\$2. Examples:

EXAMPLE 1: Show that the rectangle with maximum area for a fixed perimeter is a square. Solution: h h (1) Area = l.h mosto be maximized (P,h) l (2) Buimeter = 2l+2h = 2(l+h)=P P=0 is fixed.

Constraints: $l, h \ge 0$ $l+h = \frac{P}{2}$ fixed

Use (2) to turn Area (1, h) into a simple variable expression $Q: How? A Solve For l <math>l = \frac{P}{2} - h$ & uplace this value $Area = Area(h) = (\frac{P}{2} - h)h = \frac{P}{2}h - h^2$ Constraints: $h \ge 0 \ge \frac{P}{2} - h \ge 0$ so $0 \le h \le \frac{P}{2}$ $rup Area : D = [0, \frac{P}{2}] \longrightarrow \mathbb{R}$ is a continuous \ge differentiable function differentiable function differentiable function $l = \frac{P}{2} - h = \frac{P}{4}$.

Solnz Maximize
$$h = A \pi a (h) = \frac{P}{2}h - h^2$$
 ore $0 \le h \le \frac{P}{2}$
We have a global maximum by the EVT.
1. Critical Points: $A'(h) = \frac{P}{2} - 2h = 0$ so $h = \frac{P}{4}$
2. Critical Values: $A(\frac{P}{4}) = \frac{P}{2}\frac{P}{4} - \left[\frac{P}{4}\right]^2 = \frac{P^2}{8} - \frac{P^2}{16} = \frac{P^2}{16}$
3. Values at endpoints: $A(0) = 0 = A(\frac{P}{2})$
4. Comparism : $A(\frac{P}{4})$ is the winner, so $h = \frac{P}{4} \le l = \frac{P}{2} - \frac{P}{4} = \frac{P}{4}$
Cinclude $l = h = \frac{P}{4}$ so the rectangle is a square.

EXAMPLE 2: Given 2 positive instraints $a \ge b_{-4}$ insider the regime between the parabola $a^2y = a^2b_{-4}bx^2$ and the x-axis. Find the base and height of the largest rectangle (in area) with lower base on the x-axis \gtrsim upper vertices on the parabola.

. We have a bounded problem : maximize
$$A(x)$$
 or $[0, \frac{a}{2}]^{US}$
1. hitcal Pts : $N'(x) = 2b - \frac{8b3x^2}{2} = 2b(1 - \frac{12}{a^2}x^2) = 0$
Since $b \neq 0$, we get $x = \pm \frac{a}{a^2}$.
Since $x \ge 0$, we discard the negative solution
2. hitical Values : $A(\frac{a}{112}) = \frac{2a}{112}(b - \frac{4}{a^2}\frac{a^2}{12}) = \frac{4ba}{3512}$
3. Endpoint Values : $A(0) = 0 = A(\frac{a}{2})$
4. Comparison : $\frac{a}{12}$ wins, so base $= \frac{2a}{113} = \frac{a}{13}$
hight $= b - \frac{4b}{a^2}\frac{a^2}{12} = \frac{2b}{3}$

EXAMPLE 3: A one with height h is insuited in a larger one with height H so that its rectex is at the center of the base of the larger one. Show that the inner one has maximum volume when h = H/3.

inscribed = inside + touching the boundary Constraints: $0 \le h \le H$ & $0 \le r \le R$ Vol Cone $(r,h) = \frac{TC r^2 h}{3}$ we want To maximize it Q How to Find a relation between $r \le h$? A: Use geometry of Triangular retical close section.

Help
$$rdesured$$

Help $rdesured$
Help