Lecture XIV: §4.2 Concavity \& prius of inflection
Last time: We used f^{\prime} To study the growth behavior of t, local extrema \& leal extreme values.

TODAY's GOAL: Use higher ordu derivatives To study the convexity r "bending" of the graph of G.
Key fact: $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$, so $f^{\prime \prime}$ gives imprmation abreact the growth of f^{\prime} (how are the slopes of Tangent linesgouring / decreasing) 3 possible scenarios.

f^{\prime} sta. increasing
concave up (wards)

f^{\prime} sh decreasing CONCAVE DOWN (wARDS)

si: Definitions a Concasity Test:
Definitions: $F_{i x} \quad F:[a, b] \longrightarrow \mathbb{R}$ differentiable $n(a, b)$

- If the graph of f lies. ABOVE all of its tanguit bins in $(a, 6)$ we say F is concave up(waras) in (a, b)
- If the graph of f lies BELOW all of its tanguy limes $m(a, b)$ we say f is concave down (wards) in (a, b)
Q: How To test this without drawing?
A: Use $f^{\prime \prime}$.

Concavity Test: Assume f^{\prime} is differentiable in (a, b) :
(1) If $f^{\prime \prime}>0$ on (a, b), then f is concave up in (a, b) (we write C.U.)
(2) If $f^{\prime \prime}<0$ on (a, b), then f is concave down in (a, b) (we write C.D.)

Q: Why does the Tent work?
A (Idea) Frs $\left(F^{\prime}\right.$ is ste. increasing \& if (2), then f^{\prime} is strictly decreasing. For mon details, see pages 586 .

EXAMPLE 1: $f_{(x)}=x^{3}$. Find internals where f is C.U./C. D.
Sold: Use concarity test

Zeroes of $f^{\prime \prime}=0$.
$x=0$ is an inflection print (graph of f is in both sides of the tangent lime at $(0,0)$.

Definition: A print c in the domain of f is an inflection point if is continuous at c \& the function changes concavity at c.

Remark: Inflection points satisfy $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}$ is NOT defined at x. In short, x must be a critical pt of f^{\prime}. But we can hare critical prints of f^{\prime} that are not inflection prints. They can also be bora (max)
EXAMPLE 2: $f(x)=x^{4}$ has a local minimum at $x=0$.

$$
f_{(x)}^{\prime}=4 x^{3}, f^{\prime \prime}=12 x^{2} \text { so } f_{(x)}^{\prime \prime}=0 \text { free } x=0 \text {. }
$$

sin of $f^{\prime \prime}$

0	
t	t
$c u$	$c u$

$\leadsto x=0$ is not an inflecting point
\$2 Second Derivative Test:
Example 2 hints at the following criteria fo finding local max The Second Derivative Test: Suppose $f^{\prime \prime}(x)$ is continuous near C min
(1) If $f^{\prime}(c)=0 \& f^{\prime \prime}(c)>0$, then f has a local minimum at c
(2) If $f^{\prime}(c)=0 \& f^{\prime \prime}(c)<0$, then f has a local maximum at c Q: Why? $\quad f^{\prime}(c)=0$ says the tangent bin at $(c, f(c)$) is horizntal
(1) If $f^{\prime \prime}(c)>0$, by continuity of $f^{\prime \prime}$ we can find a mighbrhord of c where $F^{\prime \prime}>0$ it $\left(F_{i x} \varepsilon=\frac{f^{\prime \prime}(c)}{2}>0\right.$ a pick $\delta>0$ so

$$
\left.\begin{array}{c}
-\varepsilon<f^{\prime \prime}(x)-f_{(c)}^{\prime \prime}<\varepsilon, \text { so } \underbrace{f_{(c)}^{\prime \prime}-\varepsilon<f^{\prime \prime}(x)}_{=\frac{f^{\prime \prime}(c)}{2}>0}<f^{\prime \prime}(c)+\varepsilon \text {. Thess } f^{\prime \prime}(x)>0 \\
\text { f> } x \text { in }\left(c-\delta_{0}(c+\delta)\right.
\end{array}\right)
$$

In this interval, the graph of f sits above each tangent line (in particular, the Tangent lime $Y=f(c))$ so $f_{(x)}>f_{(c)}$ on this interval a so C is a local minimiem.

(2) The argument fr this case is almost verbatim.
!. The test say NOTHinG when $f^{\prime \prime}(C)=0$. Ir when $f^{\prime \prime}(x)$ is not defined at C
Example: $\quad f(x)=x^{3} \quad x=0$ is an inflection $p t$, not max, not and $f^{\prime}(0)=f^{\prime \prime}(0)=0$.
s $2 E_{\text {xamples: }}$
Find the local max/min \& inflection prints of
(1) $f(x)=1+3 x^{2}-2 x^{3} \leadsto$ differentiable up To any order!

Son $f^{\prime}=6 x-6 x^{2}=6 x(1-x), f^{\prime \prime}=6-12 x$
Git prints of $f: x=0$ \& $x=1$
Cit points of $f^{\prime}: x=\frac{1}{2}$

Combine both tables into me

=ait pt of f

- Use Second Derinatere Test: $f^{\prime}(0)=0$ \& $f^{\prime \prime}(0)>0 \mathrm{~m}>0$ is local Π in $f^{\prime}(1)=0 \& f^{\prime \prime}(1)<0$ us 1 is lured MAX
A: $x=0$ local min, $x=1$ local MAx, $x=0$ inflection point.
(2) $f(x)=\sin x$

Sold: $f^{\prime}(x)=\cos x \quad \& f^{\prime \prime}(x)=-\operatorname{sen} x$. cont.

$$
\begin{array}{lll}
f^{\prime \prime}(x)=0 & f r & x=0, \pm \pi, \pm 2 \pi, \ldots \\
f^{\prime}(x)=0 & \text { fr } & x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots
\end{array}
$$

\square nitical points We use $2^{\text {ns }}$ derivative Test
$f^{\prime \prime}\left(-\frac{3}{2} \pi\right)<0 \rightarrow$ leal MAX ; $f^{\prime \prime}\left(\frac{\pi}{2}\right)<0 \rightarrow$ bral MAX $f^{\prime \prime}\left(-\frac{\pi}{2}\right)>0 \rightarrow$ Oral MiN, $f^{\prime \prime}\left(\frac{3 \pi}{2}\right)>0 \rightarrow$ local MiN

- Inflection Prints = $0, \pm \pi, \pm 2 \pi, \ldots$.

Exercise: Do the same analysis for $f(t)=t^{5}-5 t+1$ (Lecture 13) §4 Proof of the Consexity Test:

It's enough to show (1) The argument fr r (2) is very similar. - We know that $f^{\prime \prime}(x)>0$ m (a, b), so $\frac{f^{\prime} \text { is strictly incuasing }}{(k)}$ We want to show that the graph of f sits above the tangent line at $(c, f(c))$ fr any $a<c<b$

We argue by contradiction \& assume this fails for some cu l (a, b). This means that we can find a point d as clone to c as derind, where $(d, f(d))$ is below the Tangent line $L_{\text {Tan }}$
CASE 1: $d<c$:

- Since $f^{\prime \prime}$ exists, this mans f^{\prime} is differentiable, so f is continuous

In particular: f is differentiable $m(d, c)$
f is continuous in $[d, c]$
By the Mean Value Theorem, we can find p in (d, c) with

$$
f^{\prime}(p)=\frac{f(c)-f(d)}{c-d}=\text { slope of the secant. } L_{\mathrm{sec}}
$$

Now, $(d, f(d))$ is below $L_{\text {Tan }}, p<c$ and

$$
f^{\prime}(p)=\text { slop of the secant } L_{\text {sec }}>\text { slope of } L_{\text {Tan }}=f^{\prime}(c)
$$

So f^{\prime} is not incuasing. This contradicts our assumption (*)
CASE 2: $\quad d>c$
We use the MVT to find p in (c, d) with $f_{(p)}^{\prime}=\frac{f(d)-f(c)}{d-c}$
 We get $c<p$ and

$$
\text { slope of } L_{a_{a n}}=f_{(c)}^{\prime}>\text { slope of } L_{s e c}=f_{(c)}^{\prime}
$$

Again, this cortradictis on assumption (x) that f^{\prime} was imcuaring.

- We conclude fum both cases, that wo sech pout $(d, f(d)$) can exist, so $f_{(x)}$ is CU near c as we wanted To show.

