Lecture XIX: §5.3 Indefinite integrals \& Substitution §5.4 Differential Equations. Separation of variables
si Antidrivatives:
Up To now, we 're discussed rules to find f^{\prime} given a function f.
TODAY: We want to morse the process ("autiderivation"), meaning "given $f(x)^{\prime}$ can we find $F(x)$ with $F^{\prime}=\frac{d F}{d x}=f_{(x)}$?"

Examples: © $\frac{d F}{d x}=3 x^{2}$ mss $F=x^{3}, x^{3}+1, \ldots$
(2) $\frac{d F}{d x}=\cos x$ ms $F=\operatorname{sen}(x), \sin (x)-\frac{\pi}{4} \sqrt{2}, \ldots$

Guiding_questim: Can we recover \bar{T} fum F ? Almat! (u pto an additive constant)
Pwpssition If $F(x) \& G(x)$ ar two functions with the same derivative $(=f(x))$ on an interval (a, b) with $a<b$, then $F(x)-G(x)$ is constant ion (a, b)
Q Why? A Mean Value Theorem. Pick a^{\prime}, b^{\prime} wist $a<a^{\prime}<b^{\prime}<b$

since $\underset{(x)}{H}=\underset{(x)}{ }-G_{(x)}$ is differentiable on (a, b)
we know. H is contenueres on $\left[a^{\prime}, b^{\prime}\right]$

- H is differentiable $m\left(a^{\prime}, b^{\prime}\right)$

By MVT, we can find c in $\left(a^{\prime}, b^{\prime}\right)$ with

$$
H_{(c)}^{\prime}=\text { slope of } L_{\mathrm{sec}}
$$

But $H^{\prime}(c)=0$ so $L_{\text {sec }}$ is a hreizntal line. This mans $H\left(a^{\prime}\right)=H\left(b^{\prime}\right)$ ifs any pain a^{\prime}, b^{\prime} in (a, b).
Conclude: $H=F-G$ is a constant function.
Consequence: Antiderivatives are not unique, beet they all differ by constants.
Notation $\bar{T}(x)+C=\int f(x) d x$ We call it the ontideninatere r indefinite integral of f.

Remark: Every formula for derivatives has an analog fr indefinite integrals. This is based m "Duivature mules for differential".
\$2. Differentiation Fromulas in differential notation:
Fix u, v function of i variable x.
(1) Sown Rule: $y=u^{n}$ us $d y=n u^{n-1} d u$
(2) Product Rule: $y=u v \sim u d y=d(u v)=u d v+v d u$
[Q: Why? $A: \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$ \& multiply both sides by $d x$]
(3) Quotient Rule: $y=\frac{u}{v}$ mas $d y=d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}$
(4) Chain Rule: $y=f(u) \quad u=g(x)$ ans $d y=f^{\prime}(u) d u$
so $d y=f^{\prime}(u) f^{\prime}(x) d x=f^{\prime}(\rho(x)) d x$.

$$
d u=g^{\prime}(x) d x
$$

§3. Rules for Artidecivatives
(1) Sown Rule: $\frac{d x^{m+1}}{d x}=(m+1) x^{m} \leadsto \infty d x^{m+1}=(m+1) x^{m+1} d x \leadsto x^{m+1} d x=\frac{d x^{m+1}}{m+1}$ if $m \neq-1$
So $\int x^{m+1} d x=\frac{x^{m+1}}{m+1}+C$ as ling as $m \neq-1$
(2) Trigonometric Rules:

$$
\begin{array}{ll}
\int \operatorname{sen} x d x=-\cos x+C & \int \cos x d x=\operatorname{sen} x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \csc ^{2}(x) d x=-\cot (x)+C \\
\int \tan x \sec x d x=\sec x+C & \int \cot (x) \csc (x)=-\csc (x)+C
\end{array}
$$

(3) Multiplication by constants \& additivity:
(1) a constant $\int a f(x) d x=a \int f(x) d x$
(2) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$.
\leadsto We get antiderivatises for polynomials (in fractimal prows of x withseit $\frac{1}{x}$)
Examples . $\int 3 x^{2}+4 x+2 d x=3 \int x^{2} d x+4 \int x d x+2 \int 1 d x$

$$
\begin{aligned}
&=3\left(\frac{x^{2}}{2}+C_{1}\right)+4\left(\frac{x^{2}}{2}+C_{2}\right)+2\left(x+C_{3}\right) \\
&=x^{3}+2 x^{2}+2 x+C \quad C \text { constant } \\
& 0 \quad \int x^{1 / 3}(x+2)^{2} d x=\int x^{1 / 3}\left(x^{2}+4 x+4\right) d x=\int x^{7 / 3}+4 x^{4 / 3}+4 x^{1 / 3} d x \\
&=\frac{x^{100}}{10 / 3}+\frac{4}{} \frac{x^{2 / 3}}{7 / 3}+4 \frac{x^{4 / 3}}{4 / 3}+C=\frac{3}{10} x^{10 / 3}+\frac{28}{3} x^{7 / 3}+3 x^{4 / 3}+C
\end{aligned}
$$

(4) Substitution (Most subtle rule = cosentenpert to chain rule).

IDEA: Reverse of chain rule
Example: $\int \sqrt{x^{2}+1} 2 x d x=$?
Call $u=x^{2}+1$. Then $d u=2 x d x$

$$
\int \sqrt{x^{2}+1} 2 x d x=\int \sqrt{u} d u=\int u^{1 / 2} d u=\frac{u^{3 / 2}}{3 / 2}+C
$$

To finish substitute back u :

$$
\int \sqrt{x^{2}+1} 2 x d x=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}+C .
$$

Substitution Rule: If $F(x)=h(u(x))$, write $F=h(u) \&$ $u=u(x) \quad$ Then $d F=h_{(u)}^{\prime} d u \quad \& \quad d u=u^{\prime}(x) d x$
Conclusion $d F=h^{\prime}(u) u^{\prime}(x) d x \&$

$$
\int h^{\prime}\left(u_{(x)}\right) \underbrace{u^{\prime}(x) d x}_{=d u}=\int h_{(u)}^{\prime} d u=h(u)+C=h\left(u_{(x)}\right)+C=F(x)+C
$$

Q: How do we use this to compute $\int f(x) d x$
(1) Recognize pact of $f_{c x^{2}}$ as $u^{\prime} d x$
(2) Substitute u, integrate $\int h^{\prime}(u) d u$ \& substitute back T_{0} expless the answer as a function of x.

Notes: - Integration involves 2 substitutions

- We can check our answer is connect using the Chain Rule
- The Rule is straight froward if we view the differentiation step as computing a differential.
- Finding the expression $u=u_{(x)}$ can be tricky! (Practice helps!), We must be able To write the integrand $f(x) d x$ as $h(u) d u$, making sue no x remains!
EXAMPLES: (1) $\int \cos ^{5} x \sin x d x \underset{u=\cos x}{=} \int u^{5}(-d u)=\frac{-u^{6}}{6}+C=\frac{-\cos ^{6} x}{6}+C$ $u=\cos x$

$$
d u=-\operatorname{sen} x d x \text {. }
$$

(2) $\int \sin (5 x) d x \underset{\substack{d \\ u=5 x \\ d u}}{=5 \sin u \frac{d u}{5}=\frac{1}{5}(-\cos u)+C=\frac{-\cos (5 x)}{5}+C}$
(3) $\int \frac{d x}{(x-7)^{7}}=\int \frac{d u}{\substack{u \\ u=x-7 \\ d u}}=\int u^{-7} d u=\frac{u^{-6}}{-6}+C=\frac{-1}{6} \frac{1}{(x-7)^{6}}+C$
ss. Differential Equations \& separation of variables:
The there of differential equations aims \bar{T} u corer a function from a relation among its higheerder derivatives
Examples: (1) $y^{\prime}=2 x$. By integration $y=\int d y=\int 2 x d x=x^{2}+C$
(2) $y^{\prime \prime}=-y$ or $y^{\prime \prime}+y=0$

By inspection $y(x)=\operatorname{sen} x$ \& $y=\cos y$ are solutimes
HARD: Show all solutions ane of the from $y=a \sin x+b \cos x$ for fixed parameters a, b.
(3) $y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-y=0$ ms Sols $=$???

- Certain simple O.D.E.S (ordinary differential equations) can be solved ria the method of separation of variables (analog of implicit differentiation)

Example $\quad y^{\prime}=-x^{2} y^{2}$
Write $\frac{d y}{d x}=-x^{2} y^{2}$ r $\quad d y=-x^{2} y^{2} d x$
STEP 1: We group different variables on different sides of the equation ("seppention sep")

$$
-\frac{d y}{y^{2}}=x^{2} d x
$$

STEP 2: Integrate both sides a put the constant C moly μ the x-side

$$
\frac{1}{y}=\int-\frac{d y}{y^{2}}=\int x^{2} d x=\frac{x^{3}}{3}+C \quad C=\text { arbitrary constant }
$$

STEP 3: Solve for y
General Solution: $y=\frac{1}{\frac{x^{3}}{3}+C}$
Note: We get a i-paramiter family of sslutives $(C=$ parameter) Finding a particular solution mans to choose a value $f \rightarrow C$. Otter, we do this by specifying initial conditions $\left(y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots\right.$. .te.), typically as mary as the number of parameters.

Examples (D) n aw 3 particular soluturs $\left(C=\frac{1}{3}, \frac{-1}{3}, 0\right)$

Note: Separation of variables my works for bey special ODEs, namely if - equation oily involves y^{\prime}, y, x ($1^{\text {st }} r$ oder)

- need To split the equation into $g(y) d y=f_{(x)} d x$

No-example: $\quad y^{\prime}=\frac{x+y}{x-y}$
Example: Solve $\left\{\begin{array}{l}y^{\prime}=2 y^{2}\left(4 x^{3}+4 x^{-3}\right) \\ y(0)=1 \quad \text { (initial condition) }\end{array}\right.$
Solution: $\frac{d y}{y^{2}}=\left(8 x^{3}+8 x^{-3}\right) d x$ so integration gives:

$$
\begin{aligned}
\frac{-1}{y}=\int \frac{d y}{y^{2}}=\int\left(8 x^{3}+8 x^{-3}\right) d x & =\frac{8}{4} x^{4}+\frac{8}{-2} x^{-2}+C \\
& =2 x^{4}-4 x^{-2}+C
\end{aligned}
$$

So $y_{(x)}=\frac{1}{-2 x^{4}+4 x^{-2}+C} \quad$ (General solution)
Particular solution $1=y(0)=\frac{1}{C}$ so $C=1$
Solution is $y(x)=\frac{1}{-2 x^{4}+4 x^{-2}+1}$

