Lecture VIII § 3.1 Derivatives of prhyamials

$$5.2$$
 Product & Quotient Rules
 5.2 Product & Quotient Rules
 5.1 Derivation of polynomials:
 3.2 $F_{1}(x_{2}) = C_{n} X^{n} + C_{n-1} X^{n-1} + \cdots + C_{1} X + C_{2} \Rightarrow polynomial of degree ($x_{1})^{n}$
 $C_{n}, C_{n-1}, \dots, C_{1}, C_{2}$ are fixed rul numbers with rul coeffs
 $P_{1}(x_{2}) = C_{n} X^{n} + C_{n-1} X^{n-1} + \cdots + C_{1} X + C_{2} \Rightarrow polynomial of degree ($x_{2})^{n}$
 $C_{n}, C_{n-1}, \dots, C_{1}, C_{2}$ are fixed rul numbers with rul coeffs
 $P_{1}(x_{2}) = C_{n} X^{n} + C_{n-1} X^{n-1} + \cdots + C_{1} X + C_{2} \Rightarrow polynomial of degree ($x_{2})^{n}$
 $C_{n}, C_{n-1}, \dots, C_{1}, C_{2}$ are fixed rul numbers with rul coeffs
 $P_{1}(x_{2}) = C_{n} X^{n} + C_{n-1} X^{n-1} + C_{n} x^{n}$ for any positive integer $n (c_{1}, c_{2}, c_{2}, \dots)$
 $(c) \frac{1}{2} X^{n} = m X^{n-1} + for any positive integer $n (c_{1}, c_{2}, c_{2}, \dots)$
 $Why? Use the definition $C_{(x+\Delta x)} = C_{(x)} = C$
 $(c) Set C_{(x)} = C + so - \frac{1}{2} C_{x} = 0$
 $(c) Want to show: limit $(x + \Delta x)^{n} - X^{n} = n X^{n-1}$.
To do so, we need to neurrite the numerator in a better way to "cancel"
 $U_{Xe} (a+b)^{n} = (a+b)(a+b) \cdots (a+b) = X$ distribute. We get
 $N = 0$$$$$$$

Each summand $\binom{n}{k} x^{n-k} (\Delta x)^{k-1} \rightarrow 0$ if k > 1, so only the first one services when taking $\lim_{\Delta x \to 0} We$ get $\frac{d x^n}{dx} = n x^{n-1} \bigcup_{\Delta x \to 0}$

Key Properties: (1)
$$\frac{d}{dx}(cf(x)) = c \frac{df}{dx}$$

(2) $\frac{d}{dx}(f(x)+g(x)) = \frac{df}{dx} + \frac{dg}{dx}$

Why? Use Product rule for limits & sum rule for timits. Important Consequence IF $f = c_n x^n + c_n x^{n+1} - \dots + c_n x + c_n$ is a polynomial of degree $n \ge 0$, then $\frac{df}{dx} = c_n n x^{n-1} + c_n (n-1) x^{n-1} + \dots + c_n 2 x + c_1$. Q. How To interpret the 2 key projecties? A: "Differentiation is a linear operator in the space of functions" $f \longrightarrow f' = new function$

Linnen means: it sends seems to seems (this is projectly (2)) it sends multiplication by constants (called scalars) to multiplication by constants (this is projectly (1)) Linnen projecties & spaces / maps satisfying them are the subject of Linnen Algebra (MATH 2568).

EZ. Product Rule
Theorem 1 Assume that
$$F_{(x)} \in g_{(x)}$$
 are differentiable. Then, the
product Function $h_{(x)} = F_{(x)}g_{(x)}$ is also differentiable. Furthermore
 $\frac{d}{dx}(F_{(x)}g_{(x)}) = \frac{dF}{dx} \cdot g_{(x)} + F_{(x)}\frac{dg}{dx}$.

Q. Why is the formula relid?
A: Use the definition!

$$\frac{f(x+Ax)}{Ax} = \frac{f(x+Ax)}{f(x+Ax)} = \frac{f(x+Ax)}{Ax} = \frac{f(x+Ax)}{Ax$$

L8 [4] 53 Justient Rule : Q: Given Fix & Six, when can we define $h(x) = \frac{F(x)}{S(x)}$? A: Need $S(x) \neq 0$, so the domain of h becomes: Domain of $h(x) = 5 \times : \times in$ the domain of both $f \geq g$, $\neq g_{(x)} \neq 0$? Q: How to differentiate h, assuming f & g an differentiable? A: Write hix = fixs 1 & use product rule: $\frac{dh}{dx} = \frac{df}{dx} \cdot \frac{1}{S(x)} + \frac{f}{h} \cdot \frac{d}{dx} \left(\frac{1}{S(x)} \right)$ All we need to do is to find a formule for $\frac{1}{dx}(\frac{1}{dx})$. Theorem Z: Assume gues = a g is differentiable at x. Then $P(x) = \frac{1}{S(x)}$ is defined in a neighborhood of x and it is also differentiable at x, with $\frac{dp}{dx} = -\frac{dq}{dx} / g_{(x)}^2 = -\frac{g'}{g^2}$. Why? g is differntiable at x so it's entimesers at x. In particular, if 31x, =0, we can find \$>0 so that g(x+Ax) & g(x) have the same sign if IDXI<5. $\frac{2}{S(x)} = \int_{-\infty}^{2} \int_{-\infty}^{\infty} \int_{-\infty}^$ Indeed : Say $g_{(x_{7}} > 0$ Pick $E = g_{(x_{7})} > 0$. We can find 8-0 so that 18(x+0x) -8(x)1<E ×+bx (++) ×-'s × ×+S $0 < \frac{g(x)}{z} = \frac{g(x)}{z} < \frac{g(x)}{z} < \frac{g(x)}{z} + \frac{g(x)}{z} < \frac{g(x)}{z} + \frac{g(x)}{z} = \frac{g(x)}{z}$ If S(x) CO, the argument is similar. Since $g(x+\Delta x)$ has the same sign as g(x) if $|\Delta x| < \delta$, its

nerer 0, so we can define $P(x \neq bx)$ for each $|\Delta x| < S$. . It mains to show p is differentiable at x. We use the definition

$$\frac{df}{dx} = \lim_{Ax\to 0} \frac{f(x+Ax) - f(x)}{Ax} = \lim_{Ax\to 0} \frac{1}{Ax} \left(\frac{1}{S(x+Ax)} - \frac{1}{S(x)} \right)$$

$$= \lim_{Ax\to 0} \frac{1}{Ax} \frac{S(x) - S(x+Ax)}{S(x) S(x+Ax)} \qquad \lim_{Ax\to 0} \frac{1}{Ax} \frac{1}{S(x) S(x+Ax)} \qquad \lim_{Ax\to 0} \frac{1}{Ax} \frac{1}{S(x) S(x+Ax)} = \frac{-\frac{1}{S}}{\frac{1}{S(x)} \frac{1}{S(x+Ax)}}$$

$$= \lim_{Ax\to 0} \frac{1}{Ax} \frac{S(x) - S(x+Ax)}{Ax} \qquad \lim_{Ax\to 0} \frac{1}{S(x)} \frac{1}{S(x+Ax)} = \frac{-\frac{1}{S}}{\frac{1}{S(x)} \frac{1}{S(x)}}$$

$$= \lim_{Ax\to 0} \frac{1}{Ax} \frac{1}{Ax} = \frac{1}{S(x)} \frac{1}{S(x)} \frac{1}{S(x+Ax)} \qquad \lim_{Ax\to 0} \frac{1}{S(x)} \frac{1}{S(x)} \frac{1}{S(x+Ax)} = \frac{-\frac{1}{S}}{\frac{1}{S(x)} \frac{1}{S(x)}}$$

$$\lim_{Ax\to 0} \frac{1}{\frac{1}{Ax}} \frac{1}{S(x)} \frac{1}{S(x+Ax)} = \frac{1}{S(x)} \frac{$$

Remark : fis what's called a national function (natio of polynmiab)