Lecture XV: 54.3 Applied Maximum \& Minimum Problems s4.4 More max-min problems
§1.Oreuriew:
TODAY's MESSAGE: The solution To many applied problems revolves around maximizing ir minimizing a (constrained) function of one variable.
CHALLENGE: Translate the riginal problem To a concrete maximization / minimizative problem
Examples :(1) In Physical Sciences, nature often wants To minimize something
(1) energy used (Hamilton's Principle of LEAST ACTION)
(2) Time required to travel from A to B (Fermat's Principle of LEAST TIME)
(2) In Business, the simplest paradigm is:
(1) minimize costs.
(2) maximize profits

KEY STEPS: Modeling = Find the equations that govern the

- Determine the constraints that must be met.

EASY PART: Calculus of maximizing / minimizing a contenceres (r differentiable) function $f: D \rightarrow \mathbb{R}$, where the domain D is determined by the constraints of the problem. We have 2 optime for D :
(1) D is bounded: $D=[a, b]$
(2) D is unbounded:

$$
[a, \infty),(-\infty, b]
$$

$r R$ (unconstrained)

Roadmap: (1) Find the critical prints $\left(f^{\prime}(c)=0 \quad \pi f^{\prime}\right.$ is wot defined at c)
(2) values $(f(c)$ is $c=$ critical $p t)$
(3) Compute f at the enderints of D, r

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} f_{(x)}, \text { resfectixdy } & \lim _{x \rightarrow-\infty} h_{(x)} \\
\mid D=[a, \infty)>\mathbb{R}) & (D=(-\infty, b] \Omega \mathbb{R})
\end{array}
$$

Note :Af $D=[a, b]$ \& f is contimuores, then we know by EVT that f has global max \& min values
(B) If D is unbounded, the global max r min values may not exist (depends n what $\lim _{x \rightarrow \infty} f(x)$ and/ $\rightarrow \lim _{x \rightarrow-\infty} f(x)$
$\begin{array}{rl}\text { Examples (i) } f(x)=x^{2} & f:[0, \infty) \rightarrow \mathbb{R} \text { has global min, but } \\ \text { (2) } f(x)=x^{3}: & f:[a, \infty) \rightarrow \mathbb{R} \text { hid al max }\end{array}$ no global max
$f:(-\infty, b] \rightarrow \mathbb{R}$ has global max, but
 no global min
(3) $f(x)=\sin (x)$ has both global minimum s maximum values on \mathbb{R}

Strategy for Mroleteng:
(1) Understand / Interperte the wad problem.
(2) Make a careful sketch if the problem is geometric. Doit include any unwanted assumptions (eg symmetries) that aren't granted
(3) Label the figure with the given data \& suggestive names. f^{15}
(4) Write down the equations involved and what needs variables t_{0} be maximize/minimize. Then, thanstrom the equation int a
(5) Solve the max/ min problem \& make single variable one makes sense in the context of the word problem
32. Examples:

EXAMPLE 1: Show that the rectangle with maximum ara for a fixed perimeter is a square.

Solution:

(1) Ara $=\ell \cdot h$ mas to maximized $(l, 4)$
(2) Perimeter $=2 l+2 h=2(l+h)=P$ $P \geqslant 0$ is fixed.
Constraints: $l, h \geqslant 0$

- $l+h=\frac{P}{2}$ fixed

Use (2) to turn Area $(\ell, h$) into a single variable expression Q: How? A Solve for $l \quad l=\frac{P}{2}-h$ \& replace this value in Ara.

$$
\text { Ara }=\operatorname{Ara}(h)=\left(\frac{P}{2}-h\right) h=\frac{P}{2} h-h^{2}
$$

Constraints : $h \geqslant 0 \& \frac{p}{2}-h \geqslant 0$ so $0 \leqslant h \leqslant \frac{p}{2}$
\min Ara; $D=\left[0, \frac{p}{2}\right] \longrightarrow \mathbb{R}$ is a antinuores \&
Sola 1 differentiable function
graph says max is achiesed at $h=\frac{P}{4}$ so $l=P / 2-h=P / 4$.

Soln2 Maximize $A_{(h)}=A_{\text {ra }}(h)=\frac{P}{2} h-h^{2}$ oren $0 \leqslant h \leqslant \frac{\rho}{2}$
We have a global maximum by the EVT.

1. Gitical Prints: $A^{\prime}(h)=\frac{P}{2}-2 h=0$ so $h=\frac{P}{4}$
2. Gitical Values: $A\left(\frac{p}{4}\right)=\frac{P}{2} \frac{P}{4}-\left(\frac{P}{4}\right)^{2}=\frac{p^{2}}{8}-\frac{P^{2}}{16}=\frac{P^{2}}{16}$
3. Values at endpreits: $A(0)=0=A\left(\frac{P}{2}\right)$
4. Comparison: $A\left(\frac{P}{4}\right)$ is the winner, so $h=\frac{P}{4} \quad \& \quad l=\frac{P}{2}-\frac{P}{4}=\frac{P}{4}$

Conclucle $l=h=\frac{P}{4}$ so the rectangle is a square.
EXAMPLE 2: Given 2 positive constraints $a \& b$, consider the region between the parabola $a^{2} y=a^{2} b-4 b x^{2}$ and the x-axis. Find the base and hight of the largest rectangle (in area) with lower base on the x-axis \& upper vertices M the parabola.
Solution we draw the parabola by computing the x-intercepts

$$
\begin{aligned}
a^{2} y=a^{2} b-4 b x^{2} \quad \& y=0, \text { so } \quad 4 b x^{2} & =a^{2} b \\
x & = \pm \frac{a}{2}
\end{aligned}
$$

Sypmintery then says the vertex of the parabola is the y-intercept

$$
\begin{aligned}
& a^{2} y=a^{2} b-4 b x^{2} \\
& \underbrace{(a)}_{l=2 x} \\
& \text { \& } x=0 \text {, so } \quad \begin{aligned}
a^{2} y & =a^{2} b \\
y & =b .
\end{aligned} \\
& y=\frac{a^{2} b-4 b x^{2}}{a^{2}} \text {, so } \\
& h=b-\frac{4 b x^{2}}{a^{2}} \\
& \text { Ara }=l h=2 x h \\
& A(x)=2 x\left(b-\frac{4 b x^{2}}{a^{2}}\right) \\
& \text { Instraints: } 0 \leq x \leq \frac{a}{2}
\end{aligned}
$$

- We have a bounded problem: maximize $A(x)$ ore $\left[0, \frac{a}{2}\right]^{15[5}$

1. cRitical Pts: $A^{\prime}(x)=2 b-\frac{8 b 3 x^{2}}{a^{2}}=2 b\left(1-\frac{12}{a^{2}} x^{2}\right)=0$

Since $b \neq 0$, we get $x= \pm \frac{a^{a^{2}}}{\sqrt{12}}$.
Since $x \geqslant 0$, we discard the negative solution
2. Litical Values: $A\left(\frac{a}{\sqrt{12}}\right)=2 \frac{a}{\sqrt{12}}\left(b-\frac{4 . b}{a^{2}} \frac{a^{2}}{12}\right)=\frac{4 b a}{3 \sqrt{12}}$
3. Endpoint Values: $A(0)=0=A\left(\frac{a}{2}\right)$
4. Comparison: $\frac{a}{\sqrt{12}}$ wins, so base $=\frac{2 a}{\sqrt{13}}=\frac{a}{\sqrt{3}}$

$$
\text { height }=b-\frac{4 b}{a^{2}} \frac{a^{2}}{12}=\frac{2 b}{3}
$$

EXAMPLE 3: A cone with height h is inscribed in a larger cone with height H so that its vertex is at the center of the base of the larger cone. Show that the inner cone has maximum volume when $h=H / 3$.

- Big cone: $\left.\begin{array}{r}\text { height } H \geqslant 0 \\ \text { radius } R \geqslant 0\end{array}\right\}$ fixed

$$
\begin{array}{r}
\text { inscribed }=\text { inside }+ \text { Touching } \\
\text { the boundary }
\end{array}
$$

Constraints: $0 \leq h \leq H \quad \& \quad 0 \leq r \leq R$
Vol cone $(r, h)=\frac{\pi r^{2} h}{3}$ we want T_{0} maximize it
Q How to find a relation between r \& h ?
A: Use geometry of Triangular vertical cross sectim.

$D B / / A C$ because small ane is inscribed in the larger cone.

$$
S_{\sigma} \tan \alpha=\frac{H-h}{r}=\frac{H}{R}
$$

This gives $r=\frac{R}{H}(H-h)$
Replace this expression in Vol cone to get a me-variable function

$$
V_{9} l(h)=\frac{\pi}{3} \underbrace{\frac{R^{2}}{H^{2}}(H-h)^{2}}_{=r^{2}} h \quad \text { cubic polynomial in } h
$$

- Vol is continuous and $\overline{\bar{d}}{ }^{r^{2}}$ differentiable
- Constraints : $0 \leqslant h \leqslant H \quad\left(0 \leqslant r \leqslant R\right.$ tRanslates t_{0}

$$
\begin{aligned}
& 0 \leqslant \frac{R}{H}(H-h) \leqslant R, \text { so } 0 \leqslant H-h \leqslant H \\
&0 \leqslant h \leqslant H)
\end{aligned}
$$

Now we find the global max, which exists by EVT:

$$
\text { . } \begin{aligned}
\operatorname{Vol}^{\prime}(h) & =\frac{\pi R^{2}}{3 H^{2}}\left(2(H-h)(-1) h+(H-h)^{2}\right) \\
& =\frac{\pi R^{2}}{3 H^{2}}(H-h)(-2 h+H-h) \\
& =\frac{\pi R^{2}}{3 H^{2}}(H-h)(H-3 h)
\end{aligned}
$$

So $V R^{\prime}(h)=0$ fo $h=H \quad r \quad h=\frac{H}{3}$

- $\operatorname{Vr}(H)=0$ \& $\operatorname{Vrl}\left(\frac{H}{3}\right)=\frac{\pi}{3} \frac{R^{2}}{H^{2}}\left(\frac{2}{3} H\right)^{2} \frac{H}{3}=\frac{4 \pi}{81} R H>0$
- End points $\operatorname{Vol}(0)=\operatorname{Vol}(H)=0$
- Compare : The winner is $h=\frac{H}{3}$.

