Lecture XVII: \$4.4 Reflection \& refraction
Si. Law of Reflection:

A ray of light travels from A to P, bounces on the minor surface to reach B in the shortest amount of time. Then,

Proposition: $\quad \alpha=\beta$

Proof -1: Set $B^{\prime}=\operatorname{minur}$ image of B \& draw P as the intersection of the line $A B^{\prime}$ with the miner surface.

Then $\alpha=\gamma$ (opposite angles) \& $\gamma=\beta$
because $\operatorname{dist}(B, \operatorname{minor})=\operatorname{dist}\left(B^{\prime}, \min 0 r\right)$
From this we get $\alpha=\gamma=\beta$.
Q: Why is this the shortest path?
A: We know the speed of light is constant so the fastest way is also the shortest way.

- We compute the total length:

$$
l(A P B)=A P+P B=A P+P B^{\prime}=A B^{\prime}
$$

- Now, for any other print P^{\prime} an the minor, we can dow the same 3 lives $A P^{\prime}, P^{\prime} B$ \& $P^{\prime} B$.

$$
l\left(A P^{\prime} B\right)=A P^{\prime}+P^{\prime} B=A P^{\prime}+P^{\prime} B^{\prime}
$$

But $A P^{\prime}+P^{\prime} B>A P+P B^{\prime}$ unless $P^{\prime}=P$.
(shortest path between 2 points is a straight bine!).
Conclusion: The P we pick minimizes the distance travelled, so $\alpha=\beta$ must be tine.

Prod 2: Vier this as a minimization problem \& use Calculus!
The length of the path depends in the location of P. We set x To be the distance fun $P T_{0}$ the left \& write $P=P(x)$. Then:

$$
L(x)=A P(x)+P(x)^{B}=\sqrt{x^{2}+a^{2}}+\sqrt{(c-x)^{2}+b^{2}} .
$$

Constraint :- $0 \leq x \leq c$.
Note: $a, b>0$ so $L(x)$ is contimuores \& differentiable. By EVT it has a minimum \rightarrow endpoint
(1) Endpoints $L(0)=a+\sqrt{b^{2}+c^{2}} \quad \& L(c)=\sqrt{c^{2}+a^{2}}+\sqrt{b^{2}}$.

$$
L^{\prime}(x)=\frac{2 x}{2 \sqrt{x^{2}+a^{2}}}+\frac{1}{2} \frac{-2(c-x)}{\sqrt{(c-x)^{2}+b^{2}}}=\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{(c-x)}{\sqrt{(c-x)^{2}+b^{2}}}
$$

Note: $L^{\prime}(0)=\frac{-c}{\sqrt{c^{2}+b^{2}}}<0 \quad \& \quad L^{\prime}(c)=\frac{c}{\sqrt{a^{2}+c^{2}}}>0$,
so L decreases mar 0 \& increases near C. This ensures that endpoints cannot be minimizing pits!
(2) Critical Prints: $L^{\prime}(x)=0$ gives $\frac{x}{\sqrt{a^{2}+x^{2}}}=\frac{c-x}{\sqrt{(c-x)^{2}+b^{2}}}$

We square both sides: $\frac{x^{2}}{a^{2}+x^{2}}=\frac{(c-x)^{2}}{(c-x)^{2}+b^{2}}$
We insert:

$$
\begin{aligned}
& \frac{a^{2}+x^{2}}{x^{2}}=\frac{(c-x)^{2}+b^{2}}{(c-x)^{2}} \\
& x+\left(\frac{a}{x}\right)^{2}=x+\left(\frac{b}{c-x}\right)^{2}
\end{aligned}
$$

Inst again: $\quad\left(\frac{x}{a}\right)^{2}=\left(\frac{c-x}{b}\right)^{2} \quad n>$ quadratic in x we can solve!
But we don't need to solve fro. Remember: we want to confirm that $\alpha=\beta$ (fr this minimizing value fr $x)$.

Here: $\tan \alpha=\frac{a}{x} \& \tan \beta=\frac{b}{c-x}$, with $(\tan \alpha)^{2}=(\tan \beta)^{2}$ $4 \operatorname{Tan} \alpha, \operatorname{Tan} \beta>0$ because $a, b, x, c-x>0 \& \alpha, \beta \in\left[0, \frac{\pi}{2}\right)$. We unclucle: $\alpha=\beta$ at a nitical print of L.
NOTE: At a critical print we get minumium by the $z^{\text {nd }}$ Derintire Test:

$$
\begin{aligned}
L^{\prime} & =\frac{1}{\sqrt{\left(\frac{a}{x}\right)^{2}+1}}-\frac{1}{\sqrt{1+\left(\frac{b}{c-x}\right)^{2}}} \\
m L^{\prime \prime} & =\frac{1}{2} \frac{2 \frac{a}{x} \cdot \frac{(-1)}{x^{2}}}{\left(\left(\frac{a}{x}\right)^{2}+1\right)^{3 / 2}}-\frac{1}{2} \frac{\left.2\left(\frac{b}{c-x}\right)^{3}\right)}{\left(1+\frac{b}{c-x}\right)^{3 / 2}}=\frac{a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}+\frac{b^{2}}{\left((c-x)^{2}+b^{2}\right)^{3 / 2}}>0
\end{aligned}
$$

\$2 Law of Refraction:
Q: What happens when a pay of light travels through 2 different media (ain \& water / glass,...)?
A: Again, we want to minimize the tine it takes to teasel fur m A (in one medium) to B (is a different medium).

Write $v_{a}=$ speed of light in air

$$
v_{b}=\frac{}{\text { glass /water }} \text { in }
$$

we assume $v_{a}, v_{b}>0$.
$x=$ distance fum P to the left
Constraint : $0 \leqslant x \leqslant c$
Write $\alpha_{2} \beta$ for the 2 relevant angles (in the picture). Note that they use in pains. \& they depend in the psitime of P, so on the value x.

Snell's Law:

$$
\frac{\sin \alpha}{\sin \beta}=\text { constant }=\frac{v_{a}}{v_{b}} \text { (called the mex of refraction) }
$$

This constant only depends $n v_{a} \& r_{b}$, not on the proton of $A \approx B$.
NOTE: If $v_{a}=v_{3}$ we recover the Lan of Reflection.
Proof As usual, we set this as a problem of minimizing the Terce it takes To havel the distance from A to B.

- Tine in the air: $T_{a i n}(x)=\frac{\text { destance }}{\mid \text { velocity } \mid}=\frac{A P}{v_{a}}=\frac{\sqrt{a^{2}+x^{2}}}{v_{a}}$
- Time in the flass/water $T_{g / w}(x)=\frac{\text { distance }}{\mid \text { |velocity } \mid}=\frac{P B}{v_{b}}=\frac{\sqrt{b^{2}+(c-x)^{2}}}{v_{b}}$

So : Total Time $T_{(x)}=T_{\text {ain }}(x)+T_{g / \omega}(x)$

$$
T(x)=\frac{\left(a^{2}+x^{2}\right)^{1 / 2}}{v_{a}}+\frac{\left(b^{2}+(a-x)^{2}\right)^{1 / 2}}{v_{b}}
$$

We want To minimize $T_{(x)}$ subject to $0 \leq x \leq c$.
As before: T is continues a differentiable in $[0, c]$
By the EVT we have a minimum.
(1) Endpoints: $T_{(0)}=\frac{a}{r_{a}}+\frac{\left(b^{2}+c^{2}\right)^{1 / 2}}{v_{b}} ; T_{(c)}=\frac{\left(a^{2}+c^{2}\right)^{1 / 2}}{r_{a}}+\frac{b}{r_{b}}$

$$
\begin{aligned}
& T^{\prime}(x)=\frac{x}{v_{a}\left(a^{2}+x^{2}\right)^{1 / 2}}-\frac{(c-x)}{v_{b}\left(b^{2}+(c-x)^{2}\right)^{1 / 2}} \\
& T^{\prime}(0)=\frac{-c}{v_{b}\left(b^{2}+c^{2}\right)^{1 / 2}}<0 \quad \& \quad T^{\prime}(c)=\frac{c}{r_{a}\left(a^{2}+c^{2}\right)^{1 / 2}}>0
\end{aligned}
$$

so T is ste deceasing at 0 \& $s t$. incuasing at c. Thus, the minimums cannot be achieved at an endpoint. It must be a critical print!

Conclusion: At the minimize, we have $\frac{\sin \alpha(x)}{\sin \beta(x)}=\frac{v_{a}}{r_{b}}=$ constant
Note: Use $2^{\text {nd }}$ Derinatere Test to cuffiem we get a minimums since

$$
T^{\prime \prime}(x)=\frac{1}{v a} \frac{a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}+\frac{1}{v_{b}} \frac{b^{2}}{\left(b^{2}+(c-x)^{2}\right)^{3 / 2}}>0 \text {. }
$$

