Lecture XI : \$3.5 Implicit functions & fractional exponents
• So for, our functions whe given as
$$f: D \rightarrow R$$
 in explicit formulas
Example $y=f_{(x)} = (x^3 + 9x)^{10}$ is $y = x in x$
Here: $y = dependent variable = x = independent variable.
From this data we get a correct = the graph of the function
• Offen times we deal with corres given by a indefine between $x \neq y$, but
we cannot solve for x way. This implicit functions
 (0) Hugenbola $xy=1$ graph of $y=\frac{1}{x}$ in Relation
 (1) $(1)$$

Back to examples:
(5)
$$2y^2 - 2xy = 10 - x^2$$
 Think $y = y_{1x}$
Take $\frac{d}{dx}$ is both with using chain rule x product rule.
 $z(2y) \frac{dy}{dx} - z(y + x \frac{dy}{dx}) = -2x$
 $4y y' - 2y - 2x y' = -2x$
Now, we solve $172 y'$:
 $(4y - 2x) y' - 2y = -2x$
 $(4y - 2x) y' - 2y = -2x$
 $(4y - 2x) y' = -2x + 2y$
 $y' = \frac{-2x + 2y}{4y - 2x} = \frac{y - x}{2y - x}$
 (y) ruly works
 $if zy - x \neq 0$.

Bad Points:
$$zy = x$$

We go back to the miginal equation and see which points
 $P = (zy, y)$ satisfy the original equation (so they are pts m
 $zy^2 - 2(zy)y \stackrel{?}{=} 10 - (zy)^2$
 $zy^2 - 2(zy)y \stackrel{?}{=} 10 - (zy)^2$
 $zy^2 = 10$
 $y = \pm 15$ mp $x = \pm 2\sqrt{5} = \pm \sqrt{20}$
ms Problematic points : $(\sqrt{520}, \sqrt{5}) \neq (-\sqrt{52}, -\sqrt{5})$
Sanity check: since or have $F_+ \approx F_-$ describing the energy
we can check our formula for y' .
 $F_+(x) = \frac{x + \sqrt{20-x^2}}{2}$ mp $F_+' = \frac{1}{2} + \frac{1}{2} \frac{d}{dx} (\sqrt{20-x^2}) \stackrel{!}{=} \frac{1}{2} + \frac{1}{2} \frac{-2x}{\sqrt{120-x^2}}$

But
$$120-x^2 = 23 - x$$
 by the definition of F_+ , so we get 211 EV
 $F_+' = \frac{1}{2} - \frac{x}{2(2j-x)} = \frac{1}{2} \left(\frac{2y-x-x}{2j-x} \right) = \frac{3-x}{2y-x}$ on we had
 $F_-(x) = \frac{x-120-x^2}{2(2j-x)}$, so $F_-'(x) = \frac{1}{2} - \frac{1}{2} \frac{1}{4x} (120-x^2) = \frac{1}{2} - \frac{1}{4} \frac{1}{(120-x^2)}$
BUT $120-x^2 = -2y+x$ by the definition of F_- , so we get
 $F_-' = \frac{1}{2} + \frac{x}{2(-2y+x)} = -\frac{-xy+x+x}{2(-2y+x)} = -\frac{-y+x}{-2y+x} = \frac{y-x}{2y-x}$
(2) $x^2+y^2 = R^2$ mo $y=3$ (x) gives $x^2 + 3(x)^2 = R^2$
Take $\frac{1}{4x}$ is both sides: $2x + 2y \frac{1}{4x} = 0$
 $2yy' = -2x$
 $y' = -2x$
 $y' = -2x$
 $y' = -2x$
 $y' = -x$
 $y' = -2y$
Ead point: $y=0$ so $x=\pm R$
Tanget lines an vertical, so
we insert ones $x + 2y$. (e)
think $x = x(y)$
so $2x + x' + 2y = 0$
 $x' = -\frac{2y}{2x}$ we issue of $x' = -\frac{2y}{2}$
 $x' = -\frac{2y}{2x}$ we issue of $x' = -\frac{2y}{2}$
 $y' = -\frac{2y}{2x}$ we issue of $x' = -\frac{2y}{2}$
 $x' = -\frac{2y}{2}$ we issue of $x' = -\frac{2y}{2}$
 $y' = -\frac{2y}{2}$ we issue of $x' = 0$
 $x' = -\frac{2y}{2}$
 $y' = -\frac{2y}{2}$ we issue of $x' = 0$
 $x' = -\frac{2y}{2}$ we issue of $x' = -\frac{2y}{2}$
 $y' = -\frac{2y}{2}$ is $\frac{1}{12}(-\frac{2x}{2}) = -\frac{1}{12}(x-\frac{2}{2}) + \frac{1}{12}R^2$
At $P = (\frac{R}{2}, \frac{1}{2}R)$, the tangent line is $y = -\frac{1}{13}(x-\frac{R}{2}) + \frac{1}{12}R^2$

§3 Application 1: Derivative of fractional powers
INPUT:
$$y = x^{leq}$$
 with l,q integers (equivar) $e q \neq 0$
This means $y^{q} = xl$
(laim: $y' = \frac{q}{q} x^{\frac{q}{q}-1}$ (so prove rule works with fractional expression)
Example: $\frac{p}{q} = \frac{1}{2}$
G: Why is the claim ruled?
Think $y = y(x)$ as use implicit differentiation in $y_{1(x)} = xl^{p}$
g: $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ (by prove rule)
 $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ (by prove rule)
 $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ as larg as $y \neq 0$
But $y^{q} = xl^{p-1}$ (by prove rule)
 $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ as larg as $y \neq 0$
But $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ as larg as $y \neq 0$
But $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ as $y = xl^{1} + \frac{1}{2}$
Thun $y' = \frac{1}{2} x^{\frac{q}{2}-1}$ as $y' = \frac{1}{2} \frac{1}{1605} (105x)' = -\frac{105x}{2} \frac{105x}{2}$.
§4 Application 2: Derivative of inverse trig functions
Ex. tan $x = y$ tan : $(-\frac{15}{2}, \frac{15}{2})$ or k
It has an inverse function $g = g(y)$ called
 $g=acctan$, meaning $\begin{cases} g(tan x) = x \\ tan (g(x)) = x \end{cases}$

GOAL: Find y' mly in terms of x
Use
$$x = tan (y) + implicit differentiation $y = y(x)$
 $\frac{d}{dx} = 1 = (tan y')' \cdot y' = \frac{1}{6s^2} \cdot y' = so y' = cos^2 y$
Let time not good enough!$$

Len go Further:
$$X = \lim_{x \to 0} y = \frac{\sin y}{\cos y}$$

 $x^{2} = \tan^{2} y = \frac{\sin^{2} y}{\cos^{2} y} = \frac{1 - \cos^{2} y}{\cos^{2} y} = \frac{1}{\cos^{2} y} - 1$
So $\frac{1}{\cos^{2} y} = 1 + x^{2}$
(moducle: $y' = \cos^{2} y = \frac{1}{1 + x^{2}}$ 17 $y = \arctan(x)$