Lecture XII: §3.6 Derivatives of Higher Order
Appuclix A4: The Mean Value Theorem
si. Derivatives of Higher Under: $=$ iterated duinateres
Simple ida: If $f: D \rightarrow \mathbb{R}$ is differentiable, then $f^{\prime}: D^{\prime} \rightarrow \mathbb{R}$ is a function, defined on a (possibly smaller) set D^{\prime}.

If f^{\prime} is differentiable, we differentiate again, and write $\begin{aligned} f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}: D^{\prime \prime} & \longrightarrow \mathbb{R}, \text { and so on } . \\ x & \longmapsto F^{\prime \prime}(x)\end{aligned}$
Notation: $y^{\prime \prime}, f^{\prime \prime}, f^{(2)}-\frac{d}{d x}\left(\frac{d}{d x} f\right)=\left(\frac{d}{d x}\right)^{2}(f)=\frac{d^{2}}{d x^{2}} f$.
Ingeneral: $y^{(n)}, f^{(n)}(x), \frac{d^{n} f}{d x^{n}}$ fr $n \geqslant 1$.
Convention: $f^{(0)}(x)$ reams if (wo derivative!)
Example 1 Monomials (m polynomials ria additive sell)

- $y=c$ constant $m y^{\prime}=0, y^{\prime \prime}=0, \ldots, y^{(m)}=0 \quad$ frail $m=1,2,3, \ldots$
(dequeue)
- $y=x^{n} \quad n>0$ integer (degree n)

$$
y^{\prime}=n x^{n-1}, y^{\prime \prime}=n(n-1) x^{n-2}, y^{(3)}=n(n-1)(n-2) x^{n-3} \ldots
$$

Q: When does this stop? $y^{(k)}=n(n-1) \cdots(n-k+1) x^{n-k}$ fr $k \leqslant n$
A: At $y^{(n+1)}$.

$$
y^{(n+1)}=0 \quad\left(y^{(n)} \text { is a constant }\right)
$$

$$
\text { so } y^{(m)}=0 \text { fo } m>n
$$

Notation: We can shorten the notation if we ese

$$
\begin{aligned}
& p!=p \text { factorial }=p(p-1) \cdots \cdot 2 \cdot 1 \quad \text { or } p \geqslant 1 \text { integer } \\
& 0!=1 \quad \text { (consecution). }
\end{aligned}
$$

$\leadsto y^{(k)}=\frac{n!}{(n-k)!} x^{n-k} \quad f r k \leq n \quad \& y^{(k)}=0$ fr $k>n$.

Example 2: Monomials with negative powers

$$
\begin{aligned}
& y=x^{-n}=\frac{1}{x^{n}} \quad \text { fr } n \geq 0 \quad m y^{\prime}=\frac{-n}{x^{n+1}}, y^{\prime \prime}=\frac{-n(-(n+1))}{x^{n+2}}, \\
& y^{(3)}=\frac{-n(n+1)(n+2)}{x^{n+3}}, \ldots \text { so it never ends! }
\end{aligned}
$$

In general: $y^{(k)}=(-1)^{k} \frac{n(n+1) \ldots n(n+k-1)}{x^{n+k}}$ fr all $k>0$ integer

$$
y^{(k)}=\frac{(-1)^{k}}{x^{n+k}} \frac{(n+k-1)!}{(n-1)!}
$$

Example 3: Trig functions

$$
y=\operatorname{sen} x, y^{\prime}=\cos x, \quad y^{\prime \prime}=-\operatorname{sen} x, \quad y^{(3)}=-\cos x, \quad y^{(4)}=\operatorname{sen} x
$$

\& it repeats form here.
Similar phenomenon fo $y=\cos x$.
Obsess: $\operatorname{sen} x$ \& $\cos x$ will both solve the differential equation $y^{\prime \prime}=-y$.
In fact, the solutions T_{0} it are all of the from $y(x)=a \operatorname{sen} x+b \cos x$ in fixed parameter a, b (an determined by z initial conditions) m We'll see this again in $\$ 9.6$ (Simple Harmonic Motion).

- Next step : Combine high her derivatives with implicit differentiation

Ex: $x^{2}+y^{2}=R^{2}$

$$
\begin{aligned}
& \frac{d}{d x}: 2 x+2 y y^{\prime}=0 \\
& \Rightarrow y^{\prime}=\frac{-x}{y} \quad \text { if } y \neq 0
\end{aligned}
$$

think $y=y(x)$
(OK, if tangent line is not vertical (see Lecture 11))

Now : y 'is differentiable, so we look at $\square(* *)$ \& differentiate again (implicitly!)

$$
\begin{aligned}
2+2\left(y^{\prime} y^{\prime}+y y^{\prime \prime}\right) & =0 \quad \text { use } y^{\prime}=\frac{-x}{y} \\
2+2\left(\left(\frac{-x}{y}\right)^{2}+y y^{\prime \prime}\right) & =0 \\
1+\left(\frac{x^{2}}{y^{2}}+y \cdot y^{\prime \prime}\right) & =0 \\
y y^{\prime \prime} & =-1-\frac{x^{2}}{y^{2}}=-y^{2} \frac{-x^{2}}{y^{2}}=\frac{-R^{2}}{y^{2}}
\end{aligned}
$$

So $y^{\prime \prime}=\frac{-R^{2}}{y^{2}}$ again, when $y \neq 0$
Example 4:

$$
f(x)=1-|x|= \begin{cases}1-x & x \geq 0 \\ 1+x & x<0\end{cases}
$$

m $f^{\prime}(x)=\left\{\begin{array}{rl}-1 & x>0 \\ 1 & x<0\end{array}\right.$

not defined at $x=0$
$m f^{\prime \prime}(x)=0$ fr $x \neq 0$

$$
f^{\prime \prime}(x) \quad \text { fr } \text { all } x \geqslant 2 \text {. }
$$

§2 Appendix AY: Mean Value Theorem (MVT)
MVT: If $r:[a, b] \rightarrow \mathbb{R}$ is curtinuoces on $[a, b] \&$ differentiable on (a, b) we can find c in (a, b) with $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} . \rightarrow$ slop of scant line L

$$
f(a)=f(b)
$$

Role's thin
We will show that we need only T check the sfecialcase when $f_{(a)}=f(b)$, if we take EVT for granted.

Role's Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous m $[a, b]$, differentiable $m(a, b)$ with $f(a)=f(b)$, then we can find $\operatorname{cin}(a, b)$ with $f^{\prime}(c)=0$.
Why? Use the EVT (if contivicoes has maximum \& minimum values on $[a, b]$)

- If f is constant, then $F^{\prime}=0$ everywhere so any c willdo.
- Otherwise, f is not constant, so the max 2 min values of f cannot ague. Since $f_{(a)}=f_{(b)}$ we cannot hare both max \& min being achieved only at $x=a$ or $x=b$, so we have some point c in (a, b) achieving one of the extreme values. Since F is differentiable, we know $f^{\prime}(c)=0$.

From ROLLE to MVT: We need a way 5 view L as a horizontal live

$$
L: \quad y=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

Equimantly: $\quad 0=y-\left(\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right)$
We build the auxiliary functim $g:[a, b] \rightarrow \mathbb{R}$

$$
g(x)=f(x)-\left(\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right)
$$

$(g(x) \text { lest membership of }(x, f(x)) \text { to } L)^{\text {b }}$.

Useful properties:

- g is continuores on $[a, b]$
- g is differentiable on (a, b)
- $g(a)=g(b)=0$

By ROLLE'S THM applied to g, we have $g^{\prime}(c)=0$ for some c in (a, b)

But $g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$ mans

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

general MVT: Given two functions f, g continuores m $[a, b]$ \& diffeuntiable $m(a, b)$ with $g^{\prime}(x) \neq 0$ fr all x m (a, b)., we can find $\operatorname{cin}(a, b)$ with $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$
Note: $\rho(x)=x$ recovers MVT.
Why is this true?
First, we argue that $S(b) \neq S(a)$, otherwise by Roll's Tim, we 'll find c in (a, b) with $g^{\prime}(c)=0$, which contradicts our assumptions n g^{\prime}.
As before, we build a new alexiliany function \& apply RILE's THAT T_{0} it To find.

We define $h:[a, b] \rightarrow \mathbb{R}$ as

$$
h(x)=(f(b)-f(a))(g(x)-g(a))-(f(x)-f(a))\left(g(b)^{-g(a)}\right)
$$

(we build it based M the ratio we want To achicred)

Pepputies of h :

- h is continuores on $[a, b]$
- h is differentiable on (a, b)
- $h(a)=h(b)=0$

By ROLLE'S THM applied to h, we have $h^{\prime}(c)=0$ for some $\operatorname{cin}(a, b)$

But $\quad h_{(c)}^{\prime}=(f(b)-f(a)) g^{\prime}(c)-f^{\prime}(c)(\rho(b)-g(a))=0$ mans $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

