

Nor lim 
$$F(t) = \infty$$
, lim  $F(t) = -\infty$ , w  $f^{Lis}$   
has no externe values on  $\mathbb{R}$ .  
Usight Things to determine the graph of  $F_{1}$   
() hitical prints : wither  $F(x_{1}) = 0$   $\mathbb{R}$   $f$  is not differentiable at  $(e_{2} \times e_{2} + f_{2} \times f_{1})$   
(e) hitical prints : wither  $F(x_{2}) = 0$   $\mathbb{R}$   $f$  is not differentiable at  $(e_{2} \times e_{2} + f_{2} \times f_{1})$   
(e) hitical Values:  $= F(x_{2} + f_{2} \times a artical pt.(e) Sign of  $F'(x_{2})$  between artical points a hericen points when  
 $f$  is not defined ( $F_{3}$  for  $f(x_{2}) = \frac{1}{2}(x_{1})$   $x_{2} = \frac{1}{2}(x_{1})$   $x_{2} = \frac{1}{2}(x_{1})$   
(c) Intercepts:  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{1}) \\ y - \frac{1}{2} = F(a) \end{array} \right\}$   
(c) Intercepts:  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{1}) \\ y - \frac{1}{2} = F(a) \end{array} \right\}$   
(c) Intercepts:  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{1}) \\ y - \frac{1}{2} = F(a) \end{array} \right\}$   
(c) Intercepts:  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{1}) \\ y - \frac{1}{2} = F(a) \end{array} \right\}$   
(c) Intercepts:  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{1}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) = \frac{1}{2}(x_{2}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ y - \frac{1}{2} = \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}(x_{2}) \end{array} \right\}$   
(c) Intercept :  $\left\{ \begin{array}{c} x - intercept : f(x_{2}) \\ x - \frac{1}{2}$$ 



EXAMPLE 3:  $f(x) = xec(x) = \frac{1}{\cos x}$  mp (7). Genirdec with period 2T  $\frac{1}{\cos x} = \frac{1}{\cos x}$ , so EVEN  $\frac{1}{\cos(-x)} = \frac{1}{\cos x}$ , so EVEN  $\frac{1}{2}$ ,  $\frac{3\pi}{2}$ , .....



