Lecture V11: $\S 2.6($ ant $)$ The Intermediate, Mean \& Extreme Value Therms
\& 1 The Intermediate Value Thurum (IVT):
IVT: If $f:[a, b] \longrightarrow \mathbb{R}$ is continuores, then every number K in between $f_{(a)}$ \& $f(b)$ is attained, manning we can find c in $[a, b]$ with $f(c)=K$.

The graph coss the horizontal line $y=k$ at least once for any K in between $f_{(a)^{2} f(b)}$

We have 3 choices for c with $f(c)=K .2$ 2dorice for c^{\prime} with $f_{\left(c^{\prime}\right)}=K^{\prime}$.

$$
k=2 \text { is in between }
$$

$$
f(0)=1 \& f(2)=3 \text { but }
$$ it's Not attained

Special case: If $f(a)>0 \& f_{(b)<0}(r$ vicesusa) \& f is contimusus then we can find c in $[a, b]$ with $f(c)=0 \quad($ pick $K=0)$
Q: How can we use this result?
Example: $f(t)=3 t^{2}+\frac{t^{3}+1}{\tau}$ contiminors; is the $\lim _{t \rightarrow \infty} f(t)=+\infty$ this is the dominant $\lim _{t \rightarrow-\infty} f(t)=-\infty$
Claim: $f_{(t)}$ has a real root. Meaning we can fired to with $f\left(t_{0}\right)=0$ Q Can we estimate t_{0} ? A YES

$$
f(0)=0+0+1=1>0, \quad f(-4)=3 \cdot 16-64+1=-15<0
$$

So we has a root in between $0 \&-4$.

- Better approximation? Bisect the interval

$\rightarrow f(-2)=3 \cdot 4-8+1=5>0$ m> a real root in between -4 \&-2.
\rightarrow Once again $f(-3)=1>0 \leadsto$ \qquad $-42-3$ We can keep goring like this $f(-3.5)=$?
(This is Newton's method for solving equations)
\$2 The Mean Value Theorem (MVT)
MVT: Assume that $f:[a, b] \longrightarrow \mathbb{R}$ satisfies
(1) f is continues $n[a, b]$ (meaning $f_{(a)}=\lim _{x \rightarrow a^{+}} f_{(x)}, f_{(b)}=\lim _{x \rightarrow b^{-}} f_{(x)}$ $z F$ is cutimusus at each x with $a<x<b$)
(2) F is differentiable in $(a, b) \quad\left(f_{(x)}^{\prime}\right.$ exists fo each x with $\left.a<x<b\right)$

Then, we can find c in (a, b) where $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
slope of the tangent lune at $(c, f(c))$
\rightarrow slop of the scent line through $\left(9, f_{\text {fa }}\right)$ $\&(b, H(b)$

Pidrial argument:

2 values $f r c$
["Rile's Thu"]

$f_{(a)} \neq f(b)$
I value for C
["hrigsital line if gre Lilt y oe had"]

A proof will be discussed in Appendix A4 (future lecture)

Application: We can use the sign of f^{\prime} to predict the growth behavior of f, assuming f is continues on $[a, b]$ \& differentiable on (a, b).

sign of f^{\prime} $\operatorname{mn}(a, b)$	+	-	0
Gnouthbehario off	strictly InCREASing	stuctly DECREASing	constant

Why? Pick s, t with $a<s<t<b$. So f is continues on $[s, t]$ \& differentiable $m(a, b)$
By MVT we can find C in (s, t) with

$$
f^{\prime}(c)=\frac{f(t)-f(s)}{t-s}
$$

So $f^{\prime}(c)$ \& $(f(t)-f(s))$ have the some sigh.
(1) If $f^{\prime}(c)>0$, them $f(t)>f(s)$ m f is strictly inCR.
(2) If $f^{\prime}(c)<0$, then $f(t)<f(s)$ as f \qquad DEAR
(3) If $f^{\prime}(c)=0 \quad f(t)=f(s)$ as f is constant \rightarrow The choice of set was arbitrary!
§3. The Extreme Value Thoron (EVT):
EVT: If f is contimuores on $[a, b]$, then G attains both a maximum \& a minimum value in $[a, b]$ ("the extreme values")
Why? (1) Need To show f is bounded Lie., we can find M\&N with $M \subseteq f(x) \leq N$ for all x with $a \leq x \leq b$
(2) Can adjust $M \& N$ To be the least lower \& upper breads
[This is done in Appendix A3 and it uses properties of the real members]
(3) Show these optimal bounds $M \& N$ are achieved.

$f(c) \operatorname{Max}$
$f(d) M I N$
F differentiable at (a, b)
$\& f^{\prime}(c)=f^{\prime}(d)=0$

$\lim _{x \rightarrow a^{-}} f(x)=+\infty$

- no min attained
- no max \qquad
$f:[0,2] \longrightarrow \mathbb{R}$
not continuous at $\begin{aligned} x & =0 \\ x & =2\end{aligned}$

$f(a)$ MIN
$f(b) \max$
. f is differentiable but not at $a r b$.
- F is contimuries on $[9,5]$

1 It is impretant T_{0} consider the prints $a \& b$.
If f is differentiable $m(a, b)$, the search for $M \& N$ is simplex.
Consequence: If c in (a, b) realizes an extreme value is $f \&$ f is continuous $m[a, b]$ a differentiable at c, then $f^{\prime}(c)=0$ (in short, the tangent line to the graph of f at $(c, f(c))$ is horizontal)

Why? Assume $f(c)$ is a MAX value (if it's a MiN value, the argument is similar).

Use slop of secants \qquad slop of through $\left(c, f_{(0)}\right)$
$\&\left(c+\Delta x, f_{(c+\Delta x)}\right)$ $\begin{gathered}\Delta x \rightarrow 0\end{gathered} \quad \begin{gathered}\text { Caught line } \\ \text { at }(c, f(0))\end{gathered}$

- To the right - slope of secant is ≤ 0
- To the left: ≥ 0
- So the sign in the limit is $=0$, that is, $f_{(c)}^{\prime}=0$.

Problem 1: Show that $f(x)=4+x^{2}$ has \max a \min values m $[-2,2]$ \& find them. What happens if we restrict to $(-2,2)$?

Solution: f is continuous on $[-2,2]$ By EVT, we have a max $\&$ a min value on $[-2,2]$. Since f is differentiable on $(-2,2)$, we can find these values as follows:
(1) Find x with $f^{\prime}(x)=0 \quad(2 x=0$, so $x=0) \quad\left(f_{(0)}=4\right)$
(2) Compute $f(-2) \&$

$$
\left(f_{(-2)}=f(2)=8\right)
$$

(3) Compare $f(-2)$ \& $f(2)$ with the values fume (1), pick the largest \& smallest.

$$
\leadsto \begin{array}{ll}
M A X=8 & (\text { at } x=2 \&-2) \\
M \mid N=4 & (\text { at } x=0)
\end{array}
$$

When restricted to $(-2,2)$ we sell have a MIN value but we don't hare a MAX since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)=8$, is ste. incuasing near $x=2$ decuaring $\quad x=-2$
Problem 2: Assume $s(t)=12-6 t+3 t^{2}$ is the position at time t of an object moving ma straight line. Find the velvety \& acceleration \& decide if at any print, the object changes direction.
Solution: $v(t)=s^{\prime}(t)=-6+6 t=6(t-1)$

$$
a(t)=v^{\prime}(t)=6 \leadsto \text { constant ! }
$$

To change diction mans $v(t)$ meet change sign!

Answer: At $t \rightarrow 1$ veter it the parabola
If $t<1 \quad v(t)=9 \quad$ so $s(t)$ is strictly deceasing ${ }^{\circ}$
If $t>1 \quad v(t)>0$ so $s(t)$ is strictly unceasing

