Lecture XI: 33.5 Implicit functions \& fractional expmento

- So far, our functions were given as $f: D \longrightarrow \mathbb{R}$ ria explicit formulas

Example $y=f(x)=\left(x^{3}+4 x\right)^{10} \quad r \quad y=\sin x$
Here: $y=$ dependent variable \& $x=$ independent variable
Fum this data we get a curse = the grape of the function

- Often times we deal with curses gins by a relation between $x \& y$, but we cannot sole fox wary. mas implicit functims
SI Examples: Classical plane cures
(1) Hypubsla $x y=1$

graph of $\left.y=\frac{1}{x} \quad m \mathbb{R} \cdot 30\right\}$
(2) Circle of radius R centered to

$$
x^{2}+y^{2}=R^{2}
$$

Nite We can think of $x^{2}+y^{2}=R^{2}$ as two half-

so can'tsolrefry (reatical test fails) circles (above \& below the x-axis). We cam solsefry m each half:

$$
y= \pm \sqrt{R^{2}-x^{2}}
$$

(defined fo x in $[-R, R]$)
(3) Ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=c^{2} \quad a, b, c>0
$$

(4) $x^{2}-y^{2}=R \quad(R>0)$ is again a hypubola

Factor the (LHS) to pet

$$
\begin{aligned}
& (x+y)(x-y)=R \\
& \text { asymptotes: }\left\{\begin{array}{l}
x+y=0 \\
x-y=0
\end{array}\right.
\end{aligned}
$$

(5) Equation $2 y^{2}-2 x y=10-x^{2} \leadsto 2 y^{2}-2 x y+\left(x^{2}-10\right)=0$

Solve fry with quadratic formula:

$$
y=\frac{-(-2 x) \pm \sqrt{4 x^{2}-4 \cdot 2\left(x^{2}-10\right)}}{2.2}=\frac{2 x \pm \sqrt{80-4 x^{2}}}{4}=\frac{x \pm \sqrt{20-x^{2}}}{2}
$$

Once again, there are 2 solutives, co we have 2 cures: the grapes of

$$
\begin{array}{rlrl}
f_{+}:[-\sqrt{20}, \sqrt{20}] \rightarrow \mathbb{R} & \& & f_{-}:[-\sqrt{20}, \sqrt{20}] & \rightarrow \mathbb{R} \\
f_{+}(x)=\frac{x+\sqrt{20-x^{2}}}{2} & & f_{-}(x)=\frac{x-\sqrt{20-x^{2}}}{2} .
\end{array}
$$

- Equations like this me can be "soled by radical" only if the dequee in y is $\leqslant 4$ ["Galois Theory" explains why]

Obs:
 Lrally around a point, the cure is the gath of a function unless the Tangent line at the point is vertical
INPUT: A curse and a point P where the Tangent line at P is NoT vertical
GOAL Determine slope of the tangent line at P
Q: Can we do this WITHOUT soling fry, that is, without knowing the explicit primula for the function describing the curse
A: YES! near P)
§2. Implicit Differentiation:
Guiding Principles: (1) "If 2 functions are $=$, so are theirderinatire"
(2) Chain Rule \& valses derintion techniques can be used.
(3) Check feasibility of operations to find bad print when the formula fails.

Back T_{0} examples:
(5) $2 y^{2}-2 x y=10-x^{2} \quad$ Think $y=y(x)$

Take $\frac{d}{d x} m$ both sickles using chain rule \& product rule.

$$
\begin{gathered}
2(2 y) \frac{d y}{d x}-2\left(y+x \frac{d y}{d x}\right)=-2 x \\
4 y y^{\prime}-2 y-2 x y^{\prime}=-2 x
\end{gathered}
$$

Now, we solve fr y^{\prime} :

$$
\begin{aligned}
& (4 y-2 x) y^{\prime}-2 y=-2 x \\
& (4 y-2 x) y^{\prime}=-2 x+2 y \\
& y^{\prime}=\frac{-2 x+2 y}{4 y-2 x}=\frac{y-x}{2 y-x}
\end{aligned}
$$

(x) sly works if $2 y-x \neq 0$.
Bad Points: $\quad 2 y=x$
We go back to the riginal equation and see which prints $P=(2 y, y)$ satisfy the original equation (so they are pts

$$
\begin{aligned}
2 y^{2}-2(2 y) y & \stackrel{?}{=} 10-(2 y)^{2} \\
2 y^{2}-4 y^{2} & =10-4 y^{2} \\
2 y^{2} & =10 \\
y & = \pm \sqrt{5} \quad \text { as } x= \pm 2 \sqrt{5}= \pm \sqrt{20} .
\end{aligned}
$$

\leadsto Problematic prints: $(\sqrt{20}, \sqrt{5}) \&(-\sqrt{20},-\sqrt{5})$.
Sanity check: since we have $f_{+} \& f_{-}$describing the cense, we san check ser frump fr y^{\prime}.

$$
\text { - } f_{+}(x)=\frac{x+\sqrt{20-x^{2}}}{2} \rightarrow f_{+}^{\prime}=\frac{1}{2}+\frac{1}{2} \frac{d}{d x}\left(\sqrt{20-x^{2}}\right) \stackrel{d}{=} \frac{1}{2}+\frac{1}{4} \frac{-2 x}{\sqrt{20-x^{2}}}
$$

BUT $\sqrt{20-x^{2}}=2 y-x$ by the definition of f_{+}, so we get

$$
\begin{aligned}
& f_{+}^{\prime}=\frac{1}{2}-\frac{x}{2(2 y-x)}=\frac{1}{2}\left(\frac{2 y-x-x}{2 y-x}\right)=\frac{y-x}{2 y-x} \text { as we had } \\
& \text { earlier U } \\
& f_{-}(x)=\frac{x-\sqrt{20-x^{2}}}{2} . \operatorname{mof} f_{-}^{\prime}(x)=\frac{1}{2}-\frac{1}{2} \frac{1}{d x}\left(\sqrt{20-x^{2}}\right)=\frac{1}{2}-\frac{1}{4} \frac{(-2 x)}{\sqrt{20-x^{2}}}
\end{aligned}
$$

BUT $\sqrt{20-x^{2}}=-2 y+x$ by the definition of G, so we get

$$
f_{-}^{\prime}=\frac{1}{2}+\frac{x}{2(-2 y+x)}=\frac{-2 y+x+x}{2(-2 y+x)}=\frac{-y+x}{-2 y+x}=\frac{y-x}{2 y-x}
$$

(2) $x^{2}+y^{2}=R^{2}$ m $y=y(x)$ gives $x^{2}+y(x)^{2}=R^{2}$

Take $\frac{d}{d x} m$ both sides: $\quad 2 x+2 y \cdot \frac{d y}{d x}=0$

$$
\begin{aligned}
2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{2 y} \\
y^{\prime} & =\frac{-x}{y}
\end{aligned}
$$

(x) issue when $y=0$.

Bad point: $y=0$ so $x= \pm R$

Tangent lines are vectecical, so we must sump $x \& y$, ie think $x=x(y)$

$$
m>2 x x^{\prime}+2 y=0
$$

$$
x^{\prime}=\frac{-2 y}{2 x}
$$

$x^{\prime}=\frac{-y}{x} \quad$ no issue at

$$
\begin{aligned}
& y= \pm \sqrt{R^{2}-x^{2}} \\
& y^{\prime}= \pm \frac{1}{2} \frac{(-2 x)}{\sqrt{R^{2}-x^{2}}}=\frac{-x}{ \pm \sqrt{R^{2}-x^{2}}}=\frac{-x}{y}
\end{aligned}
$$

$$
x^{\prime}=0
$$

At $P=\left(\frac{R}{2}, \frac{\sqrt{3}}{2} R\right)$, the tangent line is $y=\frac{-1}{\sqrt{3}}\left(x-\frac{R}{2}\right)+\frac{\sqrt{3}}{2} R$

$$
y^{\prime}=-\frac{R}{2} / \sqrt{3} / 2 R=\frac{-1}{\sqrt{3}} .
$$

§3 Application 1. Deciratue of hactimal pours
INPUT: $y=x^{p / q}$ with $p . q$ integers (coprime) \& $q \neq 0$
This mans $y^{q}=x p$
Claim: $y^{\prime}=\frac{p}{q} x^{\frac{p}{q}-1} \quad$ (so poon rule works with fractival exprents!)
Example: $\frac{p}{f}=\frac{1}{2}$

$$
y=\sqrt{x}=x^{1 / 2} \quad y^{\prime}=\frac{1}{2} x^{\frac{1 / 2-1}{2}}=\frac{1}{2 \sqrt{x}}
$$

Q: Why is the dam valid?
Think $y=y(x)$ \& us implicit differentiation m $y_{(x)^{q}}^{q}=x^{p}$ $q y^{q-1} y^{\prime}=p x^{p-1} \quad$ (by power rule)

$$
y^{\prime}=\frac{p}{f} \frac{x^{p-1}}{y^{f-1}} \quad \text { as } \operatorname{ling} \text { as } y \neq 0
$$

But $y^{p}=x^{p}$ so $y^{q-1}=\frac{x^{p}}{y}=\frac{x^{p}}{x^{p / q}}=x^{p-\frac{p}{p}}$
Then $y^{\prime}=\frac{p}{q} \frac{x^{p-1}}{x^{p-p / q}}=\frac{p}{q} x^{p / q-1}$
Example: $y=\sqrt{\cos x} \leadsto y^{\prime}=\frac{1}{2} \frac{1}{\sqrt{\cos x}}(\cos x)^{\prime}=\frac{-\operatorname{sen} x}{2 \sqrt{\cos x}}$.
§4. Application 2: Derivative of inserse ting functions
Ex: $\tan x=y \quad \tan :\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$
It has an inverse function $\rho=g(y)$ called
 $g=\arctan$, meaning $\left\{\begin{array}{l}g(\tan x)=x \\ \tan \left(g_{(x)}\right)=x\end{array}\right.$

The graph of g is obtained by flipping the graph \& the axes

$y=\arctan x$ mans $\tan y=x$

GOAL: Find y^{\prime} my in terms of x
Use $x=\operatorname{Tan}(y)+$ implicit diffenutiatim $y=y(x)$

$$
\frac{d}{d x} \leadsto 1=\left(\tan y^{\prime}\right)^{\prime} \cdot y^{\prime} \underset{\substack{d \\ \text { Last time }}}{ } \frac{1}{\cos ^{2} y} \cdot y^{\prime}
$$

so $y^{\prime}=\cos ^{2} y$ not good enough!
Can go further: $x=\tan y=\frac{\operatorname{sen} y}{\cos y}$

So $\frac{1}{\cos ^{2} y}=1+x^{2}$

$$
x^{2}=\tan ^{2} y=\frac{\operatorname{sen}^{2} y}{\cos ^{2} y}=\frac{1-\cos ^{2} y}{\cos ^{2} y}=\frac{1}{\cos ^{2} y}-1
$$

Conclude: $y^{\prime}=\cos ^{2} y=\frac{1}{1+x^{2}}$ for $y=\arctan (x)$

