |M| \leqslant|M|+1
\end{aligned}
$$

Sick $N=\max \{|L|+1,|M|+1\}$, then $N>0 \&$

$$
\begin{equation*}
|f(x) g(x)-L M| \leqslant\left|f_{(x)}-L\right||g(x)-M|+N\left(|g(x)-M|+\left|f_{(x)}-L\right|\right) \tag{I}
\end{equation*}
$$

Q: Can we pick $\delta>0$ so that if $0<|x-a|<\delta$, them (I) $<\frac{\varepsilon}{2}$ \& (II) $<\frac{\varepsilon}{2}$? If so, we win!

- First, we find δ^{\prime} working fo (I): Take $\varepsilon^{\prime}=\frac{\sqrt{\varepsilon}}{\sqrt{2}}$

Since $\lim _{x \rightarrow a} f(x)=L \& \lim _{x \rightarrow a} g(x)=M$, we can find $\delta_{1}^{\prime}, \delta_{2}^{\prime}>0$ so that if $0<|x-a|<\delta_{1}^{\prime}$ then $|f(x)-L|<\varepsilon^{\prime}=\frac{\sqrt{\varepsilon}}{\sqrt{2}}$

$$
0 c|x-a|<\delta_{2}^{\prime} \quad|g(x)-M|<\varepsilon^{\prime}=\frac{\sqrt{2}}{\sqrt{2}}
$$

Pick $\delta^{\prime}=\min 3 \delta_{1}^{\prime}, \delta_{2}^{\prime} \varepsilon>0$. Then if $0<|x-a|<\delta^{\prime}$,
we get $(I)=\left|f_{(x)}-L\right||S(x)-M|<\frac{\sqrt{\varepsilon}}{\sqrt{2}} \cdot \frac{\sqrt{\varepsilon}}{\sqrt{2}}=\frac{\varepsilon}{2}$

$$
\delta^{\prime} \leq \delta_{1}^{\prime}
$$

$$
\delta^{\prime} \leq \delta_{2}^{\prime}
$$

- Next, we find $\delta^{\prime \prime}$ working for (II): Take $\varepsilon^{\prime \prime}=\frac{\varepsilon}{4 \mathrm{~N}}$

Since $\lim _{x \rightarrow a} f(x)=L$ \& $\lim _{x \rightarrow a} g(x)=M$, we can find $\delta_{1}^{\prime \prime}, \delta_{2}^{\prime \prime}>0$
so that if $0<|x-a|<\delta_{1}^{\prime \prime}$ then $\left|f_{(x)}-L\right|<\varepsilon^{\prime \prime}=\frac{\varepsilon}{4 N}$

$$
0<|x-a|<\delta_{2}^{\prime \prime} \quad|\partial(x)-M|<\varepsilon^{\prime \prime}=\frac{\varepsilon}{4 N}
$$

Sick $\delta^{\prime \prime}=\min b \delta_{1}^{\prime \prime}, \delta_{2}^{\prime \prime} \varepsilon>0$. Then if oc $|x-a|<\delta^{\prime \prime}$, then we get $(\mathbb{I})=N(|f(x)-L|+|\rho(x)-M|) \leqslant N\left(\varepsilon^{\prime \prime}+\varepsilon^{\prime \prime}\right)=N 2 \varepsilon^{\prime \prime}=N 2 \frac{\varepsilon}{4 N}$

$$
=\frac{\varepsilon}{2} .
$$

Pick $\delta=\min 3 \delta^{\prime}, \delta^{\prime \prime} \varepsilon>0$ \& conclude that if $0<|x-a|<\delta$, then we set $|f(x) \rho(x)-L M| \leqslant(I)+(I I)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. U
Summary: E/S-techniques = "The at of bounding"
Imirtant consequence: Any polynomial $f_{(x)}=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ with real coefficients $c_{n}, c_{n-1}, \ldots, c_{1}, c_{0}$ satisfies

$$
\lim _{x \rightarrow a} f(x)=c_{n} a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0}=f(a)
$$

This is partly why prlynmials are sur farorite functives!
Thorem 2: If $\lim _{x \rightarrow a} \rho(x)=M \neq 0$, then $\lim _{x \rightarrow a} \frac{1}{s(x)}=\frac{1}{M}$.
Mores if $\lim _{x \rightarrow a} f(x)=L$ \& $M \neq 0$ we get $\lim _{x \rightarrow a} \frac{f(x)}{S(x)}=\frac{L}{M}$.
Why?. The second claim follows by writing $\frac{f(x)}{S(x)}=f(x) \cdot \frac{1}{S(x)}$ \& using the product rule ((3) in Theorem 1).

- To argue for the first statement, we use ε / δ-method.

Write $\left|\frac{1}{g(x)}-\frac{1}{M}\right|=\frac{|M-g(x)|}{|f(x) M|}=|g(x)-M| \frac{1}{|M|} \frac{1}{|g(x)|}$
Look at the 2 factors separately:
Since $M \neq 0$ we know $|M|>0$. Pick $\varepsilon^{\prime}=\frac{|M|}{2}>0$

- Fr $\frac{1}{\delta(x)}:$ we can find $\delta_{1}>0$ so that if $0<|x-a|<\delta_{1}$, then

$$
\begin{aligned}
& |g(x)-M|=\varepsilon^{\prime}=\frac{|M|}{2} \quad \text { This mans } \\
& M-\frac{|M|}{2}=M-\varepsilon^{\prime}<g(x)<M+\varepsilon^{\prime}=M+\frac{|M|}{2}
\end{aligned}
$$

If $M>0$

$$
\begin{aligned}
& \text { so } \left\lvert\, \frac{|\pi|}{2}<\delta(x)<\frac{3|\pi|}{2}\right. \\
& 0<\text { fires } \\
& \left.\frac{3|\pi|}{2}>\rho_{(x)} \right\rvert\,>\frac{|\pi|}{2}
\end{aligned}
$$

If $M<0 \cdot M-\frac{|M|}{2}=M-\frac{(-M)}{2}=\frac{3 M}{2}$

- $M+\frac{|M|}{2}=M+\frac{(-M)}{2}=\frac{M}{2}$
$\left.\begin{array}{cc}\& \frac{\pi}{2}>\frac{3 \pi}{2} \\ 1 / 2 & 0\end{array}\right\}$

$$
\begin{aligned}
& \text { so } \frac{3 \pi}{2}<\rho(x)<\frac{\pi}{2}<0 \\
& \text { sines } \\
& \frac{3|\pi|}{2}>|\rho(x)|>\frac{|\pi|}{2}
\end{aligned}
$$

In both cases: $\frac{1}{\frac{3 \pi \mid}{2}}<\frac{1}{|\delta(x)|}<\frac{1}{|m| / 2}$, that is $\frac{2}{3|\pi|}<\frac{1}{|\delta(x)|}<\frac{2^{L 6}}{|\pi|}$
Condusim: $\left|\frac{1}{\delta(x)}-\frac{1}{\Pi}\right|=|g(x)-M| \frac{1}{|\Pi|} \frac{1}{|g(x)|}<|g(x)-\Pi| \frac{2}{|\Pi|^{2}}$ if $0<|x-a|<\delta_{1}$.

- To finish, pick $\varepsilon^{\prime \prime}=\frac{\varepsilon}{2}|M|^{2}>0$ because $|M|>0$

Since $\lim _{x \rightarrow a} f(x)=M$, we can find $\delta_{2}>0$ so that if $0<|x-a|<\delta_{2}$, then $\left|\delta_{(x)}-M\right|<\varepsilon^{\prime \prime}=\frac{\varepsilon}{2}|M|^{2}$
Tick $\delta=\min 3 \delta_{1}, \delta_{2}\{>0$. We st $\left|\frac{1}{g(x)}-\frac{1}{M}\right| \underset{\delta}{\delta \leqslant \delta_{1}}|\delta(x)-M| \frac{2}{|m|^{2}} \underset{\delta}{<} \mathcal{E}^{\prime \prime} \frac{2}{\mid M \|^{2}}=\frac{\varepsilon}{2}|m|^{2} \cdot \frac{2}{|\Pi|^{2}}=\varepsilon$ as ling as $\quad 0<|x-a|<\delta^{\delta}$.
oz Contimusus functions
Example.

- I is continues everywhere in D exapt at $x=3$, because

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=2 \neq f(3) \quad \& \lim _{x \rightarrow 3^{-}} f(x)=1=f(x) \text {, so } \\
& \text { no limit at } 3 \text { exists! } \\
& \text { In } \varepsilon / \delta \text {-defipinition use } 3<x<x+\delta \text { side }
\end{aligned}
$$

- We can define f at $x=4$ (that is "extend the function of to $x=4$ ") in a continuores fashion be caus $\lim _{x \rightarrow 4} f(x)=2$. So declaring $f(4)=2$ will make f continuous
- We cannot extend f to $x=0$ in a continureres way because $\lim _{x \rightarrow 0} f(x)$ does not exist.

Definition A function of defined in a neighborhood of a pint $x=a$ is continuous at a if:
(1) $f(x)$ is defined at $x=a$
(2) $\lim _{x \rightarrow a} f(x)$ exists and it equals $f(a)$.

Definition: We say f is contimuores it it's continuous everywhere in its domain.
Note: Saying $\lim _{x \rightarrow a} f(x)=f(a)$ is the same as saying $\lim _{x \rightarrow a}(f(x)-f(a))=0$. Using increments, we can write $\lim _{\Delta x \rightarrow 0} f(x+\Delta x)-f(a)=\lim _{\Delta x \rightarrow 0} \Delta f=0$.

Key Proposition: If $f^{\prime}(a)$ exists, then f MUST be antenuores at a

Why? $\lim _{\Delta x \rightarrow 0} \Delta f=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x} \Delta x=f_{(a)}^{\prime} \cdot 0=0$. $f^{\prime}(a) \quad 0$ Rule
1 If can be continerores at $x=0$ without hating $f^{\prime}(a)$
Example $f(x)=|x|$ \& $a=0$
Char: $\lim _{x \rightarrow 0}|x|=0=|0|=f_{(0)}$ because $T>$ wrens, so $\operatorname{Nof}^{\prime}(0)$

$$
\lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0 \quad \& \quad \lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=-0=0
$$

Aside: $\quad|b+c| \leq|b|+|c|$ fr any b, c real numbers.
We show this by a case-by-case analysis:
(1) If $b, c \geqslant 0$, then $|b+c|=b+c=|b|+|c| \subseteq|b|+|c|$
(2) If $b, c \leqslant 0$ - $|b+c|=-b-c=|b|+|c| \leqslant|b|+|c|$
(3) If $b \geqslant 0, c \leqslant 0 \quad 4 \cdot b+c \geqslant 0$;

$$
|b+c|=b+c=|b|+c=|b|-|c| \leqslant|b|+|c|
$$

(same idea works if $b \leqslant 0, c \geqslant 0 \& b+c \geqslant 0$)
(9) If $b \geqslant 0, c \leq 0$ \& $b+c \leq 0$

$$
|b+c|=-b-c=-|b|+|c| \leqslant|b|+|c|
$$

(same idea works if $b \leq 0, c \geqslant 0$ \& $b+c \leq 0$)
Consequence: $\quad|b-c|=|b+(-c)| \leqslant|b|+|-c|=|b|+|c|$

