Lecture $X: \$ 3.4$ Some Tigonometric functions
So far, we hase derivation ruses fr
(1) addition $\quad\left(\underset{(x)}{f}+g_{(x)}^{\prime}=f_{(x)}^{\prime}+g_{(x)}^{\prime}\right.$
(2) scalar muttiplication: $\left(c f_{(x)}\right)^{\prime}=c f_{(x)}^{\prime}$ (c fixed neal
(3) puoduct $\left(f_{(x)} \cdot q_{(x)}\right)^{\prime}=f_{(x)}^{\prime} g_{(x)}+f(x)_{(x)}+$ nember)
(4) quotient $\left(\frac{f_{0}}{g_{m}}\right)^{\prime}=\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right) / g^{2}(x)$.
(5) comproition ashain Rule $\left(g \circ f f^{\prime}(x)=g^{\prime}(f(x))^{\prime} f^{\prime}(x)\right.$

Combining these, we get explicit fromules for derinatires of prlynmials, rational functionsspowers.
Q: What abseut other functions? Can we hase more building blorks than x^{n} ?
81. Trigomomitric functions:

2 Basic Tig. functions: $\sin x \& \cos x \quad\left(\tan x=\frac{\operatorname{sen} x}{\cos x}\right)$
(1) $\sin x$

Source: https://upload.wikimedia.org/wikipedia/commons/8/87/Y\%3DCos\(8theta\).svg
Paopeties: - $\sin (x)$ is priodic, with priod 2π. This mons that $\sin (x+2 \pi)=\sin (x)$

- $\sin x$ is ODD, muaving $\sin (-x)=-\operatorname{sen} x$.
- $-1 \leqslant \sin x \leqslant 1$ froall x

Useful values: $. \sin (0)=\sin (\pi)=0$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}\right)=1, \quad \sin \left(\frac{3 \pi}{2}\right)=-1 \\
& \cdot \sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \quad \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \quad \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
\end{aligned}
$$

(2) $\cos x$

Source , https://upload.wikimedia.org/wikipedia/commons/8/87/Y\%3Dcos\(theta\).svg
Profulies: $\cos (x)$ is periodic, with period 2π. This mans that $\cos (x+2 \pi)=\cos (x)$
$0 \cos x$ is EVEN, maxing $\cos (-x)=\cos x$.

- $-1 \leqslant \cos x \leqslant 1$ fr all x

Useful values: $\cos (0)=1, \cos (\pi)=-1$

- $\cos \left(\frac{\pi}{2}\right)=\cos \left(\frac{3 \pi}{2}\right)=0$
- $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \quad \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}, \quad \cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
graphs suggest a shift. Indeed, we have

$$
\cos x=\operatorname{sen}\left(x+\frac{\pi}{2}\right)
$$

These 2 functions vary nice and smoothly, so they should be differentiable We'll find the primulas ria limits, computing the increments. For this, we'll need additive frames frs $\sin x \& \cos x$.
(1) $\sin (a \pm b)=\sin a \cos b \pm \cos a \operatorname{sen} b$
(mixed)
(2) $\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$

Fundarmental Equation $\operatorname{sen}^{2} x+\cos ^{2} x=1$
Next, we compute the derinatises of $\sin x \& \cos x$ via incurments:
Theorem (1) $\frac{d}{d x} \sin x=\cos x$
(2) $\frac{d}{d x} \cos x=-\sin x$

QWhy? A Use the method of increments:
(1)

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin x}{\Delta x} \\
&=\lim _{\Delta x \rightarrow 0} \frac{\sin x \cos (\Delta x)+\cos x \sin (\Delta x)-\sin x}{\Delta x} \\
& \text { Additire } \\
& \text { formila (1) }\left.=\lim _{x \rightarrow 0} \operatorname{sen} x \frac{(\cos (\Delta x)-1}{\Delta x}\right)+\cos x \frac{\sin (\Delta x)}{\Delta x}
\end{aligned}
$$

NEEDS MORE

$$
\begin{aligned}
& \text { EEDS MORE } \\
& \text { WORK (} \frac{0}{0} \text { indetuminacy) } \\
& 1
\end{aligned}
$$

Claim:

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{\cos (\Delta x)-1}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\cos (\Delta x)-1}{\Delta x} \frac{\cos (\Delta x)+1}{\cos (\Delta x)+1} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos ^{2}(\Delta x)-1}{\Delta x(\cos \Delta x+1)}=\lim _{\Delta x \rightarrow 0} \frac{\sin ^{2} \Delta x}{\Delta x(\cos \Delta x+1)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x} \frac{\sin \Delta x}{\cos \Delta x+1}=1 \cdot \frac{0}{2}=0
\end{aligned}
$$

Cunclusin: $\frac{d}{d x} \sin x=\sin x \cdot 0+\cos x \cdot 1=\cos x$.
(2)

$$
\begin{aligned}
& \frac{d}{d x} \cos x=\lim _{\Delta x \rightarrow 0} \frac{\cos (x+\Delta x)-\cos x}{\Delta x} \\
&=\lim _{\Delta x \rightarrow 0} \frac{\cos x \cos (\Delta x)-\sin x \sin (\Delta x)-\cos x}{\Delta x} \\
& \text { Additire } \\
& \text { pormila (2) }=\lim _{\Delta x \rightarrow 0} \cos x \frac{\left(\frac{\cos \Delta x-1}{\Delta x}\right)-\operatorname{sen} x \frac{\sin (\Delta x)}{\Delta x}}{\Delta x \Delta x \rightarrow 0}=\frac{\cos x \cdot 0}{-\sin x \cdot 1} \\
& \text { manamge }=-\sin x
\end{aligned}
$$

\$2. Other Tigononitric Functerns:
(3) $\tan x=\frac{\sin x}{\cos x} \quad$ This is defined whenever $\cos x \neq 0$, that is

$$
\begin{aligned}
& x \neq \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \cdots . \text { so } \begin{array}{r}
x \neq \frac{(2 k+1) \pi}{2} \\
-\frac{\pi}{2},-\frac{3 \pi}{2},-\frac{5 \pi}{2}, \ldots .
\end{array} \\
& f s k \text { in eeg }
\end{aligned}
$$

Source: https://commons.wikimedia.org/wiki/File:Y\%3Dtan(x).svg

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\sin x}{\cos x}=+\infty \quad\left(\frac{1}{0^{+}}-\pi_{\text {sh }}\right) \quad, \lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{\operatorname{sen} x}{\cos x}=-\infty\left(\frac{1}{0^{-}}-\operatorname{tysh}^{-5}\right)
$$

Proputies: $\tan x$ is Pnirdic, with phiod π, that is $\operatorname{Tan}(x+\pi)=\tan x$

- $\tan x$ is ODD, so $\operatorname{Tan}(-x)=-\operatorname{Tan} x$
- Image (or Range) of Tan is all \mathbb{R}

To compute $\frac{d}{d x} \operatorname{Tan} x$, we use the Quotient Rule

$$
\frac{d}{d x} \tan x=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\operatorname{sen}^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

mas The domain of $\frac{d}{d x} \tan x$ and $\tan x$ is the sane!
(4) $\operatorname{cotan}(x)=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$

$$
\begin{aligned}
& \text { Defined when sen } x \neq 0 \text {, that is } \\
& \begin{array}{c}
x \neq 0, \pi, 2 \pi, \ldots \\
-\pi,-2 \pi, \ldots
\end{array}
\end{aligned}
$$

Next, we compute it's derivative with the power chain rule:

$$
\frac{d}{d x} \operatorname{cotan}(x)=\frac{-1}{\tan ^{2} x} \cdot \frac{d}{d x} \tan x=-\frac{1}{\frac{\operatorname{sen}^{2} x}{\operatorname{cs}^{2} x}} \frac{1}{\cos ^{2} x}=-\frac{1}{\operatorname{sen}^{2} x}
$$

It has the same domain as cotan x
(5) $\sec (x)=\frac{1}{\cos x} \quad D_{\text {main }}=D_{\text {main if } \tan x}$

$$
\frac{d}{d x} \sec (x)=\frac{-1}{\cos ^{2} x} \cdot \frac{d}{d x} \cos x=\frac{-1}{\cos ^{2} x}(-\operatorname{sen} x)=\frac{\operatorname{sen} x}{\cos ^{2} x}
$$

(6) $\csc (x)=\frac{1}{\operatorname{sen} x} \quad D_{\text {amain }}=D_{\text {main of }} \operatorname{cotan} x$

$$
\frac{d}{d x} \csc (x)=\frac{-1}{\sin ^{2} x} \frac{d}{d x} \sin x=\frac{-1}{\sin ^{2} x} \cos x=\frac{-\cos x}{\sin ^{2} x}
$$

I) We don't need to memorize the 1 fromilas, we can just use the Quotient Rule $\overline{6}$ get them from the basic building blocks $=$ $\sin x \& \cos x$.
§3 Examples:
(1) $h(x)=\operatorname{sen}\left(x^{3}\right)$ as $k^{\prime}=$?

Use Chain Rule: $\quad f(y)=\operatorname{sen} y \leadsto \rho^{\prime}=\cos y \quad h=g \circ f$.

$$
\text { So } h^{\prime}=g^{\prime}(f(x)) \cdot f_{(x)}^{\prime}=\cos \left(x^{3}\right) \cdot 3 x^{2} .
$$

(2) $h(x)=\operatorname{sen}^{3} x \quad h=g \circ f$ with $g(y)=y^{3} \leadsto \Delta g^{\prime}=3 y^{2}$

$$
\text { So } h^{\prime}=g^{\prime}\left(f_{(x)}\right) \cdot f^{\prime}=3\left(\sin ^{2} x\right) \cdot \cos x
$$

$$
f(x)=\sin x>f^{\prime}=\cos x
$$

(3) $f(x)=\sin ^{2} x \cos ^{3} x \leadsto f^{\prime}=$?

Use Product + Chain Rule.

$$
\begin{aligned}
f^{\prime} & =\left(\sin ^{2} x\right)^{\prime} \cos ^{3} x+\sin ^{2} x \cdot\left(\cos ^{3} x\right)^{\prime} \\
& =2 \sin x \cdot \cos x \cdot \cos ^{3} x+\sin ^{2} x 3 \cos ^{2} x(-\operatorname{sen} x) \\
& =2 \sin x \cos ^{4} x-3 \sin ^{3} x \cos ^{2} x \\
& =\sin x \cos ^{2} x\left(2 \cos ^{2} x-3 \sin ^{2} x\right) \\
& =\sin x \cos ^{2} x\left(2\left(1-\sin ^{2} x\right)-3 \sin ^{2} x\right) \\
& =\sin x \cos ^{2} x\left(2-5 \sin ^{2} x\right)
\end{aligned}
$$

(4) $\quad f(x)=\cos \left((4 x+1)^{2}\right)$ as $f^{\prime}=$?

Again, we use the Chain Rule:

$$
\begin{aligned}
f^{\prime} & \left.=-\sin (4 x+1)^{2}\right) \cdot 2(4 x+1) \cdot 4 \\
& =-\sin \left((4 x+1)^{2}\right) 8(4 x+1)
\end{aligned}
$$

