Lecture XVIII: $\$ 5.2$ Differentials \& tangent line approximations
§1. Linear approximations a differentials:
IDEA: Near a given print, the tangent line to a graph at this point is a good approximation of this graph.

Recall: $\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)$
$\Delta_{x}=$ incumut in x-variable

- Incuse in the graph $=(\Delta x, \Delta y)$

$$
\begin{aligned}
& L_{\text {tam }}: y=f^{\prime}\left(x_{0}\right) \\
& d y=y-\left.f_{\left(x_{0}\right)} \quad\right|_{\left.x-x_{0}\right)}=f\left(x_{0}\right) \\
& d x=x-x_{0} \quad f_{\left(x_{0}\right)}^{\prime} \Delta x=f^{\prime}\left(x_{0}\right) d x \\
&=\Delta x \\
& x=x_{0}+\Delta x
\end{aligned}
$$

differentials
.The notation $d x, d y$ is inspired by Leibniz:

$$
\begin{array}{r}
y=f(x) \quad y^{\prime}=f^{\prime}(y)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x} \text { "as if" } \lim _{\Delta x \rightarrow 0} \Delta_{y}=d y \\
\& \lim _{\Delta x \rightarrow 0} \Delta_{x}=d x
\end{array}
$$

(Of course, both limits are D!)

- We want to give a meaning $T_{0} f^{\prime}(x)=\frac{d y}{d x}$. This is precisely what differentials do! Q: How?
AT The differential d_{x} is an independent variable, and $d y$ is defined in terms of $d x$ by $d y:=f^{\prime}\left(x_{0}\right) d x$
Summary: $\Delta f=\Delta y=$ change along the graph $y=f_{(x)}$ (cure!) as x changes $\tau_{0} x+\Delta x$
- $d f=d y=$ tangent line as x changes T_{0}

$$
x+d x(=x+\Delta x)
$$

- Remark If f is liner, $y=m x+b$ fr fixed parameter $m \& b$

Then $\left.\begin{array}{c}\Delta y=m \Delta x, y^{\prime}=m \\ \Delta x=d x\end{array}\right\}$
So $d y=y^{\prime} d x=m d x=m \Delta x=\Delta y$ \& $\frac{\Delta y}{\Delta x}=m=\frac{d y}{d x}$.

- Idea behind linear approximations: pretend that f is linear \& use the tangent line as an "approximation" of f.
The catch will be to see what the eur in the approximation, but we'll deal with this when we discuss Remainder fremulas fr Taylor series. Fr today, we take for panted that the enor is small.

Examples: $f(x)=x^{2} \leadsto f^{\prime}(x)=2 x$ so $d f=d y=2 x d x$

$$
\begin{aligned}
& \Delta f=\Delta y=(x+\Delta x)^{2}-(\Delta x)^{2} \\
& =x^{2}+2 x \Delta x \\
& \text { - } f(x)=\sin x \text { m } f^{\prime}(x)=\cos x \\
& \text { so } d f=d y=\cos x d x \\
& \Delta f=\Delta y=\sin (x+\Delta x)-\operatorname{sen} x
\end{aligned}
$$

\$2 Differentiation Fromulas in differential notation:
Fix u, v function of variable x.
(1) Sown Rule: $y=u^{n}$ us $d y=n u^{n-1} d u$
(2) Product Rule: $\quad y=u v \sim \sim d y=d(u v)=u d v+v d u$ [Q: Why? $A: \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$ \& multiply both sides by $d x$]
(3) Quotient Rule: $y=\frac{u}{v} m s d y=d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}$
(4) Chain Rule: $y=f(u) \quad u=g(x)$ ans $d y=f^{\prime}(u) d u$

$$
d u=g^{\prime}(x) d x
$$

so $d y=f^{\prime}(u) f^{\prime}(x) d x=f^{\prime}(\rho(x)) d x$.
§3. Tangent line approximation:

Near the Tangency print $\left(x_{0}, f_{\left(x_{0}\right)}\right)$, the graph of f is very doe to the tangent line As $\Delta_{x}=d x$ becomes closed To 0 , then the secant line \qquad Torrent bine (Δy data) (dy data)
Conclusion: Fo SMALL values of $\Delta x=d x$, the change in the Tangent line is a good approximation to the change in $f(x)$.

$$
\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \simeq d y
$$

Equivalently: $f\left(x_{0}+\Delta x\right) \simeq f\left(x_{0}\right)+d y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) d x$ Linear in $d x$
Definition: The liner function $L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is called the linear approxinuation of f at x_{0}.

- We use $L(x)$ to approximate $f(x)$ fr x mar x_{0}.
- Applications : (1) Approximate values of square nos, cube roots, etc.
(2) Compute impact of measurement eure

EXAMPLE 1: Find the limar approximation of $f(x)=\sqrt{1-x}$ at $a=0$ $\&$ use it to estimate $\sqrt{0.9} \& \sqrt{0.99}$.
Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{1-x}}(-1) \leadsto f^{\prime}(0)=\frac{-1}{2}, f_{(0)}=\sqrt{1-0}=1$

$$
L_{(x)}=f(0)+f^{\prime}(0)(x-0)=1-\frac{1}{2} x
$$

So $f(0.1)=\sqrt{0.9} \approx L_{(0.1)}=1-\frac{1}{2} 0.1=1-0.05=0.95$

$$
f(0.01)=\sqrt{0.99} \approx L_{(0.01)}=1-\frac{1}{2} 0.01=1-0.005=0.995 .
$$

EXAMPLE 2: Find the liner approximation of $\sin (x)$ at $x=0$
Solution: $f^{\prime}(x)=\cos x \leadsto f^{\prime}(0)=\cos 0=1, f(0)=\operatorname{sen}(0)=0$

$$
L(x)=f_{(0)}+f^{\prime}(0)(x-0)=0+1 \cdot x=x .
$$

Observe: This says $L_{(x)}=x$ is a good approximation of $\operatorname{sen} x$ mar 0 . This is consistent with the fact that $\lim _{x \rightarrow 0} \frac{\operatorname{sen} x}{x}=1$. This idea will be the basis in L'Hospital Rule.

EXAMPLE 3: Approximate $\sqrt[3]{28}$.
Solution We need T_{0} find the closest kern value we can ampule. $3=\sqrt[3]{27}$ so $x_{0}=27$. \& we use $f(x)=\sqrt[3]{x}$
Linear approximatim: $f^{\prime}(x)=\frac{1}{3}(x)^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \leadsto f^{\prime}(27)=\frac{1}{33^{2} 27}$

$$
\begin{aligned}
& \cdot f(27)=3 \\
& L_{(x)}=f_{(27)}+f_{(27)}^{\prime}(x-27)=3+\frac{1}{27}(x-27)=2+\frac{x}{27} \\
& \sqrt[3]{28}=f_{(28)} \approx L_{(28)}=2+\frac{28}{27}=3+\frac{1}{27} \cong 3.037 \ldots
\end{aligned}
$$

(This assumes that 28 is close enough to 27 for the approximation to be maningful)

EXAMPLE 4: If the raders. of the Earth incuses by oft, how much would the senface area incuase?
Solution: $A=4 \pi r^{2} \quad r=$ cadmus of Earth $\approx 4000 \mathrm{mi}$

$$
d r=1 \mathrm{ft}=\frac{1}{5280} \mathrm{mi} .
$$

So $\Delta A \approx d A=A_{(r)}^{\prime}(d r)=8 \pi r d r=8 \pi 4000 \cdot \frac{1}{5280} \mathrm{mi}$

$$
\approx 19.04 \mathrm{mi}^{2}
$$

EXAMPLE 5: The radius of a cincular desk is given To be 24 cm , with a maximum maseuement enor of 0.2 cm . Usediffecentials To estimate the maximum enos in the calculated ara of the disk \& the relatives ensor

Solution: Ara $A(r)=\pi r^{2}$ as $d A=2 \pi r d r$
Error in moserement $=d r$

- When $r=24$, we know $d r \equiv 0.2$ at must, so

$$
d A= \pm 2 \pi \cdot 24 \cdot 0.2= \pm 9.6 \pi
$$

- Maximum ever $=9.6 \pi \mathrm{~cm}^{2}$. when $A=\pi \cdot 24^{2}$
- Relative enos = ?

$$
\text { Rel senor }=\frac{\text { Approx. Value }-T_{\text {me }} \text { Value }}{\text { True Value }}
$$

True Value $=f_{\left(x_{0}\right)} \quad$ Approx Value $=f\left(x_{0}+\Delta x\right)$
So $\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{f\left(x_{0}\right)}=\frac{f^{\prime}\left(x_{0}\right) \Delta x}{f\left(x_{0}\right)}=\frac{x_{0} f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)} \frac{\Delta x}{x_{0}}$
Condition Relative error Number formasenement
In our example $\frac{d A}{A}=\frac{9.6 \pi}{24^{2} \pi}=\frac{1}{60} \& \frac{d r}{r}=\frac{0.2}{24}=\frac{1}{120}$ condition number is $2=\frac{1}{60} / 1 / 120$

