Letter VII: §26 (at) The International, Hean & Extreme Value Theorems
§ 1 The Intermediate Value Theorem (IVT):
IVT: If F: [a, b]
$$\longrightarrow$$
 IR is continuous, then
every number K in between $f_{(a)} \approx f_{(b)}$ is attached, manning
we can find c in [a, b] with $f_{(c)} = K$.
Fig. K
From the boughtal line y=K
to the graph crosses the boughtal line y=K
at heat once for any K in between $f_{(a)} \approx f_{(b)} = K$.
We have 3 doine for c with $f_{(c)}=K$.
Special case: If $f_{(a)} > 0 \approx f_{(b)} = 0$ (by the set of a theory of a theorem theor

A proof will be discussed in Appendix A4 (future lecture)

Application: We can use the sign of F' to predict the growth behavior of F, assuming F is continuous on Eq. 5] & differentiable on (a, 5).				
Sign g F' sn(a, 5)	+	-	0	
Growth behavior of F	strictly INCREMSING	stictly becreasing	constant	

Why? Pick s,t with acsets b. So F ; s cutinuous on Est] & differentiable m (9,6) By MVT we can find c in (s,t) with $f'(c) = \frac{f(t) - f(s)}{t-s}$ So F'(c) & (F(t) - F(s)) have the same sign. (1) If F'(c) > 0, then F(t) > F(s) as fis strictly incr. (2) If F'(c) < 0, then F(t) < F(s) as fis strictly incr. (3) If F'(c) = 0 — F(t) = F(s) as f is constant both choice of set was arbitrary!

EVT: If f is continuous on [a, b], then f attains both a maximum & a minimum value in [a, b] ("the extreme values") Why? () Need to show f is bounded (i.e., we can find M&N with M & fix) & N for all x with a < x < b (2) Can adjust M&N to be the heast lower & upper bounds [This is done in Appendix A3 and it uses proprities of the real numbers] 3 Show these optimual bounds M&N are achieved.

▲ It is important to consider the points a 26. If f is differentiable m (9,5), the search for M&N is simplen. <u>Consequence</u>: If c in (9,5) realizes an extreme value for F & F is continuous m [9,5] a differentiable at c, then f(cc)=0 (in short, the tangent line to the graph of f at (5,6cc)) is horizontal) <u>Why?</u> Assume f(c) is a MAX value (if it's a MiN value, the argument is similar).

८१ भि

Problem 1: Show that
$$F_{105} = 9+x^{4}$$
 has max 2 min values in
 $[-2, 2] \ge 6$ find them. What happens if we restrict to $(-2, 2)$?
Solution: F is entimeous in $[-2, 2]$ By EVT, we have a mox
 $\ge a$ min value in $[-2, 2]$. Since F is differentiable on $(-2, 2)$, in
an find there values as follows:
(1) Find x with $F'_{(X)} = 0$ ($2x = 0$, so $x = 0$) ($F_{(0)} = 9$)
(2) Compute $F_{(-2)} \ge F_{(2)}$ ($f_{(-2)} = F_{(2)} = 8$)
(3) Compute $F_{(-2)} \ge F_{(2)}$ with the values from (1), pick the
langest \ge smallest.
ms that $= 8$ (at $x = 2 = -2$)
MIN = 4 (at $x = 0$)
When retricted to $(-2, 2)$ in still have a MIN value but we don't have a MAX since
 $\lim_{X \to 2^{-1}} F_{(X)} = \frac{1}{2} \lim_{X \to 2^{+1}} F_{(X)} = 8$, F is site, increasing mean $X = 2$
Problem 2: Assume $S_{(+)} = 12-6t + st^{2}$ is the position at time t 9 an
object moving in a stanight line. Find the volverty \ge acceleration \ge decide if at
any point, the object changes direction.
Solution: $V(t) = S'(t) = -6 + 6t = 6(t-1)$
 $a_{(t)} = V'(t) = 6$ is stailly decreasing
If $t < 1$ $V(t) > 0$ is $S_{(t)}$ is stailly decreasing
If $t < 1$ $V(t) > 0$ is $S_{(t)}$ is stailly decreasing
If $t > 1$ $V(t) > 0$ is $S_{(t)}$ is stailly increasing
If $t > 1$ $V(t) > 0$ is $S_{(t)}$ is stailly decreasing
If $t > 1$ $V(t) > 0$ is $S_{(t)}$ is stailly increasing