Lecture IX: $\$ 3.3$ Composite functions \& the Chain Rule
S1 Composing functions:
IDEA

We are given 2 functions $f:[a, b] \longrightarrow \mathbb{R}$. We crate a new functim

$$
g: \mathbb{R} \longrightarrow \mathbb{R}
$$

gof: $[a, b] \longrightarrow \mathbb{R}$, called the cmpssitim of g with f. At each pt x it takes value $g \circ f(x)=g(f(x))$
Note: We priest apply f and THEN apply g to $y=f(x)$
GOAL: We want to see how nice properties of f \& g pass iTo got (Main poofuties: continuity \& differentiability)

Theorem 1: If f is contineurs at x_{0} \& g is contenuores at $y_{0}=f\left(x_{0}\right)$, then gof is continues at x_{0}.

Theorem 2: (Chain Rule) If f is differentiable at $x_{0} \& g$ is differentiable at $f\left(x_{0}\right)$, then got is differentiable at x_{0}. Feithermure:

$$
\left.\frac{d}{d x}(8 \circ f)\right|_{x=x_{0}}=\left.\left.\frac{d g}{d y}\right|_{y=f(x)} \cdot \frac{d f}{d x}\right|_{x=x_{0}}
$$

(Easy way T remember $\frac{d(g \circ f)}{d x}=\left.\frac{d g}{d f}\right|_{f(x)} \cdot \frac{d f}{d x}$.
Example: $f(x)=\left(x^{3}+4 x\right) \quad g(y)=y^{10}$ max) $g \circ f(x)=\left(x^{3}+4 x\right)^{10}$
Clean: got is a polynomial, so it's differmitiable.

$$
\text { - } \frac{d \rho \circ f}{d x}=\left.\frac{d}{d y} y^{10}\right|_{y=f(x)} \cdot \frac{d f}{d x}=\left.10 y^{9}\right|_{y=f(x)} \cdot\left(3 x^{2}+4\right)=10\left(x^{3}+4 x\right)^{9}\left(3 x^{2}+4\right)
$$

- Alternative way : expand $\left(x^{3}+4 x\right)^{10}$ using the Binomial Theorem, and differentiate (this sounds terrible!)
- Compring firth? $\operatorname{fog}_{(y)}=\left(x^{3}+4 x\right)_{\left.\right|_{x=y 10}=y^{30}+4 y^{10}}$

So $\frac{d f o g}{d y}=30 y^{29}+40 y^{9}$
Check this formula using the Chain Rule:

$$
\frac{d f o g}{d y}=\left.\frac{d f}{d x}\right|_{x=\rho(y)} \cdot \frac{d g}{d y}=\left.\left(3 x^{2}+4\right)\right|_{x=y^{10}} \cdot 10 y^{9}=\left(3 y^{20}+4\right) 10 y^{9}=30 y^{29}+40 y^{9}
$$

General usult: $\quad h(x)=f(x)^{n}$ for n integer has derivatives:

$$
\frac{d h}{d x}=n(f(x))^{n-1} \cdot \frac{d f}{d x}
$$

52. Why is Theorem 1 valid?

GOAL: To show $\lim _{x \rightarrow x_{0}} g \circ f(x)=f \circ f\left(x_{0}\right)$ ina ε / δ
Given $\varepsilon>0$, we want to find $\delta>0$ so that if $0<\left|x-x_{0}\right|<\delta$, we always have $1 g \circ f_{(x)}-g \circ f_{\left(x_{0}\right)} \mid<\varepsilon$.

We use the info on $f \& g$.
(1) Since g is antinuores at $y_{0}=f\left(x_{0}\right)$ we can find $\alpha>0$ so that if $0<\left|y-y_{0}\right|<\alpha$, then $\left|g_{(y)}-g_{\left(y_{0}\right)}\right|<\varepsilon$
(2) We waite $t o$ replace y by $f(x)$. But to do so, we must first ensure that o< $\left|f_{(x)}-y_{0}\right|<\alpha$. But we can always ensure that this is the if x is closed enough to x_{0}. Indeed pick $\varepsilon^{\prime}=\alpha>0$. The continuity of f at x_{0} ensures that we can find $\delta>0$ so that if $0<\left|x-x_{0}\right|<\alpha$, then $\left|f_{(x)}-f_{\left(x_{0}\right)}\right|<\alpha$.
(3) Now, we reseese engineer the process:

If $\left|x-x_{0}\right|<\delta$, by (2) we get $\left|f_{(x)}^{\prime \prime y}-f_{\left(x_{0}\right)}^{\prime \prime y_{0}}\right|<\delta_{g}$
Now, by (1) we get $\left|g(f(x))-g\left(f\left(x_{0}\right)\right)\right|<\varepsilon$.
(by our choice of α). This is what we wanted.
Pictorial argument:

Summary: $\alpha>0$ was the middleman that allowed us $T 0$ find $\delta>0$ given $\varepsilon>0$
\&3 Why is Theorem 2 valid?
GOAL: Show $\frac{d \rho \circ f}{d x}=\left.\frac{d g}{d y}\right|_{y=f} \cdot \frac{d f}{d x}$ using the definition

$$
\frac{d(\rho \circ f)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta(\rho \circ f)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\rho \circ f(x+\Delta x)-\rho \circ f(x)}{\Delta x}
$$

Now, we want to see $f(x+\Delta x)$ as $f(x)+\Delta y \leadsto \Delta y=f(x+\Delta x)-f(x)$
So $\frac{d(g \circ f)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{g(f(x+\Delta x))-g(f(x))}{\Delta x}$

$$
\begin{align*}
& =\lim _{\Delta x \rightarrow 0} \frac{g(f(x)+\Delta y)-g(f(x))}{\Delta x}=\rightarrow \text { multiply \& divide by } \Delta y . \\
& \triangleq \lim _{\Delta x \rightarrow 0} \frac{g(f(x)+\Delta y)-g(f(x))}{\Delta y} \frac{\Delta y}{\Delta x} \tag{*}
\end{align*}
$$

Q: What's the limit?
has limit $\frac{d f}{d x}$ as $\Delta x \rightarrow 0$

Union: f is contimures $a x$ because it's differentiable, so we have

$$
\Delta y=f(x+\Delta x)-f(x) \underset{\Delta x \rightarrow 0}{ } \quad \text { By sin }
$$

Then: $\left.\frac{d g}{d y}\right|_{y=f(x)} \lim _{\Delta y \rightarrow 0} \frac{g(f(x)+\Delta y)-g(f(x))}{\Delta y}=\lim _{\Delta x \rightarrow 0} \frac{g(f(x)+\Delta y)-g(f(x))}{\Delta x}$
Condusion: $\quad \frac{d(\rho \circ f)}{d x}=\left.\frac{d f}{d y}\right|_{y=f(x)} \cdot \frac{d f}{d x} \quad$ by the product Rule f Limits.
1! There is only one issue: How do we know $\Delta_{y} \neq 0$ if Δx is dose enough to 0 ? (w edivided by Δx in (*)!)
If we cannot, this mus that we have Δx as close as 0 as we want with $\Delta y=f(x+\Delta x)-f(x)=0$. But fr these prints we have $\rho(f(x)+\Delta y)-\rho(f(x))=\rho(f(x))-\rho(f(x))=0$ so

$$
\frac{d \rho \circ f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\rho(f(x)+\Delta y)-g(f(x))}{\Delta x}=0
$$

and $\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=0$ as well.

- Alternative argument (due to Asti) that aroids dividing by Δy with $\Delta y=f(x+\Delta x)-f(x)$
Write $\varepsilon(\Delta y):=\frac{\rho(y+\Delta y)-\rho(y)}{\Delta y}-\rho^{\prime}(x)$
Sima $\delta^{\prime}(y)=\lim _{\Delta y \rightarrow 0} \frac{\rho(y+\Delta y)-\delta(y)}{\Delta y}$, we know $\lim _{\Delta y \rightarrow 0} \varepsilon(\Delta y)=0$
Equivalently: $g(y+\Delta y)-\rho(y)=\Delta y \varepsilon\left(\Delta_{y}\right)+\Delta y g^{\prime}(y)$ with $\varepsilon\left(\Delta_{y}\right) \underset{\Delta_{y} \rightarrow 0}{ } 0$
- Now: $h=g \circ f(x)$ satisfies

$$
\begin{aligned}
& \text { J: } h=\text { oof }(x) \text { satisfies } \\
& \frac{h(x+\Delta x)-h(x)}{\Delta x}=\frac{g(y+\Delta y)-g(y)}{\Delta x} \text { with }\left\{\begin{array}{l}
y=f(x) \\
\Delta y=f(x+\Delta x)-f(x)
\end{array}\right.
\end{aligned}
$$

- Replace numerator by the right-hand side of the expressim \square We get $\frac{h(x+\Delta x)-h(x)}{\Delta x}=\frac{\Delta y \varepsilon(\Delta y)+\Delta y g^{\prime}(g)}{\Delta x}$

$$
=\frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot\left(\varepsilon(\Delta y)+f^{\prime}(y)\right)
$$

Conclude $\frac{d h}{d x}=\lim _{\Delta x \rightarrow 0} \frac{h(x+\Delta x)-h(x)}{\Delta x}=\frac{d f}{d x} \cdot\left(0+g^{\prime}(y)\right)=\left.\frac{d f}{d x} \frac{d g}{d y}\right|_{y=f}$

34 Examples:
(1) $h(x)=\sin ^{5}(x)$

$$
h^{\prime}(x)=?
$$

Write h as acompsite function:

$$
h(x)=g \circ f(x) \text { with } g(y)=y^{5} \quad f(x)=\operatorname{sen} x
$$

The chain ale gives $h^{\prime}(x)=\rho^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
g^{\prime}(y)=5 y^{4} \leadsto f^{\prime}(f(x))=5 f(x)^{4}=5 \sin ^{4} x
$$

Assume that we know $\frac{d \sin (x)}{d x}=\cos x \quad$ (well see it later in the course), so $f^{\prime}(x)=\cos x$
include: $\quad h^{\prime}(x)=5 \sin ^{4} x \cos x$
(2) $h(x)=\operatorname{sen}^{5}(x+1)=g \circ f(x)$ for $g(y)=\sin ^{5} y$ \& $f(x)=x+1$

So $h^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)=5 \sin ^{4}(x+1) \cos (x+1) \cdot 1 \quad$ because

$$
\begin{aligned}
& \text { - } f^{\prime}(y)=5 \sin ^{4} y \cos y \text {, so } f^{\prime}\left(f(x)=5 \sin ^{4}(x+1) \cos (x+1)\right. \\
& \text { - } f^{\prime}(x)=\frac{d}{d x}(x+1)=1 .
\end{aligned}
$$

(3) $h(x)=\left(5 x^{2}+3\right)^{10}\left(x^{4}-1\right) \quad h^{\prime}(x)=$?

We use the Pasolule Rule \& the Chain Rule

Set $\left(5 x^{2}+3\right)^{10}=h_{1}(x)$ \& $\left(x^{4}-1\right)=h_{2}(x)$
Product Rule gives $h^{\prime}(x)=\left(h_{1} h_{2}\right)^{\prime}=h_{1}^{\prime} h_{2}+h_{1} h_{2}^{\prime}$
$h_{1}^{\prime}(x)=$? but $h_{2}^{\prime}(x)=4 x^{3}$ (fum Lecture viII)
To get h_{1}^{\prime} we will use the Chain Rale:

$$
\begin{aligned}
& h_{1}=\left(5 x^{2}+3\right)^{10}=\rho \circ f(x) \quad \text { for } \rho^{\prime}(y)=y^{10} \quad f(x)=5 x^{2}+3 \\
& g^{\prime}(y)=10 y^{9} \quad \text { so } \quad g^{\prime}(f(x))=10\left(5 x^{2}+3\right)^{9} \\
& f^{\prime}(x)=10 x
\end{aligned}
$$

So $h_{1}^{\prime}(x)=g^{\prime}\left(f_{(x)}\right) \cdot f^{\prime}(x)=10\left(5 x^{2}+3\right)^{9} \cdot 10 x=100 x\left(5 x^{2}+3\right)^{9}$
Conclude: $\quad h(x)=h_{1}^{\prime} h_{2}+h_{1} h_{2}^{\prime}=100 x\left(5 x^{2}+3\right)^{9}\left(x^{4}-1\right)+\left(5 x^{2}+3\right)^{10} \cdot 4 x^{3}$

$$
\begin{aligned}
& =\left(5 x^{2}+3\right)^{9} \times\left(100\left(x^{4}-1\right)+4 x^{2}\left(5 x^{2}+3\right)\right) \\
& =\left(5 x^{2}+3\right)^{9} \times\left(100 x^{4}-100+20 x^{4}+12 x^{2}\right) \\
& \left.=5 x^{2}+3\right)^{9} \times\left(120 x^{4}+12 x^{2}-100\right)
\end{aligned}
$$

