Lecture X : \$ 3,4 Some trigonometric functions
So for, we have derivation rules for
(1) addition
$$(f_{xy} q)'_{yy} = f'_{xy} q'_{xy}$$

(2) scalar multiplication : $(cf_{(xy)})' = cf'_{(xy)}$ (c fixed real
(3) product $(f_{(x)} q)'_{y} = f'_{(x)} q_{(x)} + f_{(x)} q'_{(x)}$
(4) quotient $(f_{(x)} q)'_{xy} = (f'_{(x)} g_{(x)} - f_{(x)} g'_{(x)})/g^2_{(x)}$
(5) emposition and have $(g \circ f)'_{(xy)} = g'(f_{(xy)}) \cdot f'_{(x)}$.
Embining these, we get explicit formulas for derivatives of
polynomials, rational functions powers.
Q: What about other functions? Can we have more building
blocks than xⁿ?

Properties: sin (x) is periodic, with period ZTT. This mans that sin (x+ZTT) = sen(x) » sin x is ODD, meaning sin (-x) = - sen x. -1 < sin x <1 fr all x

Propulies: . cos (x) is puriodic, with period ZTT. This mans that cos (x+ZTT) = cos(x) . cos x is EVEN, meaning cos(-x) = cos x. . -1 = cos x = 1 for all x

Graphs suggest a shift. Indeed, we have

$$\cos x = \sin (x + \frac{1}{2})$$

These 2 functions vary nice and smoothly, so they should be differentiable We'll find the formulas via limits, computing the increments. For this, we'll need additive formulas for sin x & cos x. (1) sin (a+b) = sin a cosb + cos a senb (mixed)

(2) where
$$(a \pm b) = 6a a cob \mp in a tends (unmixed))$$

Fundamental Equation $5m^2 x + co^2 x = 1$
Next, we compute the derivatives of $im x & con x$ we incomments:
Theorem (1) $\frac{1}{dx}sin x = con x$ (2) $\frac{1}{dx}sin x = -ton x$
Q Why? A Use the interval of incomments:
(1) $\frac{1}{dx}sin x = blin sin (x + \Delta x) - ton x$
Additive $\Delta x \Rightarrow 0$
 $formula (1) = blin sin x co(\Delta x) + con x sin (\Delta x) - ton x$
Additive $\Delta x \Rightarrow 0$
 $formula (1) = blin sin x (co(\Delta x) + con x sin (\Delta x) - ton x)$
 $formula (1) = blin sin x (co(\Delta x) + con x sin (\Delta x) - ton x)$
 $formula (1) = blin sin x (co(\Delta x) + in x) sin (\Delta x) - ton x$
 $formula (1) = blin sin x (co(\Delta x) + in x) sin (\Delta x) + in x$
 $formula (1) = blin sin x (co(\Delta x) - 1) + con x sin (\Delta x) + in x$
 $formula (1) = blin sin x (co(\Delta x) - 1) + con x sin (\Delta x) + in x$
 $formula (1) = blin sin x (co(\Delta x) - 1) + con x sin (\Delta x) + in x$
 $formula (1) = blin sin x (co(\Delta x) - 1) + con x sin (\Delta x) + in x$
 $formula (1) = blin sin x + 0 + con x + in (con (\Delta x) + i) = 0$
 $formula (1) = blin sin x - 0 + con x + i = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + i = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + i = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 = con x + 1 + \frac{1}{2} = 0$
 $formula (1) = blin sin x - 0 + con x + 1 + \frac{1}{2} = con x + 0 + \frac{1}{2} + \frac{1}{2$

Ez. Other trigerenteic functions:
(3) Tan
$$X = \frac{y_{11} \times x}{y_{12} \times x}$$
 This is defined whenever $\cos x \neq 0$, that is
 $x \neq \frac{T}{2}, \frac{3T}{2}, \frac{5T}{2}, \cdots$ so $x \neq \frac{(2k+1)T}{2}$
 $\frac{1}{2}, -\frac{3T}{2}, -\frac{5T}{2}, \cdots$ so $x \neq \frac{(2k+1)T}{2}$
 $\frac{1}{2}, -\frac{3T}{2}, -\frac{5T}{2}, \cdots$ so $\frac{1}{2}, \frac{1}{2}$ in the integrill
 $\frac{1}{-\frac{\pi}{2}}$ 0 $\frac{\pi}{2}$ π $\frac{5}{2}\pi$

$$\lim_{X \to \frac{\pi}{2}} \frac{\sin x}{\cos x} = +\infty \left(\frac{1}{0^{+}} - \frac{\tan x}{\sqrt{2}}\right) \qquad (\lim_{X \to \frac{\pi}{2}} + \frac{\sin x}{\cos x}) = -\infty \left(\frac{1}{0^{-}} - \frac{\tan x}{\sqrt{2}}\right)$$

$$\frac{\operatorname{Propulse}}{\cos x} = +\infty \left(\frac{1}{0^{+}} - \frac{\tan x}{\sqrt{2}}\right) \qquad (\lim_{X \to \frac{\pi}{2}} + \frac{\sin x}{\cos x}) = -\infty \left(\frac{1}{0^{-}} - \frac{\tan x}{\sqrt{2}}\right)$$

$$\frac{\operatorname{Propulse}}{\cos x} = -\infty \left(\frac{1}{0^{-}} - \frac{\tan x}{\sqrt{2}}\right) = -\tan x$$

$$\cdot \tan x \quad \text{is Projectic, with priced it, that is $\tan (x+it) = \tan x$

$$\cdot \tan x \quad \text{is Obb}, \text{ so } \tan (-x) = -\tan x$$

$$\cdot \tan x \quad \text{is Obb}, \text{ so } \tan (-x) = -\tan x$$

$$\cdot \operatorname{Image} (37 \operatorname{Range}) = \sqrt{1} \tan x \quad \text{is all } \mathbb{R}$$

$$\operatorname{Ts compute} \frac{1}{dx} \tan x, \quad \text{we use the Quotext } \operatorname{Rule}$$

$$\frac{1}{dx} \tan x = (\frac{\sin x}{\cos^{2} x} - \frac{\sin x}{\cos^{2} x}) = \frac{-\cos^{2} x + \sin^{2} x}{\cos^{2} x} = \frac{1}{\cos^{2} x}$$

$$\operatorname{resThe domain} = \frac{1}{dx} \tan x \quad \text{and } \tan x \quad \text{is the Same}!$$$$

(i)
$$\cot \tan (x) = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$
 Defined when $\sin x \neq 0$, thet is
 $x \neq 0$, $t \neq 0$, $t \neq 0$, $t \neq k$. $t = \frac{1}{\ln k}$ integring
Next, we compute its divivative with the power+ chain rule:
 $\frac{d}{dx} \cot \tan (x) = \frac{-1}{\tan^2 x} \cdot \frac{d}{dx} \tan x = -\frac{1}{\tan^2 x} + \frac{1}{\cos^2 x} = -\frac{1}{\sin^2 x}$
It has the same domain as $\cot \tan x$
(i) $\sec (x) = \frac{-1}{\cos^2 x} \cdot \frac{d}{dx} \cos x = -\frac{1}{(\cos^2 x)} + \frac{1}{(\cos^2 x)}$
(j) $\sec (x) = \frac{-1}{(\cos^2 x)} \cdot \frac{d}{dx} \cos x = -\frac{1}{(\cos^2 x)} + \frac{1}{(\cos^2 x)}$
(j) $\sec (x) = \frac{-1}{(\cos^2 x)} \cdot \frac{d}{dx} \cos x = -\frac{1}{(\cos^2 x)} + \frac{1}{(\cos^2 x)}$
(j) $\sec (x) = \frac{-1}{(\cos^2 x)} \cdot \frac{d}{dx} \cos x = -\frac{1}{(\cos^2 x)} + \frac{1}{(\cos^2 x)}$
(j) $\csc (x) = \frac{1}{\sin^2 x} + \frac{1}{dx} \sin x = -\frac{1}{(\cos^2 x)} + \frac{1}{(\sin^2 x)}$
(j) $\csc (x) = \frac{1}{(\sin^2 x)} + \frac{1}{dx} \sin x = -\frac{1}{(\sin^2 x)} + \frac{1}{(\sin^2 x)}$
(j) $\csc (x) = \frac{-1}{(\sin^2 x)} + \frac{1}{dx} \sin x = -\frac{1}{(\sin^2 x)} + \frac{1}{(\sin^2 x)}$
(j) $\det (x) = -\frac{1}{(\sin^2 x)} + \frac{1}{dx} + \frac{1}{(\sin^2 x)} + \frac{1}{(\cos^2 x)} + \frac{$

Sin x & cox. § 3 Examples:

(1)
$$f_{1}(x) = sen(x^{3}) \longrightarrow f_{1}' = ?$$

Use Unain Rule: $g(y) = sen y \longrightarrow g' = cos y = h = go f$.
 $f(x) = x^{3} \longrightarrow f' = 3x^{2}$
So $h' = g'(f_{1xy}) \cdot f'_{1xy} = cos(x^{3}) \cdot 3x^{2}$.

(2)
$$h(x) = 3u^{3}x$$
 $h = gof$ with $g(y) = y^{3} mog' = 3y^{2}$
So $h' = g'(f_{(x)}) \cdot f' = 3(3u^{2}x) \cdot 4bx$
(3) $f_{(x)} = 5u^{2}x + 4b^{3}x + 5u^{2}x \cdot (4b^{3}x)^{1}$
 $f' = (5u^{2}x)^{1} + 4b^{3}x + 5u^{2}x \cdot (4b^{3}x)^{1}$
 $= 2guix \cdot 4bx \cdot 4b^{3}x + 5u^{2}x + 5u^{3}x + 5u^{2}x + 5u^{3}x + 5u^{2}x + 5u^{3}x + 5u^{3}$