Lettre XII: § 5:6 Derivatives of Higher Order
Appendix M4: The Hean Value Theorem
SI. Derivatives of Higher Order: = iterated derivatives
Simple ida: If F: D
$$\rightarrow \mathbb{R}$$
 is differentiable, then $f': D' \rightarrow \mathbb{R}$
is a function, defined and (possibly smaller) set D.
IF F' is differentiable, we differentiate again, and write
 $f'' = (F')': D'' \rightarrow \mathbb{R}$, and so on.
 $x \rightarrow F'(x)$
Notation: $y'', F'', F^{(2)}, \frac{d}{dx}(\frac{d}{dx}F) = (\frac{d}{dx})^2(F) = \frac{d^2}{dx^2}F.$
In general: $y''', F''', y'' = \frac{d''}{dx}(\frac{d}{dx}F) = (\frac{d}{dx})^2(F) = \frac{d^2}{dx^2}F.$
In general: $y''', F''', y'' = \frac{d''}{dx}(\frac{d}{dx}F) = (\frac{d}{dx})^2(F) = \frac{d^2}{dx^2}F.$
In general: $y''', F''', y'' = \frac{d''}{dx}(\frac{d}{dx}F) = \frac{d}{dx}(\frac{d}{dx}F) = \frac{d}{dx^2}F.$
Example 1 Monomials (num polynomials via additive rule)
 $g' = x x^{n-1}, g'' = n(n-1) x^{n-2}, g^{(3)} = n(n-1)(n-2) x^{n-3}, \dots$
 $g' = h x^{n-1}, g'' = n(n-1) \cdots (n-k+1) x^{n-k}$ for $k \leq n$
A: At $g^{(n+1)}$. $g^{(n+1)} = 0$ ($g^{(n)}$ is a constant).
so $g^{(m)} = 0$ for $m > n$.
Notation: We can shorten the notation if we use
 $g! = g$ fractorial = $p(g \rightarrow 1) \cdots z = 1$ for $g \geq 1$ integer
 $g'(m) = \frac{m!}{(m-m)!} x^{n-k}$ for $k \leq n$.

Example 2: Monomiab with negative yowers

$$J = X^{-n} = \frac{1}{X^{n}} \qquad \int n \ge 0 \qquad \text{more } y' = \frac{-n}{X^{n+2}}, \quad y'' = \frac{-n\left(-(n+i)\right)}{X^{n+2}}, \quad y^{(3)} = \frac{-n\left(n+i\right)\left(n+2\right)}{X^{n+2}}, \quad \text{so it nerve unds!}$$
The general:
$$y^{(k)} = (-1)^{k} \qquad \frac{n(n+i)\dots n(n+k-i)}{X^{n+k}} \qquad \text{for all } k > 0$$

$$y^{(k)} = \frac{(-1)^{k}}{X^{n+k}} \qquad \frac{(n+k-i)!}{(n-i)!}$$

Example 3: Trig functions y = sen x, y' = cos x, y'' = -sen x, $y^{(3)} = -cos x$, $y^{(4)} = sen x$ & it repeats from here. Similar phenomenon 12 y=us x. Observe: sen x & co x will both solve the differential equation y"=-y. In fact, the colutions to it are all of the form y cus = a sen x + b co x for fixed parameter 9, b (au detirmined by 2 initial conditions) mo We'll see this again in \$9.6 (Simple Harmonic Motion) . Next step : Combine higher derivatives with implicit differentiation think y=yixs $E_{X'}$, $X^2 + y^2 = R^2$

think y=y(x) (OK, if tangent line is not vertical (yee Lecture 11))

Now:
$$g'$$
 is differentiable, so we bolk at $(x,y) \in U(x,y) \in U(x,y) \in U(x,y) \in U(x,y) \in U(x,y) \in U(x,y) = 0$
 $2 + 2(y'y' + yy'') = 0$
 $1 + (\frac{x^2}{y^2} + y \cdot y'') = 0$
 $1 + (\frac{x^2}{y^2} + y \cdot y'') = 0$
 $y'' = -1 - \frac{x^2}{y^2} = -\frac{y^2}{y^2} = -\frac{R^2}{y^2}$
So $y'' = -\frac{R^2}{y^2}$ again, when $y \neq 0$
 $\frac{y'' = -\frac{R^2}{y^2}}{y^2}$ again,

We will show that we need only to check the special case when $f_{(a)} = f_{(b)}$, if we take EVT for granted.

<u>Rocce's THEOREM</u>: If $f:[9,5] \longrightarrow \mathbb{R}$ is continuous on [9,5], differentiable m(9,5) with f(9)=f(5), then we can find cin(9,5)with f'(0)=0.

Why? Use the EVT (fontimuous has maximum & minimum values on [9,5])

. If f is constant, then F'=0 encywhere so any cuilled. . Otherwise, f is not constant, so the max & min values of f cannot aquee. Since $F_{(q)} = F_{(b)}$ we cannot here both max & min being achieved only at x=a or x=b, so we have some point c in (a,b) achieving one of the extreme values. Since f is differentiable, we know F'(c) = 0.

From ROLLE to MVT: We need a way to new L as a horizontal line

L: $y = \frac{f(b) - f(a)}{b - a} (x - a) + f(a)$

Equivalently:
$$0 = y - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)^{L12}$$

We build the auxiliary function $g: [a, b] \longrightarrow \mathbb{R}$
 $g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$
(Seen list membership of $(x, f(x))$ to L).
Useful properties:
 $g is entineers in [a, b]$
 $g is entineers in [a, b]$
 $g is differentiable in (a, b)$
 $g(a) = g(b) = 0$
 $g(x) = g(b) = 0$

But
$$g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$
 means
 $f'(c) = \frac{f(b) - f(a)}{b - a}$

Juneral MVT: firm two functions F, g continuous n[a,5]a differentiable n(a,5) with $g'(x)\neq 0$ [17 all x in [a,5), we can find cin(a,5) with $\frac{F'(c)}{g'(c)} = \frac{F(b)-F(a)}{g(b)-g(a)}$ Note: g(x) = x recovers MVT. QWhy is this true? First, we argue that $g(b) \neq g(a)$, otherwise by Rolle's Thm, we'll find cin(a,5) with g'(c) = 0, which entradicts our assumptions n g'.

As before, we build a new auxiliary function & apply ROLLE'S THIS TO it To find c.

We define
$$h: [a, b] \longrightarrow \mathbb{R}$$
 as
 $h(x) = (f(b) - f(a))(g(x) - g(a)) - (f(x) - f(a))(g(b) - g(a))$
(we build it based in the nation we want to achieved)
Projectics of h:
• h is continuous in [a,b]
• h is differentiable in (a,b)
• h(a) = h(b) = 0
But $h'(c) = (f(b) - f(a))(g'(c)) - f'(c)(g(b) - g(a)) = 0$
means $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b)}(g'(c)) - f'(c)(g(b) - g(a)) = 0$