Lecture VIII. §3.1 Derivatives of plyanuials
\$3.2 Product \& Quotient Rules
§1 Derivation of plyyumial :
Pick $f_{(x)}=c_{n} x^{(n)}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \rightarrow$ prepumial of degree (2
$c_{n}, c_{n-1}, \ldots, c_{1}, c_{0}$ an fixed real members with real wefts
Proposition: (1) $\frac{d}{d x} c=0$ (derinatise of a constant function)
(2) $\frac{d}{d x} x^{n}=n x^{n-1} \quad$ fr any protege integer $n(=1,2,3, \ldots)$

Why? Use the definition

$$
c(x+\Delta x)=c(x)=c
$$

(i) set $c_{(x)}=c$ so $\frac{d c}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta c}{\Delta x} \xlongequal{=} \lim _{\Delta x \rightarrow 0} \frac{0}{\Delta x}=0$
(2) Want to show: $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=n x^{n-1}$.

To do so, we need to rewrite the numerator in a better way to "conch " Use $(a+b)^{n}=\underbrace{(a+b)(a+b) \ldots(a+b)}_{n \text { times }}$ \& distribute. We get
Binomial Theorem:

$$
\begin{aligned}
&(a+b)^{n}= a^{n}+n a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2}+\cdots \\
& \cdots+ \\
& \cdots \\
& \cdots+\frac{n(n-1) \cdots(n-k)}{1 \cdot 2} a^{n-k} b^{k}+\cdots \\
&=a^{n}+n a^{n-1} b+\binom{n}{2} a^{n-2} b^{n-2}+n a b^{n-1}+\cdots+b^{n} \\
&\binom{n}{k} a^{n-k} b^{k}+\cdots+\binom{n}{2} a^{2} b^{n-2}+n a^{n-1}+b^{n}
\end{aligned}
$$

b "n choose k " (entries H Pas sal Δ)
(chose the k terms amu the Total of Factors where wi pick b)
This expression is palindromic is a a b \&it has integer coefficients
Example $(a+b)^{2}=a^{2}+2 a b+b^{2},(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$, etc.

In sen case: $(x+\Delta x)^{n}=x^{n}+n x^{n-1} \Delta x+\cdots\binom{n}{k} x^{n-k}(\Delta x)^{k}+\cdots+n x(\Delta x)^{L 8}$
So $\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=n x^{n-1} \frac{\Delta x}{\Delta x}+\binom{n}{2} x^{n-2} \frac{(\Delta x)^{2}}{\Delta x}+\cdots\binom{n}{k} x^{n-k} \frac{(\Delta x)^{k-1}}{\Delta x}+\cdots+\frac{(\Delta x)^{n-1}}{\Delta x}$
Each summand $\binom{n}{k} x^{n-k}(\Delta x)^{k-1} \underset{\Delta x}{\longrightarrow}$ if $k>1$, so only the first one susses when taking $\lim _{\Delta x \rightarrow 0} \Delta x$. We got $\frac{d x^{n}}{d x}=n x^{n-1}{ }^{\text {U }}$.

Key Properties: (1) $\frac{d}{d x}(c f(x))=c \frac{d f}{d x}$
(2) $\frac{d}{d x}\left(f_{(x)}+g_{(x)}\right)=\frac{d f}{d x}+\frac{d g}{d x}$

Why? Use Product rule for limits a sum recle for limits.
Important Consequence If $f=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ is a prlyminial of degree $n \geqslant 0$, then $\frac{d f}{d x}=c_{n} n x^{n-1}+c_{n-1}(n-1) x^{n-1}+\cdots+c_{2} 2 x+c_{1}$.
Q: How T interput the 2 key properties?
A: "Differentiation is a liner operator in the space of functions"

$$
f \longmapsto f^{\prime}=\text { new function }
$$

Linear mans : it sends seems T seems (this is property (2))

- it sends multiplication by constants (called scalars)

To multiplication by constants (this is pupferty (1))
Limen properties \& spaces / maps satisfying them are the subject of Linear Algebra (MATH 2568).
§2. Product Rule
Therum1 Assume that $f_{(x)}$ a $g(x)$ are differentiable. Then, the product function $h_{(x)}=f(x) g(x)$ is also differmtiable. Furthermore $\frac{d}{d x}(f(x) g(x))=\frac{d f}{d x} \cdot g(x)+f(x) \frac{d g}{d x}$.
Q. Why is the frumla valid?

A: Use the definition!

$$
+2-f(x) S(x+\Delta x) \text { ("mixed Tim") }
$$

$$
\begin{aligned}
& \frac{f(x+\Delta x) \rho(x+\Delta x)-f(x) \rho(x)}{\Delta x} \stackrel{\downarrow}{=} \frac{f(x+\Delta x) \rho(x+\Delta x)-f(x) \rho(x+\Delta x)}{\Delta x}+ \\
& +\frac{f(x) \rho(x+\Delta x)-f(x) \rho(x)}{\Delta x}=
\end{aligned}
$$

So $\frac{d(f g)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta(f g)}{\Delta x}=\frac{d f}{d x} g(x)+f(x) \frac{d g}{d x}$
Example 1: For $f=g=x$, we get $\frac{d x^{2}}{d x}=1 \cdot x+x \cdot 1=2 x$ For $f=x^{n-1} \quad g(x)=x$, we get $\frac{d x^{n}}{d x}=\frac{d\left(x^{n-1} x\right)}{d x}=\frac{d x^{n-1}}{d x} \cdot x+$ Now if we know $\frac{d x^{n-1}}{d x}=(n-1) x^{n-2}$, we get $x^{n-1} \cdot 1$

$$
\frac{d x^{n}}{d x}=(n-1) x^{n-2} \cdot x+x^{n-1}=(n-1) x^{n-1}+x^{n-1}=n x^{n-1} .
$$

(This is an exaurfe of an arferment by inductive: we know it to be tue for $n=1$ \& we see that the result being valid for $n-1$ feces it t_{0} be valid for n. Thing of dominoes stacked together. The first one falls and each domino pushes the next sere, so in the end they all fall.)

- We ser that the product rule frees the prow rule.

EXAMPLE 2: $\quad f=(2 x-5)\left(x^{3}-4 x+8\right)$

- Use distribution $f=2 x^{4}-5 x^{3}-8 x^{2}+36 x-40 \leadsto \frac{d f}{d x}=8 x^{3}-15 x^{2}-16 x+36$.
. Use Product Rule: $\frac{d f}{d x}=2\left(x^{3}-4 x+8\right)+(2 x-5)\left(3 x^{2}-4\right)=8 x^{3}-15 x^{2}-16 x+36$
§3 quotient Rule:
Q: Given $f(x)$ \& $\delta(x)$, when can we define $h(x)=\frac{f(x)}{\rho(x)}$?
A: Need $S(x) \neq 0$. so the domain of h becomes:
Domain of $h(x)=\left\{x\right.$: x in the domain of both $\left.h \& g, 2 g_{(x)} \neq 0\right\}$
Q: How to differentiate h, assuming f \& g are differentiable?
A: Write $h(x)=f(x) \cdot \frac{1}{S(x)}$ a use product rule:

$$
\frac{d h}{d x}=\frac{d f}{d x} \cdot \frac{1}{\rho(x)}+f \frac{d}{d x}\left(\frac{1}{f(x)}\right)
$$

All we need to do is to find a fremule for $\frac{d}{d x}\left(\frac{1}{\rho(x)}\right)$.
Theorem 2: Assume $g(x) \neq 0$ \& g is differentiable at x. Then $P(x)=\frac{1}{\rho(x)}$ is defined in a neighborhood of x and it is also differentiable at x, with $\quad \frac{d p}{d x}=-\left(\frac{d g}{d x}\right) / g^{2}(x)=\frac{-g^{\prime}}{g^{2}}$.
Why? g is differentiable at x so it's conteruous at x. In particular, if $g(x) \neq 0$, we can find $\delta>0$ so that $g(x+\Delta x)$ \& $g(x)$ have the same sign if $|\Delta x|<\delta$.

Indeed:
Say $g(x)>0$ Pick $\varepsilon=\frac{\delta(x)}{2}>0$. We can find $\delta>0$ so that $|g(x+\Delta x)-g(x)|<\varepsilon$

$$
0<\frac{\rho(x)}{2}=\rho(x)^{-\varepsilon}<\rho(x+\Delta x)<\rho(x)+\varepsilon=\frac{3 \rho(x)}{2}
$$

If $S(x)<0$, the argement is similar.
Since $f(x+\Delta x)$ hes the sane sign as $\delta(x)$ if $|\Delta x|<\delta$, it's never 0 , so we can define $P(x+\Delta x)$ fo each $|\Delta x|<\delta$.
. It unains to show p is differentiable at x. We use the definition

$$
\begin{aligned}
& \frac{d p}{d x}=\lim _{\Delta x \rightarrow 0} \frac{p(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}\left(\frac{1}{\rho(x+\Delta x)}-\frac{1}{\rho(x)}\right)^{L 8} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \frac{\rho(x)-\rho(x+\Delta x)}{\rho(x) \rho(x+\Delta x)} \\
& \text { Limit aus. }
\end{aligned}
$$

Consequences:
(1) We get the power rule for negative expsents!

Ex: $f(x)=x^{-3}=\frac{1}{x^{3}} \leadsto f^{\prime}(x)=\frac{-g^{\prime}}{g^{2}}=\frac{-3 x^{2}}{x^{6}}=\frac{-3}{x^{4}}$
In general : $f(x)=x^{-n}=\frac{1}{x^{n}} \leadsto f^{\prime}(x)=\frac{-n x^{n-1}}{\left(x^{n}\right)^{2}}=\frac{-n x^{n-1}}{x^{2 n}}=-n x^{n-1-2 n}$

$$
=-n x^{-1-n}=\frac{-n}{x^{n+1}}=-n x^{-n-1}
$$

(2)

Quotient Rule

$$
\begin{aligned}
: \frac{d}{d x}\left(\frac{f}{g}\right) & =\frac{d f}{d x} \frac{1}{g}+f \frac{d}{d x}\left(\frac{1}{\delta}\right) \\
& =\frac{f^{\prime}}{g}+f\left(\frac{\left(-g^{\prime}\right.}{g^{2}}\right)=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} .
\end{aligned}
$$

Problem: Decide where $f=\frac{x+1}{x-1}$ is defined,

- differentiable.

Solatium: We only need to check when $x-1 \neq 0$ since the numerator $\&$ denominator of f are differentiable functions So. Domain of $f=(x \neq 1) \leadsto$ cannot extend anterueresly to $x=1$ because $\lim _{x \rightarrow 1^{+}} f(x)=\infty$

- f is continuous \& differentiable on it's domain $\left.\right|_{\lim _{x \rightarrow 1^{-}} f(x)=-\infty} ^{x \rightarrow \infty}$

$$
\frac{d f}{d x}=\frac{1 \cdot(x-1)-(x+1) \cdot 1}{(x-1)^{2}}=\frac{x-1-(x+1)}{(x-1)^{2}}=\frac{-2}{(x-1)^{2}}
$$

Remark: f is what's called a rational function (ratio of prlynmiob)

